| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 | /* dsygv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static doublereal c_b16 = 1.;/* Subroutine */ int _starpu_dsygv_(integer *itype, char *jobz, char *uplo, integer *	n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 	doublereal *w, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;    /* Local variables */    integer nb, neig;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *);    char trans[1];    extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *);    logical upper;    extern /* Subroutine */ int _starpu_dsyev_(char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *);    logical wantz;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_dpotrf_(char *, integer *, doublereal *, 	    integer *, integer *);    integer lwkmin;    extern /* Subroutine */ int _starpu_dsygst_(integer *, char *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYGV computes all the eigenvalues, and optionally, the eigenvectors *//*  of a real generalized symmetric-definite eigenproblem, of the form *//*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x. *//*  Here A and B are assumed to be symmetric and B is also *//*  positive definite. *//*  Arguments *//*  ========= *//*  ITYPE   (input) INTEGER *//*          Specifies the problem type to be solved: *//*          = 1:  A*x = (lambda)*B*x *//*          = 2:  A*B*x = (lambda)*x *//*          = 3:  B*A*x = (lambda)*x *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangles of A and B are stored; *//*          = 'L':  Lower triangles of A and B are stored. *//*  N       (input) INTEGER *//*          The order of the matrices A and B.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the *//*          leading N-by-N upper triangular part of A contains the *//*          upper triangular part of the matrix A.  If UPLO = 'L', *//*          the leading N-by-N lower triangular part of A contains *//*          the lower triangular part of the matrix A. *//*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the *//*          matrix Z of eigenvectors.  The eigenvectors are normalized *//*          as follows: *//*          if ITYPE = 1 or 2, Z**T*B*Z = I; *//*          if ITYPE = 3, Z**T*inv(B)*Z = I. *//*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') *//*          or the lower triangle (if UPLO='L') of A, including the *//*          diagonal, is destroyed. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) *//*          On entry, the symmetric positive definite matrix B. *//*          If UPLO = 'U', the leading N-by-N upper triangular part of B *//*          contains the upper triangular part of the matrix B. *//*          If UPLO = 'L', the leading N-by-N lower triangular part of B *//*          contains the lower triangular part of the matrix B. *//*          On exit, if INFO <= N, the part of B containing the matrix is *//*          overwritten by the triangular factor U or L from the Cholesky *//*          factorization B = U**T*U or B = L*L**T. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, the eigenvalues in ascending order. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The length of the array WORK.  LWORK >= max(1,3*N-1). *//*          For optimal efficiency, LWORK >= (NB+2)*N, *//*          where NB is the blocksize for DSYTRD returned by ILAENV. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  DPOTRF or DSYEV returned an error code: *//*             <= N:  if INFO = i, DSYEV failed to converge; *//*                    i off-diagonal elements of an intermediate *//*                    tridiagonal form did not converge to zero; *//*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading *//*                    minor of order i of B is not positive definite. *//*                    The factorization of B could not be completed and *//*                    no eigenvalues or eigenvectors were computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --w;    --work;    /* Function Body */    wantz = _starpu_lsame_(jobz, "V");    upper = _starpu_lsame_(uplo, "U");    lquery = *lwork == -1;    *info = 0;    if (*itype < 1 || *itype > 3) {	*info = -1;    } else if (! (wantz || _starpu_lsame_(jobz, "N"))) {	*info = -2;    } else if (! (upper || _starpu_lsame_(uplo, "L"))) {	*info = -3;    } else if (*n < 0) {	*info = -4;    } else if (*lda < max(1,*n)) {	*info = -6;    } else if (*ldb < max(1,*n)) {	*info = -8;    }    if (*info == 0) {/* Computing MAX */	i__1 = 1, i__2 = *n * 3 - 1;	lwkmin = max(i__1,i__2);	nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);/* Computing MAX */	i__1 = lwkmin, i__2 = (nb + 2) * *n;	lwkopt = max(i__1,i__2);	work[1] = (doublereal) lwkopt;	if (*lwork < lwkmin && ! lquery) {	    *info = -11;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSYGV ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Form a Cholesky factorization of B. */    _starpu_dpotrf_(uplo, n, &b[b_offset], ldb, info);    if (*info != 0) {	*info = *n + *info;	return 0;    }/*     Transform problem to standard eigenvalue problem and solve. */    _starpu_dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);    _starpu_dsyev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, info);    if (wantz) {/*        Backtransform eigenvectors to the original problem. */	neig = *n;	if (*info > 0) {	    neig = *info - 1;	}	if (*itype == 1 || *itype == 2) {/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; *//*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */	    if (upper) {		*(unsigned char *)trans = 'N';	    } else {		*(unsigned char *)trans = 'T';	    }	    _starpu_dtrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[		    b_offset], ldb, &a[a_offset], lda);	} else if (*itype == 3) {/*           For B*A*x=(lambda)*x; *//*           backtransform eigenvectors: x = L*y or U'*y */	    if (upper) {		*(unsigned char *)trans = 'T';	    } else {		*(unsigned char *)trans = 'N';	    }	    _starpu_dtrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[		    b_offset], ldb, &a[a_offset], lda);	}    }    work[1] = (doublereal) lwkopt;    return 0;/*     End of DSYGV */} /* _starpu_dsygv_ */
 |