| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419 | /* dtgevc.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static logical c_true = TRUE_;static integer c__2 = 2;static doublereal c_b34 = 1.;static integer c__1 = 1;static doublereal c_b36 = 0.;static logical c_false = FALSE_;/* Subroutine */ int _starpu_dtgevc_(char *side, char *howmny, logical *select, 	integer *n, doublereal *s, integer *lds, doublereal *p, integer *ldp, 	doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, integer 	*mm, integer *m, doublereal *work, integer *info){    /* System generated locals */    integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1, 	    vr_offset, i__1, i__2, i__3, i__4, i__5;    doublereal d__1, d__2, d__3, d__4, d__5, d__6;    /* Local variables */    integer i__, j, ja, jc, je, na, im, jr, jw, nw;    doublereal big;    logical lsa, lsb;    doublereal ulp, sum[4]	/* was [2][2] */;    integer ibeg, ieig, iend;    doublereal dmin__, temp, xmax, sump[4]	/* was [2][2] */, sums[4]		    /* was [2][2] */;    extern /* Subroutine */ int _starpu_dlag2_(doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, doublereal *);    doublereal cim2a, cim2b, cre2a, cre2b, temp2, bdiag[2], acoef, scale;    logical ilall;    integer iside;    doublereal sbeta;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    logical il2by2;    integer iinfo;    doublereal small;    logical compl;    doublereal anorm, bnorm;    logical compr;    extern /* Subroutine */ int _starpu_dlaln2_(logical *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 	     doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *);    doublereal temp2i;    extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *);    doublereal temp2r;    logical ilabad, ilbbad;    doublereal acoefa, bcoefa, cimaga, cimagb;    logical ilback;    doublereal bcoefi, ascale, bscale, creala, crealb;    extern doublereal _starpu_dlamch_(char *);    doublereal bcoefr, salfar, safmin;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *);    doublereal xscale, bignum;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    logical ilcomp, ilcplx;    integer ihwmny;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTGEVC computes some or all of the right and/or left eigenvectors of *//*  a pair of real matrices (S,P), where S is a quasi-triangular matrix *//*  and P is upper triangular.  Matrix pairs of this type are produced by *//*  the generalized Schur factorization of a matrix pair (A,B): *//*     A = Q*S*Z**T,  B = Q*P*Z**T *//*  as computed by DGGHRD + DHGEQZ. *//*  The right eigenvector x and the left eigenvector y of (S,P) *//*  corresponding to an eigenvalue w are defined by: *//*     S*x = w*P*x,  (y**H)*S = w*(y**H)*P, *//*  where y**H denotes the conjugate tranpose of y. *//*  The eigenvalues are not input to this routine, but are computed *//*  directly from the diagonal blocks of S and P. *//*  This routine returns the matrices X and/or Y of right and left *//*  eigenvectors of (S,P), or the products Z*X and/or Q*Y, *//*  where Z and Q are input matrices. *//*  If Q and Z are the orthogonal factors from the generalized Schur *//*  factorization of a matrix pair (A,B), then Z*X and Q*Y *//*  are the matrices of right and left eigenvectors of (A,B). *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'R': compute right eigenvectors only; *//*          = 'L': compute left eigenvectors only; *//*          = 'B': compute both right and left eigenvectors. *//*  HOWMNY  (input) CHARACTER*1 *//*          = 'A': compute all right and/or left eigenvectors; *//*          = 'B': compute all right and/or left eigenvectors, *//*                 backtransformed by the matrices in VR and/or VL; *//*          = 'S': compute selected right and/or left eigenvectors, *//*                 specified by the logical array SELECT. *//*  SELECT  (input) LOGICAL array, dimension (N) *//*          If HOWMNY='S', SELECT specifies the eigenvectors to be *//*          computed.  If w(j) is a real eigenvalue, the corresponding *//*          real eigenvector is computed if SELECT(j) is .TRUE.. *//*          If w(j) and w(j+1) are the real and imaginary parts of a *//*          complex eigenvalue, the corresponding complex eigenvector *//*          is computed if either SELECT(j) or SELECT(j+1) is .TRUE., *//*          and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is *//*          set to .FALSE.. *//*          Not referenced if HOWMNY = 'A' or 'B'. *//*  N       (input) INTEGER *//*          The order of the matrices S and P.  