| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622 | 
							- /* dsteqr.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b9 = 0.;
 
- static doublereal c_b10 = 1.;
 
- static integer c__0 = 0;
 
- static integer c__1 = 1;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int _starpu_dsteqr_(char *compz, integer *n, doublereal *d__, 
 
- 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     doublereal b, c__, f, g;
 
-     integer i__, j, k, l, m;
 
-     doublereal p, r__, s;
 
-     integer l1, ii, mm, lm1, mm1, nm1;
 
-     doublereal rt1, rt2, eps;
 
-     integer lsv;
 
-     doublereal tst, eps2;
 
-     integer lend, jtot;
 
-     extern /* Subroutine */ int _starpu_dlae2_(doublereal *, doublereal *, doublereal 
 
- 	    *, doublereal *, doublereal *);
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_dlasr_(char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *);
 
-     doublereal anorm;
 
-     extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dlaev2_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *);
 
-     integer lendm1, lendp1;
 
-     extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
 
-     integer iscale;
 
-     extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *), _starpu_dlaset_(char *, integer *, integer 
 
- 	    *, doublereal *, doublereal *, doublereal *, integer *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int _starpu_dlartg_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *);
 
-     doublereal safmax;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dlasrt_(char *, integer *, doublereal *, 
 
- 	    integer *);
 
-     integer lendsv;
 
-     doublereal ssfmin;
 
-     integer nmaxit, icompz;
 
-     doublereal ssfmax;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
 
- /*  symmetric tridiagonal matrix using the implicit QL or QR method. */
 
- /*  The eigenvectors of a full or band symmetric matrix can also be found */
 
- /*  if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to */
 
- /*  tridiagonal form. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  COMPZ   (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only. */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors of the original */
 
- /*                  symmetric matrix.  On entry, Z must contain the */
 
- /*                  orthogonal matrix used to reduce the original matrix */
 
- /*                  to tridiagonal form. */
 
- /*          = 'I':  Compute eigenvalues and eigenvectors of the */
 
- /*                  tridiagonal matrix.  Z is initialized to the identity */
 
- /*                  matrix. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix.  N >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the diagonal elements of the tridiagonal matrix. */
 
- /*          On exit, if INFO = 0, the eigenvalues in ascending order. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 
- /*          matrix. */
 
- /*          On exit, E has been destroyed. */
 
- /*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
 
- /*          On entry, if  COMPZ = 'V', then Z contains the orthogonal */
 
- /*          matrix used in the reduction to tridiagonal form. */
 
- /*          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the */
 
- /*          orthonormal eigenvectors of the original symmetric matrix, */
 
- /*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
 
- /*          of the symmetric tridiagonal matrix. */
 
- /*          If COMPZ = 'N', then Z is not referenced. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          eigenvectors are desired, then  LDZ >= max(1,N). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) */
 
- /*          If COMPZ = 'N', then WORK is not referenced. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  the algorithm has failed to find all the eigenvalues in */
 
- /*                a total of 30*N iterations; if INFO = i, then i */
 
- /*                elements of E have not converged to zero; on exit, D */
 
- /*                and E contain the elements of a symmetric tridiagonal */
 
- /*                matrix which is orthogonally similar to the original */
 
- /*                matrix. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (_starpu_lsame_(compz, "N")) {
 
- 	icompz = 0;
 
-     } else if (_starpu_lsame_(compz, "V")) {
 
- 	icompz = 1;
 
-     } else if (_starpu_lsame_(compz, "I")) {
 
- 	icompz = 2;
 
-     } else {
 
- 	icompz = -1;
 
-     }
 
-     if (icompz < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
 
- 	*info = -6;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSTEQR", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	if (icompz == 2) {
 
- 	    z__[z_dim1 + 1] = 1.;
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Determine the unit roundoff and over/underflow thresholds. */
 
-     eps = _starpu_dlamch_("E");
 
- /* Computing 2nd power */
 
-     d__1 = eps;
 
-     eps2 = d__1 * d__1;
 
