| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837 | /* dtgsen.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__2 = 2;static doublereal c_b28 = 1.;/* Subroutine */ int _starpu_dtgsen_(integer *ijob, logical *wantq, logical *wantz, 	logical *select, integer *n, doublereal *a, integer *lda, doublereal *	b, integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *	beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz, 	integer *m, doublereal *pl, doublereal *pr, doublereal *dif, 	doublereal *work, integer *lwork, integer *iwork, integer *liwork, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 	    z_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    integer i__, k, n1, n2, kk, ks, mn2, ijb;    doublereal eps;    integer kase;    logical pair;    integer ierr;    doublereal dsum;    logical swap;    extern /* Subroutine */ int _starpu_dlag2_(doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, doublereal *);    integer isave[3];    logical wantd;    integer lwmin;    logical wantp;    extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *);    logical wantd1, wantd2;    extern doublereal _starpu_dlamch_(char *);    doublereal dscale, rdscal;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *), _starpu_dtgexc_(logical *, logical *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *, 	    integer *, doublereal *, integer *, integer *), _starpu_dlassq_(integer *, 	     doublereal *, integer *, doublereal *, doublereal *);    integer liwmin;    extern /* Subroutine */ int _starpu_dtgsyl_(char *, integer *, integer *, integer 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *, integer *);    doublereal smlnum;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//*     January 2007 *//*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTGSEN reorders the generalized real Schur decomposition of a real *//*  matrix pair (A, B) (in terms of an orthonormal equivalence trans- *//*  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues *//*  appears in the leading diagonal blocks of the upper quasi-triangular *//*  matrix A and the upper triangular B. The leading columns of Q and *//*  Z form orthonormal bases of the corresponding left and right eigen- *//*  spaces (deflating subspaces). (A, B) must be in generalized real *//*  Schur canonical form (as returned by DGGES), i.e. A is block upper *//*  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper *//*  triangular. *//*  DTGSEN also computes the generalized eigenvalues *//*              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) *//*  of the reordered matrix pair (A, B). *//*  Optionally, DTGSEN computes the estimates of reciprocal condition *//*  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), *//*  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) *//*  between the matrix pairs (A11, B11) and (A22,B22) that correspond to *//*  the selected cluster and the eigenvalues outside the cluster, resp., *//*  and norms of "projections" onto left and right eigenspaces w.r.t. *//*  the selected cluster in the (1,1)-block. *//*  Arguments *//*  ========= *//*  IJOB    (input) INTEGER *//*          Specifies whether condition numbers are required for the *//*          cluster of eigenvalues (PL and PR) or the deflating subspaces *//*          (Difu and Difl): *//*           =0: Only reorder w.r.t. SELECT. No extras. *//*           =1: Reciprocal of norms of "projections" onto left and right *//*               eigenspaces w.r.t. the selected cluster (PL and PR). *//*           =2: Upper bounds on Difu and Difl. F-norm-based estimate *//*               (DIF(1:2)). *//*           =3: Estimate of Difu and Difl. 1-norm-based estimate *//*               (DIF(1:2)). *//*               About 5 times as expensive as IJOB = 2. *//*           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic *//*               version to get it all. *//*           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) *//*  WANTQ   (input) LOGICAL *//*          .TRUE. : update the left transformation matrix Q; *//*          .FALSE.: do not update Q. *//*  WANTZ   (input) LOGICAL *//*          .TRUE. : update the right transformation matrix Z; *//*          .FALSE.: do not update Z. *//*  SELECT  (input) LOGICAL array, dimension (N) *//*          SELECT specifies the eigenvalues in the selected cluster. *//*          To select a real eigenvalue w(j), SELECT(j) must be set to *//*          .TRUE.. To select a complex conjugate pair of eigenvalues *//*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, *//*          either SELECT(j) or SELECT(j+1) or both must be set to *//*          .TRUE.; a complex conjugate pair of eigenvalues must be *//*          either both included in the cluster or both excluded. *//*  N       (input) INTEGER *//*          The order of the matrices A and B. N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N) *//*          On entry, the upper quasi-triangular matrix A, with (A, B) in *//*          generalized real Schur canonical form. *//*          On exit, A is overwritten by the reordered matrix A. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N) *//*          On entry, the upper triangular matrix B, with (A, B) in *//*          generalized real Schur canonical form. *//*          On exit, B is overwritten by the reordered matrix B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1,N). *//*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) *//*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) *//*  BETA    (output) DOUBLE PRECISION array, dimension (N) *//*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will *//*          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i *//*          and BETA(j),j=1,...,N  are the diagonals of the complex Schur *//*          form (S,T) that would result if the 2-by-2 diagonal blocks of *//*          the real generalized Schur form of (A,B) were further reduced *//*          to triangular form using complex unitary transformations. *//*          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if *//*          positive, then the j-th and (j+1)-st eigenvalues are a *//*          complex conjugate pair, with ALPHAI(j+1) negative. *//*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) *//*          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. *//*          On exit, Q has been postmultiplied by the left orthogonal *//*          transformation matrix which reorder (A, B); The leading M *//*          columns of Q form orthonormal bases for the specified pair of *//*          left eigenspaces (deflating subspaces). *//*          If WANTQ = .FALSE., Q is not referenced. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q.  LDQ >= 1; *//*          and if WANTQ = .TRUE., LDQ >= N. *//*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) *//*          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. *//*          On exit, Z has been postmultiplied by the left orthogonal *//*          transformation matrix which reorder (A, B); The leading M *//*          columns of Z form orthonormal bases for the specified pair of *//*          left eigenspaces (deflating subspaces). *//*          If WANTZ = .FALSE., Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z. LDZ >= 1; *//*          If WANTZ = .TRUE., LDZ >= N. *//*  M       (output) INTEGER *//*          The dimension of the specified pair of left and right eigen- *//*          spaces (deflating subspaces). 0 <= M <= N. *//*  PL      (output) DOUBLE PRECISION *//*  PR      (output) DOUBLE PRECISION *//*          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the *//*          reciprocal of the norm of "projections" onto left and right *//*          eigenspaces with respect to the selected cluster. *//*          0 < PL, PR <= 1. *//*          If M = 0 or M = N, PL = PR  = 1. *//*          If IJOB = 0, 2 or 3, PL and PR are not referenced. *//*  DIF     (output) DOUBLE PRECISION array, dimension (2). *//*          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. *//*          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on *//*          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based *//*          estimates of Difu and Difl. *//*          If M = 0 or N, DIF(1:2) = F-norm([A, B]). *//*          If IJOB = 0 or 1, DIF is not referenced. *//*  WORK    (workspace/output) DOUBLE PRECISION array, *//*          dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >=  4*N+16. *//*          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). *//*          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) *//*          IF IJOB = 0, IWORK is not referenced.  Otherwise, *//*          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK. LIWORK >= 1. *//*          If IJOB = 1, 2 or 4, LIWORK >=  N+6. *//*          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the optimal size of the IWORK array, *//*          returns this value as the first entry of the IWORK array, and *//*          no error message related to LIWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*            =0: Successful exit. *//*            <0: If INFO = -i, the i-th argument had an illegal value. *//*            =1: Reordering of (A, B) failed because the transformed *//*                matrix pair (A, B) would be too far from generalized *//*                Schur form; the problem is very ill-conditioned. *//*                (A, B) may have been partially reordered. *//*                If requested, 0 is returned in DIF(*), PL and PR. *//*  Further Details *//*  =============== *//*  DTGSEN first collects the selected eigenvalues by computing *//*  orthogonal U and W that move them to the top left corner of (A, B). *//*  In other words, the selected eigenvalues are the