N >= 0. *//*  S       (input) DOUBLE PRECISION array, dimension (LDS,N) *//*          The upper quasi-triangular matrix S from a generalized Schur *//*          factorization, as computed by DHGEQZ. *//*  LDS     (input) INTEGER *//*          The leading dimension of array S.  LDS >= max(1,N). *//*  P       (input) DOUBLE PRECISION array, dimension (LDP,N) *//*          The upper triangular matrix P from a generalized Schur *//*          factorization, as computed by DHGEQZ. *//*          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks *//*          of S must be in positive diagonal form. *//*  LDP     (input) INTEGER *//*          The leading dimension of array P.  LDP >= max(1,N). *//*  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) *//*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must *//*          contain an N-by-N matrix Q (usually the orthogonal matrix Q *//*          of left Schur vectors returned by DHGEQZ). *//*          On exit, if SIDE = 'L' or 'B', VL contains: *//*          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); *//*          if HOWMNY = 'B', the matrix Q*Y; *//*          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by *//*                      SELECT, stored consecutively in the columns of *//*                      VL, in the same order as their eigenvalues. *//*          A complex eigenvector corresponding to a complex eigenvalue *//*          is stored in two consecutive columns, the first holding the *//*          real part, and the second the imaginary part. *//*          Not referenced if SIDE = 'R'. *//*  LDVL    (input) INTEGER *//*          The leading dimension of array VL.  LDVL >= 1, and if *//*          SIDE = 'L' or 'B', LDVL >= N. *//*  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) *//*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must *//*          contain an N-by-N matrix Z (usually the orthogonal matrix Z *//*          of right Schur vectors returned by DHGEQZ). *//*          On exit, if SIDE = 'R' or 'B', VR contains: *//*          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); *//*          if HOWMNY = 'B' or 'b', the matrix Z*X; *//*          if HOWMNY = 'S' or 's', the right eigenvectors of (S,P) *//*                      specified by SELECT, stored consecutively in the *//*                      columns of VR, in the same order as their *//*                      eigenvalues. *//*          A complex eigenvector corresponding to a complex eigenvalue *//*          is stored in two consecutive columns, the first holding the *//*          real part and the second the imaginary part. *//*          Not referenced if SIDE = 'L'. *//*  LDVR    (input) INTEGER *//*          The leading dimension of the array VR.  LDVR >= 1, and if *//*          SIDE = 'R' or 'B', LDVR >= N. *//*  MM      (input) INTEGER *//*          The number of columns in the arrays VL and/or VR. MM >= M. *//*  M       (output) INTEGER *//*          The number of columns in the arrays VL and/or VR actually *//*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M *//*          is set to N.  Each selected real eigenvector occupies one *//*          column and each selected complex eigenvector occupies two *//*          columns. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (6*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  the 2-by-2 block (INFO:INFO+1) does not have a complex *//*                eigenvalue. *//*  Further Details *//*  =============== *//*  Allocation of workspace: *//*  ---------- -- --------- *//*     WORK( j ) = 1-norm of j-th column of A, above the diagonal *//*     WORK( N+j ) = 1-norm of j-th column of B, above the diagonal *//*     WORK( 2*N+1:3*N ) = real part of eigenvector *//*     WORK( 3*N+1:4*N ) = imaginary part of eigenvector *//*     WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector *//*     WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector *//*  Rowwise vs. columnwise solution methods: *//*  ------- --  ---------- -------- ------- *//*  Finding a generalized eigenvector consists basically of solving the *//*  singular triangular system *//*   (A - w B) x = 0     (for right) or:   (A - w B)**H y = 0  (for left) *//*  Consider finding the i-th right eigenvector (assume all eigenvalues *//*  are real). The equation to be solved is: *//*       n                   i *//*  0 = sum  C(j,k) v(k)  = sum  C(j,k) v(k)     for j = i,. . .,1 *//*      k=j                 k=j *//*  where  C = (A - w B)  (The components v(i+1:n) are 0.) *//*  The "rowwise" method is: *//*  (1)  v(i) := 1 *//*  for j = i-1,. . .,1: *//*                          i *//*      (2) compute  s = - sum C(j,k) v(k)   and *//*                        k=j+1 *//*      (3) v(j) := s / C(j,j) *//*  Step 2 is sometimes called the "dot product" step, since it is an *//*  inner product between the j-th row and the portion of the eigenvector *//*  that has been computed so far. *//*  The "columnwise" method consists basically in doing the sums *//*  for all the rows in parallel.  