-     safmin = _starpu_dlamch_("S");
 
-     safmax = 1. / safmin;
 
-     ssfmax = sqrt(safmax) / 3.;
 
-     ssfmin = sqrt(safmin) / eps2;
 
- /*     Compute the eigenvalues and eigenvectors of the tridiagonal */
 
- /*     matrix. */
 
-     if (icompz == 2) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
 
-     }
 
-     nmaxit = *n * 30;
 
-     jtot = 0;
 
- /*     Determine where the matrix splits and choose QL or QR iteration */
 
- /*     for each block, according to whether top or bottom diagonal */
 
- /*     element is smaller. */
 
-     l1 = 1;
 
-     nm1 = *n - 1;
 
- L10:
 
-     if (l1 > *n) {
 
- 	goto L160;
 
-     }
 
-     if (l1 > 1) {
 
- 	e[l1 - 1] = 0.;
 
-     }
 
-     if (l1 <= nm1) {
 
- 	i__1 = nm1;
 
- 	for (m = l1; m <= i__1; ++m) {
 
- 	    tst = (d__1 = e[m], abs(d__1));
 
- 	    if (tst == 0.) {
 
- 		goto L30;
 
- 	    }
 
- 	    if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m 
 
- 		    + 1], abs(d__2))) * eps) {
 
- 		e[m] = 0.;
 
- 		goto L30;
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     }
 
-     m = *n;
 
- L30:
 
-     l = l1;
 
-     lsv = l;
 
-     lend = m;
 
-     lendsv = lend;
 
-     l1 = m + 1;
 
-     if (lend == l) {
 
- 	goto L10;
 
-     }
 
- /*     Scale submatrix in rows and columns L to LEND */
 
-     i__1 = lend - l + 1;
 
-     anorm = _starpu_dlanst_("I", &i__1, &d__[l], &e[l]);
 
-     iscale = 0;
 
-     if (anorm == 0.) {
 
- 	goto L10;
 
-     }
 
-     if (anorm > ssfmax) {
 
- 	iscale = 1;
 
- 	i__1 = lend - l + 1;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
 
- 		info);
 
- 	i__1 = lend - l;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
 
- 		info);
 
-     } else if (anorm < ssfmin) {
 
- 	iscale = 2;
 
- 	i__1 = lend - l + 1;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
 
- 		info);
 
- 	i__1 = lend - l;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
 
- 		info);
 
-     }
 
- /*     Choose between QL and QR iteration */
 
-     if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
 
- 	lend = lsv;
 
- 	l = lendsv;
 
-     }
 
-     if (lend > l) {
 
- /*        QL Iteration */
 
- /*        Look for small subdiagonal element. */
 
- L40:
 
- 	if (l != lend) {
 
- 	    lendm1 = lend - 1;
 
- 	    i__1 = lendm1;
 
- 	    for (m = l; m <= i__1; ++m) {
 
- /* Computing 2nd power */
 
- 		d__2 = (d__1 = e[m], abs(d__1));
 
- 		tst = d__2 * d__2;
 
- 		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
 
- 			+ 1], abs(d__2)) + safmin) {
 
- 		    goto L60;
 
- 		}
 
- /* L50: */
 
- 	    }
 
- 	}
 
- 	m = lend;
 
- L60:
 
- 	if (m < lend) {
 
- 	    e[m] = 0.;
 
- 	}
 
- 	p = d__[l];
 
- 	if (m == l) {
 
- 	    goto L80;
 
- 	}
 
- /*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
 
- /*        to compute its eigensystem. */
 
- 	if (m == l + 1) {
 
- 	    if (icompz > 0) {
 
- 		_starpu_dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
 
- 		work[l] = c__;
 
- 		work[*n - 1 + l] = s;
 
- 		_starpu_dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
 
- 			z__[l * z_dim1 + 1], ldz);
 
- 	    } else {
 
- 		_starpu_dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
 
- 	    }
 
- 	    d__[l] = rt1;
 
- 	    d__[l + 1] = rt2;
 