eigenvalues of *//*  (A11, B11) in: *//*                U'*(A, B)*W = (A11 A12) (B11 B12) n1 *//*                              ( 0  A22),( 0  B22) n2 *//*                                n1  n2    n1  n2 *//*  where N = n1+n2 and U' means the transpose of U. The first n1 columns *//*  of U and W span the specified pair of left and right eigenspaces *//*  (deflating subspaces) of (A, B). *//*  If (A, B) has been obtained from the generalized real Schur *//*  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the *//*  reordered generalized real Schur form of (C, D) is given by *//*           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)', *//*  and the first n1 columns of Q*U and Z*W span the corresponding *//*  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). *//*  Note that if the selected eigenvalue is sufficiently ill-conditioned, *//*  then its value may differ significantly from its value before *//*  reordering. *//*  The reciprocal condition numbers of the left and right eigenspaces *//*  spanned by the first n1 columns of U and W (or Q*U and Z*W) may *//*  be returned in DIF(1:2), corresponding to Difu and Difl, resp. *//*  The Difu and Difl are defined as: *//*       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) *//*  and *//*       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], *//*  where sigma-min(Zu) is the smallest singular value of the *//*  (2*n1*n2)-by-(2*n1*n2) matrix *//*       Zu = [ kron(In2, A11)  -kron(A22', In1) ] *//*            [ kron(In2, B11)  -kron(B22', In1) ]. *//*  Here, Inx is the identity matrix of size nx and A22' is the *//*  transpose of A22. kron(X, Y) is the Kronecker product between *//*  the matrices X and Y. *//*  When DIF(2) is small, small changes in (A, B) can cause large changes *//*  in the deflating subspace. An approximate (asymptotic) bound on the *//*  maximum angular error in the computed deflating subspaces is *//*       EPS * norm((A, B)) / DIF(2), *//*  where EPS is the machine precision. *//*  The reciprocal norm of the projectors on the left and right *//*  eigenspaces associated with (A11, B11) may be returned in PL and PR. *//*  They are computed as follows. First we compute L and R so that *//*  P*(A, B)*Q is block diagonal, where *//*       P = ( I -L ) n1           Q = ( I R ) n1 *//*           ( 0  I ) n2    and        ( 0 I ) n2 *//*             n1 n2                    n1 n2 *//*  and (L, R) is the solution to the generalized Sylvester equation *//*       A11*R - L*A22 = -A12 *//*       B11*R - L*B22 = -B12 *//*  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). *//*  An approximate (asymptotic) bound on the average absolute error of *//*  the selected eigenvalues is *//*       EPS * norm((A, B)) / PL. *//*  There are also global error bounds which valid for perturbations up *//*  to a certain restriction:  A lower bound (x) on the smallest *//*  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and *//*  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), *//*  (i.e. (A + E, B + F), is *//*   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). *//*  An approximate bound on x can be computed from DIF(1:2), PL and PR. *//*  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed *//*  (L', R') and unperturbed (L, R) left and right deflating subspaces *//*  associated with the selected cluster in the (1,1)-blocks can be *//*  bounded as *//*   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) *//*   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) *//*  See LAPACK User's Guide section 4.11 or the following references *//*  for more information. *//*  Note that if the default method for computing the Frobenius-norm- *//*  based estimate DIF is not wanted (see DLATDF), then the parameter *//*  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF *//*  (IJOB = 2 will be used)). See DTGSYL for more details. *//*  Based on contributions by *//*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, *//*     Umea University, S-901 87 Umea, Sweden. *//*  References *//*  ========== *//*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the *//*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in *//*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and *//*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. *//*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified *//*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition *//*      Estimation: Theory, Algorithms and Software, *//*      Report UMINF - 94.04, Department of Computing Science, Umea *//*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working *//*      Note 87. To appear in Numerical Algorithms, 1996. *//*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software *//*      for Solving the Generalized Sylvester Equation and Estimating the *//*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, *//*      Department of Computing Science, Umea University, S-901 87 Umea, *//*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working *//*      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, *//*      1996. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test the input parameters */    /* Parameter adjustments */    --select;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --alphar;    --alphai;    --beta;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --dif;    --work;    --iwork;    /* Function Body */    *info = 0;    lquery = *lwork == -1 || *liwork == -1;    if (*ijob < 0 || *ijob > 5) {	*info = -1;    } else if (*n < 0) {	*info = -5;    } else if (*lda < max(1,*n)) {	*info = -7;    } else if (*ldb < max(1,*n)) {	*info = -9;    } else if (*ldq < 1 || *wantq && *ldq < *n) {	*info = -14;    } else if (*ldz < 1 || *wantz && *ldz < *n) {	*info = -16;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTGSEN", &i__1);	return 0;    }/*     Get machine constants */    eps = _starpu_dlamch_("P");    smlnum = _starpu_dlamch_("S") / eps;    ierr = 0;    wantp = *ijob == 1 || *ijob >= 4;    wantd1 = *ijob == 2 || *ijob == 4;    wantd2 = *ijob == 3 || *ijob == 5;    wantd = wantd1 || wantd2;/*     Set M to the dimension of the specified pair of deflating *//*     subspaces. */    *m = 0;    pair = FALSE_;    i__1 = *n;    for (k = 1; k <= i__1; ++k) {	if (pair) {	    pair = FALSE_;	} else {	    if (k < *n) {		if (a[k + 1 + k * a_dim1] == 0.) {		    if (select[k]) {			++(*m);		    }		} else {		    pair = TRUE_;		    if (select[k] || select[k + 1]) {			*m += 2;		    }		}	    } else {		if (select[*n]) {		    ++(*m);		}	    }	}/* L10: */    }    if (*ijob == 1 || *ijob == 2 || *ijob == 4) {/* Computing MAX */	i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m << 		1) * (*n - *m);	lwmin = max(i__1,i__2);/* Computing MAX */	i__1 = 1, i__2 = *n + 6;	liwmin = max(i__1,i__2);    } else if (*ijob == 3 || *ijob == 5) {/* Computing MAX */	i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m << 		2) * (*n - *m);	lwmin = max(i__1,i__2);/* Computing MAX */	i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = max(i__1,i__2), i__2 = 		*n + 6;	liwmin = max(i__1,i__2);    } else {/* Computing MAX */	i__1 = 1, i__2 = (*n << 2) + 16;	lwmin = max(i__1,i__2);	liwmin = 1;    }    work[1] = (doublereal) lwmin;    iwork[1] = liwmin;    if (*lwork < lwmin && ! lquery) {	*info = -22;    } else if (*liwork < liwmin && ! lquery) {	*info = -24;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTGSEN", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible. */    if (*m == *n || *m == 0) {	if (wantp) {	    *pl = 1.;	    *pr = 1.;	}	if (wantd) {	    dscale = 0.;	    dsum = 1.;	    i__1 = *n;	    for (i__ = 1; i__ <= i__1; ++i__) {		_starpu_dlassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum);		_starpu_dlassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum);/* L20: */	    }	    dif[1] = dscale * sqrt(dsum);	    dif[2] = dif[1];	}	goto L60;    }/*     Collect the selected blocks at the top-left corner of (A, B). */    ks = 0;    pair = FALSE_;    i__1 = *n;    for (k = 1; k <= i__1; ++k) {	if (pair) {	    pair = FALSE_;	} else {	    swap = select[k];	    if (k < *n) {		if (a[k + 1 + k * a_dim1] != 0.) {		    pair = TRUE_;		    swap = swap || select[k + 1];		}	    }	    if (swap) {		++ks;/*              Swap the K-th block to position KS. *//*              Perform the reordering of diagonal blocks in (A, B) *//*              by orthogonal transformation matrices and update *//*              Q and Z accordingly (if requested): */		kk = k;		if (k != ks) {		    _starpu_dtgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], 			    ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &kk, 			    &ks, &work[1], lwork, &ierr);		}		if (ierr > 0) {/*                 Swap is rejected: exit. */		    *info = 1;		    if (wantp) {			*pl = 0.;			*pr = 0.;		    }		    if (wantd) {			dif[1] = 0.;			dif[2] = 0.;		    }		    goto L60;		}		if (pair) {		    ++ks;		}	    }	}/* L30: */    }    if (wantp) {/*        Solve generalized Sylvester equation for R and L *//*        and compute PL and PR. */	n1 = *m;	n2 = *n - *m;	i__ = n1 + 1;	ijb = 0;	_starpu_dlacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1);	_starpu_dlacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 + 		1], &n1);	i__1 = *lwork - (n1 << 1) * n2;	_starpu_dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * 		b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &		work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr);/*        Estimate the reciprocal of norms of "projections" onto left *//*        and right eigenspaces. */	rdscal = 0.;	dsum = 1.;	i__1 = n1 * n2;	_starpu_dlassq_(&i__1, &work[1], &c__1, &rdscal, &dsum);	*pl = rdscal * sqrt(dsum);	if (*pl == 0.) {	    *pl = 1.;	} else {	    *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));	}	rdscal = 0.;	dsum = 1.;	i__1 = n1 * n2;	_starpu_dlassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);	*pr = rdscal * sqrt(dsum);	if (*pr == 0.) {	    *pr = 1.;	} else {	    *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));	}    }    if (wantd) {/*        Compute estimates of Difu and Difl. */	if (wantd1) {	    n1 = *m;	    n2 = *n - *m;	    i__ = n1 + 1;	    ijb = 3;/*           Frobenius norm-based Difu-estimate. */	    i__1 = *lwork - (n1 << 1) * n2;	    _starpu_dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * 		    a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + 		    i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &		    dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &		    ierr);/*           Frobenius norm-based Difl-estimate. */	    i__1 = *lwork - (n1 << 1) * n2;	    _starpu_dtgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[		    a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], 		    ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, 		    &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &		    ierr);	} else {/*           Compute 1-norm-based estimates of Difu and Difl using *//*           reversed communication with DLACN2. In each step a *//*           generalized Sylvester equation or a transposed variant *//*           is solved. */	    kase = 0;	    n1 = *m;	    n2 = *n - *m;	    i__ = n1 + 1;	    ijb = 0;	    mn2 = (n1 << 1) * n2;/*           1-norm-based estimate of Difu. */L40:	    _starpu_dlacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[1], &kase, 		     isave);	    if (kase != 0) {		if (kase == 1) {/*                 Solve generalized Sylvester equation. */		    i__1 = *lwork - (n1 << 1) * n2;		    _starpu_dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + 			    i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], 			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 			    1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 + 			    1], &i__1, &iwork[1], &ierr);		} else {/*                 Solve the transposed variant. */		    i__1 = *lwork - (n1 << 1) * n2;		    _starpu_dtgsyl_("T", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + 			    i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], 			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 			    1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 + 			    1], &i__1, &iwork[1], &ierr);		}		goto L40;	    }	    dif[1] = dscale / dif[1];/*           1-norm-based estimate of Difl. */L50:	    _starpu_dlacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[2], &kase, 		     isave);	    if (kase != 0) {		if (kase == 1) {/*                 Solve generalized Sylvester equation. */		    i__1 = *lwork - (n1 << 1) * n2;		    _starpu_dtgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, 			    &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * 			    b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 			    1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 + 			    1], &i__1, &iwork[1], &ierr);		} else {/*                 Solve the transposed variant. */		    i__1 = *lwork - (n1 << 1) * n2;		    _starpu_dtgsyl_("T", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, 			    &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * 			    b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 			    1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 + 			    1], &i__1, &iwork[1], &ierr);		}		goto L50;	    }	    dif[2] = dscale / dif[2];	}    }L60:/*     Compute generalized eigenvalues of reordered pair (A, B) and *//*     normalize the generalized Schur form. */    pair = FALSE_;    i__1 = *n;    for (k = 1; k <= i__1; ++k) {	if (pair) {	    pair = FALSE_;	} else {	    if (k < *n) {		if (a[k + 1 + k * a_dim1] != 0.) {		    pair = TRUE_;		}	    }	    if (pair) {/*             Compute the eigenvalue(s) at position K. */		work[1] = a[k + k * a_dim1];		work[2] = a[k + 1 + k * a_dim1];		work[3] = a[k + (k + 1) * a_dim1];		work[4] = a[k + 1 + (k + 1) * a_dim1];		work[5] = b[k + k * b_dim1];		work[6] = b[k + 1 + k * b_dim1];		work[7] = b[k + (k + 1) * b_dim1];		work[8] = b[k + 1 + (k + 1) * b_dim1];		d__1 = smlnum * eps;		_starpu_dlag2_(&work[1], &c__2, &work[5], &c__2, &d__1, &beta[k], &			beta[k + 1], &alphar[k], &alphar[k + 1], &alphai[k]);		alphai[k + 1] = -alphai[k];	    } else {		if (d_sign(&c_b28, &b[k + k * b_dim1]) < 0.) {/*                 If B(K,K) is negative, make it positive */		    i__2 = *n;		    for (i__ = 1; i__ <= i__2; ++i__) {			a[k + i__ * a_dim1] = -a[k + i__ * a_dim1];			b[k + i__ * b_dim1] = -b[k + i__ * b_dim1];			if (*wantq) {			    q[i__ + k * q_dim1] = -q[i__ + k * q_dim1];			}/* L70: */		    }		}		alphar[k] = a[k + k * a_dim1];		alphai[k] = 0.;		beta[k] = b[k + k * b_dim1];	    }	}/* L80: */    }    work[1] = (doublereal) lwmin;    iwork[1] = liwmin;    return 0;/*     End of DTGSEN */} /* _starpu_dtgsen_ */
 |