As each v(j) is computed, the *//*  contribution of v(j) times the j-th column of C is added to the *//*  partial sums.  Since FORTRAN arrays are stored columnwise, this has *//*  the advantage that at each step, the elements of C that are accessed *//*  are adjacent to one another, whereas with the rowwise method, the *//*  elements accessed at a step are spaced LDS (and LDP) words apart. *//*  When finding left eigenvectors, the matrix in question is the *//*  transpose of the one in storage, so the rowwise method then *//*  actually accesses columns of A and B at each step, and so is the *//*  preferred method. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and Test the input parameters */    /* Parameter adjustments */    --select;    s_dim1 = *lds;    s_offset = 1 + s_dim1;    s -= s_offset;    p_dim1 = *ldp;    p_offset = 1 + p_dim1;    p -= p_offset;    vl_dim1 = *ldvl;    vl_offset = 1 + vl_dim1;    vl -= vl_offset;    vr_dim1 = *ldvr;    vr_offset = 1 + vr_dim1;    vr -= vr_offset;    --work;    /* Function Body */    if (_starpu_lsame_(howmny, "A")) {	ihwmny = 1;	ilall = TRUE_;	ilback = FALSE_;    } else if (_starpu_lsame_(howmny, "S")) {	ihwmny = 2;	ilall = FALSE_;	ilback = FALSE_;    } else if (_starpu_lsame_(howmny, "B")) {	ihwmny = 3;	ilall = TRUE_;	ilback = TRUE_;    } else {	ihwmny = -1;	ilall = TRUE_;    }    if (_starpu_lsame_(side, "R")) {	iside = 1;	compl = FALSE_;	compr = TRUE_;    } else if (_starpu_lsame_(side, "L")) {	iside = 2;	compl = TRUE_;	compr = FALSE_;    } else if (_starpu_lsame_(side, "B")) {	iside = 3;	compl = TRUE_;	compr = TRUE_;    } else {	iside = -1;    }    *info = 0;    if (iside < 0) {	*info = -1;    } else if (ihwmny < 0) {	*info = -2;    } else if (*n < 0) {	*info = -4;    } else if (*lds < max(1,*n)) {	*info = -6;    } else if (*ldp < max(1,*n)) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTGEVC", &i__1);	return 0;    }/*     Count the number of eigenvectors to be computed */    if (! ilall) {	im = 0;	ilcplx = FALSE_;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    if (ilcplx) {		ilcplx = FALSE_;		goto L10;	    }	    if (j < *n) {		if (s[j + 1 + j * s_dim1] != 0.) {		    ilcplx = TRUE_;		}	    }	    if (ilcplx) {		if (select[j] || select[j + 1]) {		    im += 2;		}	    } else {		if (select[j]) {		    ++im;		}	    }L10:	    ;	}    } else {	im = *n;    }/*     Check 2-by-2 diagonal blocks of A, B */    ilabad = FALSE_;    ilbbad = FALSE_;    i__1 = *n - 1;    for (j = 1; j <= i__1; ++j) {	if (s[j + 1 + j * s_dim1] != 0.) {	    if (p[j + j * p_dim1] == 0. || p[j + 1 + (j + 1) * p_dim1] == 0. 		    || p[j + (j + 1) * p_dim1] != 0.) {		ilbbad = TRUE_;	    }	    if (j < *n - 1) {		if (s[j + 2 + (j + 1) * s_dim1] != 0.) {		    ilabad = TRUE_;		}	    }	}/* L20: */    }    if (ilabad) {	*info = -5;    } else if (ilbbad) {	*info = -7;    } else if (compl && *ldvl < *n || *ldvl < 1) {	*info = -10;    } else if (compr && *ldvr < *n || *ldvr < 1) {	*info = -12;    } else if (*mm < im) {	*info = -13;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTGEVC", &i__1);	return 0;    }/*     Quick return if possible */    *m = im;    if (*n == 0) {	return 0;    }/*     Machine Constants */    safmin = _starpu_dlamch_("Safe minimum");    big = 1. / safmin;    _starpu_dlabad_(&safmin, &big);    ulp = _starpu_dlamch_("Epsilon") * _starpu_dlamch_("Base");    small = safmin * *n / ulp;    big = 1. / small;    bignum = 1. / (safmin * *n);/*     Compute the 1-norm of each column of the strictly upper triangular *//*     part (i.e., excluding all elements belonging to the diagonal *//*     blocks) of A and B to check for possible overflow in the *//*     triangular solver. */    anorm = (d__1 = s[s_dim1 + 1], abs(d__1));    if (*n > 1) {	anorm += (d__1 = s[s_dim1 + 2], abs(d__1));    }    bnorm = (d__1 = p[p_dim1 + 1], abs(d__1));    work[1] = 0.;    work[*n + 1] = 0.;    i__1 = *n;    for (j = 2; j <= i__1; ++j) {	temp = 0.;	temp2 = 0.;	if (s[j + (j - 1) * s_dim1] == 0.) {	    iend = j - 1;	} else {	    iend = j - 2;	}	i__2 = iend;	for (i__ = 1; i__ <= i__2; ++i__) {	    temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));	    temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));/* L30: */	}	work[j] = temp;	work[*n + j] = temp2;/* Computing MIN */	i__3 = j + 1;	i__2 = min(i__3,*n);	for (i__ = iend + 1; i__ <= i__2; ++i__) {	    temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));	    temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));/* L40: */	}	anorm = max(anorm,temp);	bnorm = max(bnorm,temp2);/* L50: */    }    ascale = 1. / max(anorm,safmin);    bscale = 1. / max(bnorm,safmin);/*     Left eigenvectors */    if (compl) {	ieig = 0;/*        Main loop over eigenvalues */	ilcplx = FALSE_;	i__1 = *n;	for (je = 1; je <= i__1; ++je) {/*           Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or *//*           (b) this would be the second of a complex pair. *//*           Check for complex eigenvalue, so as to be sure of which *//*           entry(-ies) of SELECT to look at. */	    if (ilcplx) {		ilcplx = FALSE_;		goto L220;	    }	    nw = 1;	    if (je < *n) {		if (s[je + 1 + je * s_dim1] != 0.) {		    ilcplx = TRUE_;		    nw = 2;		}	    }	    if (ilall) {		ilcomp = TRUE_;	    } else if (ilcplx) {		ilcomp = select[je] || select[je + 1];	    } else {		ilcomp = select[je];	    }	    if (! ilcomp) {		goto L220;	    }/*           Decide if (a) singular pencil, (b) real eigenvalue, or *//*           (c) complex eigenvalue. */	    if (! ilcplx) {		if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (			d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {/*                 Singular matrix pencil -- return unit eigenvector */		    ++ieig;		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {			vl[jr + ieig * vl_dim1] = 0.;/* L60: */		    }		    vl[ieig + ieig * vl_dim1] = 1.;		    goto L220;		}	    }/*           Clear vector */	    i__2 = nw * *n;	    for (jr = 1; jr <= i__2; ++jr) {		work[(*n << 1) + jr] = 0.;/* L70: */	    }/*                                                 T *//*           Compute coefficients in  ( a A - b B )  y = 0 *//*              a  is  ACOEF *//*              b  is  BCOEFR + i*BCOEFI */	    if (! ilcplx) {/*              Real eigenvalue *//* Computing MAX */		d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4 			= (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale, 			d__3 = max(d__3,d__4);		temp = 1. / max(d__3,safmin);		salfar = temp * s[je + je * s_dim1] * ascale;		sbeta = temp * p[je + je * p_dim1] * bscale;		acoef = sbeta * ascale;		bcoefr = salfar * bscale;		bcoefi = 0.;/*              Scale to avoid underflow */		scale = 1.;		lsa = abs(sbeta) >= safmin && abs(acoef) < small;		lsb = abs(salfar) >= safmin && abs(bcoefr) < small;		if (lsa) {		    scale = small / abs(sbeta) * min(anorm,big);		}		if (lsb) {/* Computing MAX */		    d__1 = scale, d__2 = small / abs(salfar) * min(bnorm,big);		    scale = max(d__1,d__2);		}		if (lsa || lsb) {/* Computing MIN *//* Computing MAX */		    d__3 = 1., d__4 = abs(acoef), d__3 = max(d__3,d__4), d__4 			    = abs(bcoefr);		    d__1 = scale, d__2 = 1. / (safmin * max(d__3,d__4));		    scale = min(d__1,d__2);		    if (lsa) {			acoef = ascale * (scale * sbeta);		    } else {			acoef = scale * acoef;		    }		    if (lsb) {			bcoefr = bscale * (scale * salfar);		    } else {			bcoefr = scale * bcoefr;		    }		}		acoefa = abs(acoef);		bcoefa = abs(bcoefr);/*              First component is 1 */		work[(*n << 1) + je] = 1.;		xmax = 1.;	    } else {/*              Complex eigenvalue */		d__1 = safmin * 100.;		_starpu_dlag2_(&s[je + je * s_dim1], lds, &p[je + je * p_dim1], ldp, &			d__1, &acoef, &temp, &bcoefr, &temp2, &bcoefi);		bcoefi = -bcoefi;		if (bcoefi == 0.) {		    *info = je;		    return 0;		}/*              Scale to avoid over/underflow */		acoefa = abs(acoef);		bcoefa = abs(bcoefr) + abs(bcoefi);		scale = 1.;		if (acoefa * ulp < safmin && acoefa >= safmin) {		    scale = safmin / ulp / acoefa;		}		if (bcoefa * ulp < safmin && bcoefa >= safmin) {/* Computing MAX */		    d__1 = scale, d__2 = safmin / ulp / bcoefa;		    scale = max(d__1,d__2);		}		if (safmin * acoefa > ascale) {		    scale = ascale / (safmin * acoefa);		}		if (safmin * bcoefa > bscale) {/* Computing MIN */		    d__1 = scale, d__2 = bscale / (safmin * bcoefa);		    scale = min(d__1,d__2);		}		if (scale != 1.) {		    acoef = scale * acoef;		    acoefa = abs(acoef);		    bcoefr = scale * bcoefr;		    bcoefi = scale * bcoefi;		    bcoefa = abs(bcoefr) + abs(bcoefi);		}/*              Compute first two components of eigenvector */		temp = acoef * s[je + 1 + je * s_dim1];		temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je * 			p_dim1];		temp2i = -bcoefi * p[je + je * p_dim1];		if (abs(temp) > abs(temp2r) + abs(temp2i)) {		    work[(*n << 1) + je] = 1.;		    work[*n * 3 + je] = 