- 	    e[l] = 0.;
 
- 	    l += 2;
 
- 	    if (l <= lend) {
 
- 		goto L40;
 
- 	    }
 
- 	    goto L140;
 
- 	}
 
- 	if (jtot == nmaxit) {
 
- 	    goto L140;
 
- 	}
 
- 	++jtot;
 
- /*        Form shift. */
 
- 	g = (d__[l + 1] - p) / (e[l] * 2.);
 
- 	r__ = _starpu_dlapy2_(&g, &c_b10);
 
- 	g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
 
- 	s = 1.;
 
- 	c__ = 1.;
 
- 	p = 0.;
 
- /*        Inner loop */
 
- 	mm1 = m - 1;
 
- 	i__1 = l;
 
- 	for (i__ = mm1; i__ >= i__1; --i__) {
 
- 	    f = s * e[i__];
 
- 	    b = c__ * e[i__];
 
- 	    _starpu_dlartg_(&g, &f, &c__, &s, &r__);
 
- 	    if (i__ != m - 1) {
 
- 		e[i__ + 1] = r__;
 
- 	    }
 
- 	    g = d__[i__ + 1] - p;
 
- 	    r__ = (d__[i__] - g) * s + c__ * 2. * b;
 
- 	    p = s * r__;
 
- 	    d__[i__ + 1] = g + p;
 
- 	    g = c__ * r__ - b;
 
- /*           If eigenvectors are desired, then save rotations. */
 
- 	    if (icompz > 0) {
 
- 		work[i__] = c__;
 
- 		work[*n - 1 + i__] = -s;
 
- 	    }
 
- /* L70: */
 
- 	}
 
- /*        If eigenvectors are desired, then apply saved rotations. */
 
- 	if (icompz > 0) {
 
- 	    mm = m - l + 1;
 
- 	    _starpu_dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l 
 
- 		    * z_dim1 + 1], ldz);
 
- 	}
 
- 	d__[l] -= p;
 
- 	e[l] = g;
 
- 	goto L40;
 
- /*        Eigenvalue found. */
 
- L80:
 
- 	d__[l] = p;
 
- 	++l;
 
- 	if (l <= lend) {
 
- 	    goto L40;
 
- 	}
 
- 	goto L140;
 
-     } else {
 
- /*        QR Iteration */
 
- /*        Look for small superdiagonal element. */
 
- L90:
 
- 	if (l != lend) {
 
- 	    lendp1 = lend + 1;
 
- 	    i__1 = lendp1;
 
- 	    for (m = l; m >= i__1; --m) {
 
- /* Computing 2nd power */
 
- 		d__2 = (d__1 = e[m - 1], abs(d__1));
 
- 		tst = d__2 * d__2;
 
- 		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
 
- 			- 1], abs(d__2)) + safmin) {
 
- 		    goto L110;
 
- 		}
 
- /* L100: */
 
- 	    }
 
- 	}
 
- 	m = lend;
 
- L110:
 
- 	if (m > lend) {
 
- 	    e[m - 1] = 0.;
 
- 	}
 
- 	p = d__[l];
 
- 	if (m == l) {
 
- 	    goto L130;
 
- 	}
 
- /*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
 
- /*        to compute its eigensystem. */
 
- 	if (m == l - 1) {
 
- 	    if (icompz > 0) {
 
- 		_starpu_dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
 
- 			;
 
- 		work[m] = c__;
 
- 		work[*n - 1 + m] = s;
 
- 		_starpu_dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
 
- 			z__[(l - 1) * z_dim1 + 1], ldz);
 
- 	    } else {
 
- 		_starpu_dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
 
- 	    }
 
- 	    d__[l - 1] = rt1;
 
- 	    d__[l] = rt2;
 
- 	    e[l - 1] = 0.;
 
- 	    l += -2;
 
- 	    if (l >= lend) {
 
- 		goto L90;
 
- 	    }
 
- 	    goto L140;
 
- 	}
 
- 	if (jtot == nmaxit) {
 
- 	    goto L140;
 