0.;		    work[(*n << 1) + je + 1] = -temp2r / temp;		    work[*n * 3 + je + 1] = -temp2i / temp;		} else {		    work[(*n << 1) + je + 1] = 1.;		    work[*n * 3 + je + 1] = 0.;		    temp = acoef * s[je + (je + 1) * s_dim1];		    work[(*n << 1) + je] = (bcoefr * p[je + 1 + (je + 1) * 			    p_dim1] - acoef * s[je + 1 + (je + 1) * s_dim1]) /			     temp;		    work[*n * 3 + je] = bcoefi * p[je + 1 + (je + 1) * p_dim1]			     / temp;		}/* Computing MAX */		d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 = 			work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*			n << 1) + je + 1], abs(d__3)) + (d__4 = work[*n * 3 + 			je + 1], abs(d__4));		xmax = max(d__5,d__6);	    }/* Computing MAX */	    d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 = 		    max(d__1,d__2);	    dmin__ = max(d__1,safmin);/*                                           T *//*           Triangular solve of  (a A - b B)  y = 0 *//*                                   T *//*           (rowwise in  (a A - b B) , or columnwise in (a A - b B) ) */	    il2by2 = FALSE_;	    i__2 = *n;	    for (j = je + nw; j <= i__2; ++j) {		if (il2by2) {		    il2by2 = FALSE_;		    goto L160;		}		na = 1;		bdiag[0] = p[j + j * p_dim1];		if (j < *n) {		    if (s[j + 1 + j * s_dim1] != 0.) {			il2by2 = TRUE_;			bdiag[1] = p[j + 1 + (j + 1) * p_dim1];			na = 2;		    }		}/*              Check whether scaling is necessary for dot products */		xscale = 1. / max(1.,xmax);/* Computing MAX */		d__1 = work[j], d__2 = work[*n + j], d__1 = max(d__1,d__2), 			d__2 = acoefa * work[j] + bcoefa * work[*n + j];		temp = max(d__1,d__2);		if (il2by2) {/* Computing MAX */		    d__1 = temp, d__2 = work[j + 1], d__1 = max(d__1,d__2), 			    d__2 = work[*n + j + 1], d__1 = max(d__1,d__2), 			    d__2 = acoefa * work[j + 1] + bcoefa * work[*n + 			    j + 1];		    temp = max(d__1,d__2);		}		if (temp > bignum * xscale) {		    i__3 = nw - 1;		    for (jw = 0; jw <= i__3; ++jw) {			i__4 = j - 1;			for (jr = je; jr <= i__4; ++jr) {			    work[(jw + 2) * *n + jr] = xscale * work[(jw + 2) 				    * *n + jr];/* L80: */			}/* L90: */		    }		    xmax *= xscale;		}/*              Compute dot products *//*                    j-1 *//*              SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k) *//*                    k=je *//*              To reduce the op count, this is done as *//*              _        j-1                  _        j-1 *//*              a*conjg( sum  S(k,j)*x(k) ) - b*conjg( sum  P(k,j)*x(k) ) *//*                       k=je                          k=je *//*              which may cause underflow problems if A or B are close *//*              to underflow.  (E.g., less than SMALL.) *//*              A series of compiler directives to defeat vectorization *//*              for the next loop *//* $PL$ CMCHAR=' ' *//* DIR$          NEXTSCALAR *//* $DIR          SCALAR *//* DIR$          NEXT SCALAR *//* VD$L          NOVECTOR *//* DEC$          NOVECTOR *//* VD$           NOVECTOR *//* VDIR          NOVECTOR *//* VOCL          LOOP,SCALAR *//* IBM           PREFER SCALAR *//* $PL$ CMCHAR='*' */		i__3 = nw;		for (jw = 1; jw <= i__3; ++jw) {/* $PL$ CMCHAR=' ' *//* DIR$             NEXTSCALAR *//* $DIR             SCALAR *//* DIR$             NEXT SCALAR *//* VD$L             NOVECTOR *//* DEC$             NOVECTOR *//* VD$              NOVECTOR *//* VDIR             NOVECTOR *//* VOCL             LOOP,SCALAR *//* IBM              PREFER SCALAR *//* $PL$ CMCHAR='*' */		    i__4 = na;		    for (ja = 1; ja <= i__4; ++ja) {			sums[ja + (jw << 1) - 3] = 0.;			sump[ja + (jw << 1) - 3] = 0.;			i__5 = j - 1;			for (jr = je; jr <= i__5; ++jr) {			    sums[ja + (jw << 1) - 3] += s[jr + (j + ja - 1) * 				    s_dim1] * work[(jw + 1) * *n + jr];			    sump[ja + (jw << 1) - 3] += p[jr + (j + ja - 1) * 				    p_dim1] * work[(jw + 1) * *n + jr];/* L100: */			}/* L110: */		    }/* L120: */		}/* $PL$ CMCHAR=' ' *//* DIR$          NEXTSCALAR *//* $DIR          SCALAR *//* DIR$          NEXT SCALAR *//* VD$L          NOVECTOR *//* DEC$          NOVECTOR *//* VD$           NOVECTOR *//* VDIR          NOVECTOR *//* VOCL          LOOP,SCALAR *//* IBM           PREFER SCALAR *//* $PL$ CMCHAR='*' */		i__3 = na;		for (ja = 1; ja <= i__3; ++ja) {		    if (ilcplx) {			sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[				ja - 1] - bcoefi * sump[ja + 1];			sum[ja + 1] = -acoef * sums[ja + 1] + bcoefr * sump[				ja + 1] + bcoefi * sump[ja - 1];		    } else {			sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[				ja - 1];		    }/* L130: */		}/*                                  T *//*              Solve  ( a A - b B )  y = SUM(,) *//*              with scaling and perturbation of the denominator */		_starpu_dlaln2_(&c_true, &na, &nw, &dmin__, &acoef, &s[j + j * s_dim1], lds, bdiag, &bdiag[1], sum, &c__2, &bcoefr, &bcoefi, 			 &work[(*n << 1) + j], n, &scale, &temp, &iinfo);		if (scale < 1.) {		    i__3 = nw - 1;		    for (jw = 0; jw <= i__3; ++jw) {			i__4 = j - 1;			for (jr = je; jr <= i__4; ++jr) {			    work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *				     *n + jr];/* L140: */			}/* L150: */		    }		    xmax = scale * xmax;		}		xmax = max(xmax,temp);L160:		;	    }/*           Copy eigenvector to VL, back transforming if *//*           HOWMNY='B'. */	    ++ieig;	    if (ilback) {		i__2 = nw - 1;		for (jw = 0; jw <= i__2; ++jw) {		    i__3 = *n + 1 - je;		    _starpu_dgemv_("N", n, &i__3, &c_b34, &vl[je * vl_dim1 + 1], ldvl, 			     &work[(jw + 2) * *n + je], &c__1, &c_b36, &work[(			    jw + 4) * *n + 1], &c__1);/* L170: */		}		_starpu_dlacpy_(" ", n, &nw, &work[(*n << 2) + 1], n, &vl[je * 			vl_dim1 + 1], ldvl);		ibeg = 1;	    } else {		_starpu_dlacpy_(" ", n, &nw, &work[(*n << 1) + 1], n, &vl[ieig * 			vl_dim1 + 1], ldvl);		ibeg = je;	    }/*           Scale eigenvector */	    xmax = 0.;	    if (ilcplx) {		i__2 = *n;		for (j = ibeg; j <= i__2; ++j) {/* Computing MAX */		    d__3 = xmax, d__4 = (d__1 = vl[j + ieig * vl_dim1], abs(			    d__1)) + (d__2 = vl[j + (ieig + 1) * vl_dim1], 			    abs(d__2));		    xmax = max(d__3,d__4);/* L180: */		}	    } else {		i__2 = *n;		for (j = ibeg; j <= i__2; ++j) {/* Computing MAX */		    d__2 = xmax, d__3 = (d__1 = vl[j + ieig * vl_dim1], abs(			    d__1));		    xmax = max(d__2,d__3);/* L190: */		}	    }	    if (xmax > safmin) {		xscale = 1. / xmax;		i__2 = nw - 1;		for (jw = 0; jw <= i__2; ++jw) {		    i__3 = *n;		    for (jr = ibeg; jr <= i__3; ++jr) {			vl[jr + (ieig + jw) * vl_dim1] = xscale * vl[jr + (				ieig + jw) * vl_dim1];/* L200: */		    }/* L210: */		}	    }	    ieig = ieig + nw - 1;L220:	    ;	}    }/*     Right eigenvectors */    if (compr) {	ieig = im + 1;/*        Main loop over eigenvalues */	ilcplx = FALSE_;	for (je = *n; je >= 1; --je) {/*           Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or *//*           (b) this would be the second of a complex pair. *//*           Check for complex eigenvalue, so as to be sure of which *//*           entry(-ies) of SELECT to look at -- if complex, SELECT(JE) *//*           or SELECT(JE-1). *//*           If this is a complex pair, the 2-by-2 diagonal block *//*           corresponding to the eigenvalue is in rows/columns JE-1:JE */	    if (ilcplx) {		ilcplx = FALSE_;		goto L500;	    }	    nw = 1;	    if (je > 1) {		if (s[je + (je - 1) * s_dim1] != 0.) {		    ilcplx = TRUE_;		    nw = 2;		}	    }	    if (ilall) {		ilcomp = TRUE_;	    } else if (ilcplx) {		ilcomp = select[je] || select[je - 1];	    } else {		ilcomp = select[je];	    }	    if (! ilcomp) {		goto L500;	    }/*           Decide if (a) singular pencil, (b) real eigenvalue, or *//*           (c) complex eigenvalue. */	    if (! ilcplx) {		if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (			d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {/*                 Singular matrix pencil -- unit eigenvector */		    --ieig;		    i__1 = *n;		    for (jr = 1; jr <= i__1; ++jr) {			vr[jr + ieig * vr_dim1] = 0.;/* L230: */		    }		    vr[ieig + ieig * vr_dim1] = 1.;		    goto L500;		}	    }/*           Clear vector */	    i__1 = nw - 1;	    for (jw = 0; jw <= i__1; ++jw) {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {		    work[(jw + 2) * *n + jr] = 0.;/* L240: */		}/* L250: */	    }/*           Compute coefficients in  ( a A - b B ) x = 0 *//*              a  is  ACOEF *//*              b  is  BCOEFR + i*BCOEFI */	    if (! ilcplx) {/*              Real eigenvalue *//* Computing MAX */		d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4 			= (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale, 			d__3 = max(d__3,d__4);		temp = 1. / max(d__3,safmin);		salfar = temp * s[je + je * s_dim1] * ascale;		sbeta = temp * p[je + je * p_dim1] * bscale;		acoef = sbeta * ascale;		bcoefr = salfar * bscale;		bcoefi = 0.;/*              Scale to avoid underflow */		scale = 1.;		lsa = abs(sbeta) >= safmin && abs(acoef) < small;		lsb = abs(salfar) >= safmin && abs(bcoefr) < small;		if (lsa) {		    scale = small / abs(sbeta) * min(anorm,big);		}		if (lsb) {/* Computing MAX */		    d__1 = scale, d__2 = small / abs(salfar) * min(bnorm,big);		    scale = max(d__1,d__2);		}		if (lsa || lsb) {/* Computing MIN *//* Computing MAX */		    d__3 = 1., d__4 = abs(acoef), d__3 = max(d__3,d__4), d__4 			    = abs(bcoefr);		    d__1 = scale, d__2 = 1. / (safmin * max(d__3,d__4));		    scale = min(d__1,d__2);		    if (lsa) {			acoef = ascale * (scale * sbeta);		    } else {			acoef = scale * acoef;		    }		    if (lsb) {			bcoefr = bscale * (scale * salfar);		    } else {			bcoefr = scale * bcoefr;		    }		}		acoefa = abs(acoef);		bcoefa = abs(bcoefr);/*              First component is 1 */		work[(*n << 1) + je] = 1.;		xmax = 1.;/*              Compute contribution from column JE of A and B to sum *//*              (See "Further Details", above.) */		i__1 = je - 1;		for (jr = 1; jr <= i__1; ++jr) {		    work[(*n << 1) + jr] = bcoefr * p[jr + je * p_dim1] - 			    acoef * s[jr + je * s_dim1];/* L260: */		}	    } else {/*              Complex eigenvalue */		d__1 = safmin * 100.;		_starpu_dlag2_(&s[je - 1 + (je - 1) * s_dim1], lds, &p[je - 1 + (je - 			1) * p_dim1], ldp, &d__1, &acoef, &temp, &bcoefr, &			temp2, &bcoefi);		if (bcoefi == 0.) {		    *info = je - 1;		    return 0;		}/*              Scale to avoid over/underflow */		acoefa = abs(acoef);		bcoefa = abs(bcoefr) + abs(bcoefi);		scale = 1.;		if (acoefa * ulp < safmin && acoefa >= safmin) {		    scale = safmin / ulp / acoefa;		}		if (bcoefa * ulp < safmin && bcoefa >= safmin) {/* Computing MAX */		    d__1 = scale, d__2 = safmin / ulp / bcoefa;		    scale = max(d__1,d__2);		}		if (safmin * acoefa > ascale) {		    scale = ascale / (safmin * acoefa);		}		if (safmin * bcoefa > bscale) {/* Computing MIN */		    d__1 = scale, d__2 = bscale / (safmin * bcoefa);		    scale = min(d__1,d__2);		}		if (scale != 1.) {		    acoef = scale * acoef;		    acoefa = abs(acoef);		    bcoefr = scale * bcoefr;		    bcoefi = scale * bcoefi;		    bcoefa = abs(bcoefr) + abs(bcoefi);		}/*              Compute first two components of eigenvector *//*              and contribution to sums */		temp = acoef * s[je + (je - 1) * s_dim1];		temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je * 			p_dim1];		temp2i = -bcoefi * p[je + je * p_dim1];		if (abs(temp) >= abs(temp2r) + abs(temp2i)) {		    work[(*n << 1) + je] = 1.;		    work[*n * 3 + je] = 0.;		    work[(*n << 1) + je - 1] = -temp2r / temp;		    work[*n * 3 + je - 1] = -temp2i / temp;		} else {		    work[(*n << 1) + je - 1] = 1.;		    work[*n * 3 + je - 1] = 0.;		    temp = acoef * s[je - 1 + je * s_dim1];		    work[(*n << 1) + je] = (bcoefr * p[je - 1 + (je - 1) * 			    p_dim1] - acoef * s[je - 1 + (je - 1) * s_dim1]) /			     temp;		    work[*n * 3 + je] = bcoefi * p[je - 1 + (je - 1) * p_dim1]			     / temp;		}/* Computing MAX */		d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 = 			work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*			n << 1) + je - 1], abs(d__3)) + (d__4 = work[*n * 3 + 			je - 1], abs(d__4));		xmax = max(d__5,d__6);/*              Compute contribution from columns JE and JE-1 *//*              of A and B to the sums. */		creala = acoef * work[(*n << 1) + je - 1];		cimaga = acoef * work[*n * 3 + je - 1];		crealb = bcoefr * work[(*n << 1) + je - 1] - bcoefi * work[*n 			* 3 + je - 1];		cimagb = bcoefi * work[(*n << 1) + je - 1] + bcoefr * work[*n 			* 3 + je - 1];		cre2a = acoef * work[(*n << 1) + je];		cim2a = acoef * work[*n * 3 + je];		cre2b = bcoefr * work[(*n << 1) + je] - bcoefi * work[*n * 3 			+ je];		cim2b = bcoefi * work[(*n << 1) + je] + bcoefr * work[*n * 3 			+ je];		i__1 = je - 2;		for (jr = 1; jr <= i__1; ++jr) {		    work[(*n << 1) + jr] = -creala * s[jr + (je - 1) * s_dim1]			     + crealb * p[jr + (je - 1) * p_dim1] - cre2a * s[			    jr + je * s_dim1] + cre2b * p[jr + je * p_dim1];		    work[*n * 3 + jr] = -cimaga * s[jr + (je - 1) * s_dim1] + 			    cimagb * p[jr + (je - 1) * p_dim1] - cim2a * s[jr 			    + je * s_dim1] + cim2b * p[jr + je * p_dim1];/* L270: */		}	    }/* Computing MAX */	    d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 = 		    max(d__1,d__2);	    dmin__ = max(d__1,safmin);/*           Columnwise triangular solve of  (a A - b B)  x = 0 */	    il2by2 = FALSE_;	    for (j = je - nw; j >= 1; --j) {/*              If a 2-by-2 block, is in position j-1:j, wait until *//*              next iteration to process it (when it will be j:j+1) */		if (! il2by2 && j > 1) {		    if (s[j + (j - 1) * s_dim1] != 0.) {			il2by2 = TRUE_;			goto L370;		    }		}		bdiag[0] = p[j + j * p_dim1];		if (il2by2) {		    na = 2;		    bdiag[1] = p[j + 1 + (j + 1) * p_dim1];		} else {		    na = 1;		}/*              Compute x(j) (and x(j+1), if 2-by-2 block) */		_starpu_dlaln2_(&c_false, &na, &nw, &dmin__, &acoef, &s[j + j * 			s_dim1], lds, bdiag, &bdiag[1], &work[(*n << 