- 	}
 
- 	++jtot;
 
- /*        Form shift. */
 
- 	g = (d__[l - 1] - p) / (e[l - 1] * 2.);
 
- 	r__ = _starpu_dlapy2_(&g, &c_b10);
 
- 	g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
 
- 	s = 1.;
 
- 	c__ = 1.;
 
- 	p = 0.;
 
- /*        Inner loop */
 
- 	lm1 = l - 1;
 
- 	i__1 = lm1;
 
- 	for (i__ = m; i__ <= i__1; ++i__) {
 
- 	    f = s * e[i__];
 
- 	    b = c__ * e[i__];
 
- 	    _starpu_dlartg_(&g, &f, &c__, &s, &r__);
 
- 	    if (i__ != m) {
 
- 		e[i__ - 1] = r__;
 
- 	    }
 
- 	    g = d__[i__] - p;
 
- 	    r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
 
- 	    p = s * r__;
 
- 	    d__[i__] = g + p;
 
- 	    g = c__ * r__ - b;
 
- /*           If eigenvectors are desired, then save rotations. */
 
- 	    if (icompz > 0) {
 
- 		work[i__] = c__;
 
- 		work[*n - 1 + i__] = s;
 
- 	    }
 
- /* L120: */
 
- 	}
 
- /*        If eigenvectors are desired, then apply saved rotations. */
 
- 	if (icompz > 0) {
 
- 	    mm = l - m + 1;
 
- 	    _starpu_dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m 
 
- 		    * z_dim1 + 1], ldz);
 
- 	}
 
- 	d__[l] -= p;
 
- 	e[lm1] = g;
 
- 	goto L90;
 
- /*        Eigenvalue found. */
 
- L130:
 
- 	d__[l] = p;
 
- 	--l;
 
- 	if (l >= lend) {
 
- 	    goto L90;
 
- 	}
 
- 	goto L140;
 
-     }
 
- /*     Undo scaling if necessary */
 
- L140:
 
-     if (iscale == 1) {
 
- 	i__1 = lendsv - lsv + 1;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
 
- 		n, info);
 
- 	i__1 = lendsv - lsv;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, 
 
- 		info);
 
-     } else if (iscale == 2) {
 
- 	i__1 = lendsv - lsv + 1;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
 
- 		n, info);
 
- 	i__1 = lendsv - lsv;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, 
 
- 		info);
 
-     }
 
- /*     Check for no convergence to an eigenvalue after a total */
 
- /*     of N*MAXIT iterations. */
 
-     if (jtot < nmaxit) {
 
- 	goto L10;
 
-     }
 
-     i__1 = *n - 1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (e[i__] != 0.) {
 
- 	    ++(*info);
 
- 	}
 
- /* L150: */
 
-     }
 
-     goto L190;
 
- /*     Order eigenvalues and eigenvectors. */
 
- L160:
 
-     if (icompz == 0) {
 
- /*        Use Quick Sort */
 
- 	_starpu_dlasrt_("I", n, &d__[1], info);
 
-     } else {
 
- /*        Use Selection Sort to minimize swaps of eigenvectors */
 
- 	i__1 = *n;
 
- 	for (ii = 2; ii <= i__1; ++ii) {
 
- 	    i__ = ii - 1;
 
- 	    k = i__;
 
- 	    p = d__[i__];
 
- 	    i__2 = *n;
 
- 	    for (j = ii; j <= i__2; ++j) {
 
- 		if (d__[j] < p) {
 
- 		    k = j;
 
- 		    p = d__[j];
 
- 		}
 
- /* L170: */
 
- 	    }
 
- 	    if (k != i__) {
 
- 		d__[k] = d__[i__];
 
- 		d__[i__] = p;
 
- 		_starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1], 
 
- 			 &c__1);
 
- 	    }
 
- /* L180: */
 
- 	}
 
-     }
 
- L190:
 
-     return 0;
 
- /*     End of DSTEQR */
 
- } /* _starpu_dsteqr_ */
 
 
  |