1) + j], 			n, &bcoefr, &bcoefi, sum, &c__2, &scale, &temp, &			iinfo);		if (scale < 1.) {		    i__1 = nw - 1;		    for (jw = 0; jw <= i__1; ++jw) {			i__2 = je;			for (jr = 1; jr <= i__2; ++jr) {			    work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *				     *n + jr];/* L280: */			}/* L290: */		    }		}/* Computing MAX */		d__1 = scale * xmax;		xmax = max(d__1,temp);		i__1 = nw;		for (jw = 1; jw <= i__1; ++jw) {		    i__2 = na;		    for (ja = 1; ja <= i__2; ++ja) {			work[(jw + 1) * *n + j + ja - 1] = sum[ja + (jw << 1) 				- 3];/* L300: */		    }/* L310: */		}/*              w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */		if (j > 1) {/*                 Check whether scaling is necessary for sum. */		    xscale = 1. / max(1.,xmax);		    temp = acoefa * work[j] + bcoefa * work[*n + j];		    if (il2by2) {/* Computing MAX */			d__1 = temp, d__2 = acoefa * work[j + 1] + bcoefa * 				work[*n + j + 1];			temp = max(d__1,d__2);		    }/* Computing MAX */		    d__1 = max(temp,acoefa);		    temp = max(d__1,bcoefa);		    if (temp > bignum * xscale) {			i__1 = nw - 1;			for (jw = 0; jw <= i__1; ++jw) {			    i__2 = je;			    for (jr = 1; jr <= i__2; ++jr) {				work[(jw + 2) * *n + jr] = xscale * work[(jw 					+ 2) * *n + jr];/* L320: */			    }/* L330: */			}			xmax *= xscale;		    }/*                 Compute the contributions of the off-diagonals of *//*                 column j (and j+1, if 2-by-2 block) of A and B to the *//*                 sums. */		    i__1 = na;		    for (ja = 1; ja <= i__1; ++ja) {			if (ilcplx) {			    creala = acoef * work[(*n << 1) + j + ja - 1];			    cimaga = acoef * work[*n * 3 + j + ja - 1];			    crealb = bcoefr * work[(*n << 1) + j + ja - 1] - 				    bcoefi * work[*n * 3 + j + ja - 1];			    cimagb = bcoefi * work[(*n << 1) + j + ja - 1] + 				    bcoefr * work[*n * 3 + j + ja - 1];			    i__2 = j - 1;			    for (jr = 1; jr <= i__2; ++jr) {				work[(*n << 1) + jr] = work[(*n << 1) + jr] - 					creala * s[jr + (j + ja - 1) * s_dim1]					 + crealb * p[jr + (j + ja - 1) * 					p_dim1];				work[*n * 3 + jr] = work[*n * 3 + jr] - 					cimaga * s[jr + (j + ja - 1) * s_dim1]					 + cimagb * p[jr + (j + ja - 1) * 					p_dim1];/* L340: */			    }			} else {			    creala = acoef * work[(*n << 1) + j + ja - 1];			    crealb = bcoefr * work[(*n << 1) + j + ja - 1];			    i__2 = j - 1;			    for (jr = 1; jr <= i__2; ++jr) {				work[(*n << 1) + jr] = work[(*n << 1) + jr] - 					creala * s[jr + (j + ja - 1) * s_dim1]					 + crealb * p[jr + (j + ja - 1) * 					p_dim1];/* L350: */			    }			}/* L360: */		    }		}		il2by2 = FALSE_;L370:		;	    }/*           Copy eigenvector to VR, back transforming if *//*           HOWMNY='B'. */	    ieig -= nw;	    if (ilback) {		i__1 = nw - 1;		for (jw = 0; jw <= i__1; ++jw) {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {			work[(jw + 4) * *n + jr] = work[(jw + 2) * *n + 1] * 				vr[jr + vr_dim1];/* L380: */		    }/*                 A series of compiler directives to defeat *//*                 vectorization for the next loop */		    i__2 = je;		    for (jc = 2; jc <= i__2; ++jc) {			i__3 = *n;			for (jr = 1; jr <= i__3; ++jr) {			    work[(jw + 4) * *n + jr] += work[(jw + 2) * *n + 				    jc] * vr[jr + jc * vr_dim1];/* L390: */			}/* L400: */		    }/* L410: */		}		i__1 = nw - 1;		for (jw = 0; jw <= i__1; ++jw) {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {			vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 4) * *n + 				jr];/* L420: */		    }/* L430: */		}		iend = *n;	    } else {		i__1 = nw - 1;		for (jw = 0; jw <= i__1; ++jw) {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {			vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 2) * *n + 				jr];/* L440: */		    }/* L450: */		}		iend = je;	    }/*           Scale eigenvector */	    xmax = 0.;	    if (ilcplx) {		i__1 = iend;		for (j = 1; j <= i__1; ++j) {/* Computing MAX */		    d__3 = xmax, d__4 = (d__1 = vr[j + ieig * vr_dim1], abs(			    d__1)) + (d__2 = vr[j + (ieig + 1) * vr_dim1], 			    abs(d__2));		    xmax = max(d__3,d__4);/* L460: */		}	    } else {		i__1 = iend;		for (j = 1; j <= i__1; ++j) {/* Computing MAX */		    d__2 = xmax, d__3 = (d__1 = vr[j + ieig * vr_dim1], abs(			    d__1));		    xmax = max(d__2,d__3);/* L470: */		}	    }	    if (xmax > safmin) {		xscale = 1. / xmax;		i__1 = nw - 1;		for (jw = 0; jw <= i__1; ++jw) {		    i__2 = iend;		    for (jr = 1; jr <= i__2; ++jr) {			vr[jr + (ieig + jw) * vr_dim1] = xscale * vr[jr + (				ieig + jw) * vr_dim1];/* L480: */		    }/* L490: */		}	    }L500:	    ;	}    }    return 0;/*     End of DTGEVC */} /* _starpu_dtgevc_ */
 |