| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 | /* dspsvx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dspsvx_(char *fact, char *uplo, integer *n, integer *	nrhs, doublereal *ap, doublereal *afp, integer *ipiv, doublereal *b, 	integer *ldb, doublereal *x, integer *ldx, doublereal *rcond, 	doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, 	integer *info){    /* System generated locals */    integer b_dim1, b_offset, x_dim1, x_offset, i__1;    /* Local variables */    extern logical _starpu_lsame_(char *, char *);    doublereal anorm;    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *);    logical nofact;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    extern doublereal _starpu_dlansp_(char *, char *, integer *, doublereal *, 	    doublereal *);    extern /* Subroutine */ int _starpu_dspcon_(char *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *, 	    integer *), _starpu_dsprfs_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *), _starpu_dsptrf_(char *, integer *, 	    doublereal *, integer *, integer *), _starpu_dsptrs_(char *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSPSVX uses the diagonal pivoting factorization A = U*D*U**T or *//*  A = L*D*L**T to compute the solution to a real system of linear *//*  equations A * X = B, where A is an N-by-N symmetric matrix stored *//*  in packed format and X and B are N-by-NRHS matrices. *//*  Error bounds on the solution and a condition estimate are also *//*  provided. *//*  Description *//*  =========== *//*  The following steps are performed: *//*  1. If FACT = 'N', the diagonal pivoting method is used to factor A as *//*        A = U * D * U**T,  if UPLO = 'U', or *//*        A = L * D * L**T,  if UPLO = 'L', *//*     where U (or L) is a product of permutation and unit upper (lower) *//*     triangular matrices and D is symmetric and block diagonal with *//*     1-by-1 and 2-by-2 diagonal blocks. *//*  2. If some D(i,i)=0, so that D is exactly singular, then the routine *//*     returns with INFO = i. Otherwise, the factored form of A is used *//*     to estimate the condition number of the matrix A.  If the *//*     reciprocal of the condition number is less than machine precision, *//*     INFO = N+1 is returned as a warning, but the routine still goes on *//*     to solve for X and compute error bounds as described below. *//*  3. The system of equations is solved for X using the factored form *//*     of A. *//*  4. Iterative refinement is applied to improve the computed solution *//*     matrix and calculate error bounds and backward error estimates *//*     for it. *//*  Arguments *//*  ========= *//*  FACT    (input) CHARACTER*1 *//*          Specifies whether or not the factored form of A has been *//*          supplied on entry. *//*          = 'F':  On entry, AFP and IPIV contain the factored form of *//*                  A.  AP, AFP and IPIV will not be modified. *//*          = 'N':  The matrix A will be copied to AFP and factored. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The number of linear equations, i.e., the order of the *//*          matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrices B and X.  NRHS >= 0. *//*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          The upper or lower triangle of the symmetric matrix A, packed *//*          columnwise in a linear array.  The j-th column of A is stored *//*          in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. *//*          See below for further details. *//*  AFP     (input or output) DOUBLE PRECISION array, dimension *//*                            (N*(N+1)/2) *//*          If FACT = 'F', then AFP is an input argument and on entry *//*          contains the block diagonal matrix D and the multipliers used *//*          to obtain the factor U or L from the factorization *//*          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as *//*          a packed triangular matrix in the same storage format as A. *//*          If FACT = 'N', then AFP is an output argument and on exit *//*          contains the block diagonal matrix D and the multipliers used *//*          to obtain the factor U or L from the factorization *//*          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as *//*          a packed triangular matrix in the same storage format as A. *//*  IPIV    (input or output) INTEGER array, dimension (N) *//*          If FACT = 'F', then IPIV is an input argument and on entry *//*          contains details of the interchanges and the block structure *//*          of D, as determined by DSPTRF. *//*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were *//*          interchanged and D(k,k) is a 1-by-1 diagonal block. *//*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and *//*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) *//*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = *//*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were *//*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. *//*          If FACT = 'N', then IPIV is an output argument and on exit *//*          contains details of the interchanges and the block structure *//*          of D, as determined by DSPTRF. *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          The N-by-NRHS right hand side matrix B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X.  LDX >= max(1,N). *//*  RCOND   (output) DOUBLE PRECISION *//*          The estimate of the reciprocal condition number of the matrix *//*          A.  If RCOND is less than the machine precision (in *//*          particular, if RCOND = 0), the matrix is singular to working *//*          precision.  This condition is indicated by a return code of *//*          INFO > 0. *//*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The estimated forward error bound for each solution vector *//*          X(j) (the j-th column of the solution matrix X). *//*          If XTRUE is the true solution corresponding to X(j), FERR(j) *//*          is an estimated upper bound for the magnitude of the largest *//*          element in (X(j) - XTRUE) divided by the magnitude of the *//*          largest element in X(j).  The estimate is as reliable as *//*          the estimate for RCOND, and is almost always a slight *//*          overestimate of the true error. *//*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The componentwise relative backward error of each solution *//*          vector X(j) (i.e., the smallest relative change in *//*          any element of A or B that makes X(j) an exact solution). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  IWORK   (workspace) INTEGER array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, and i is *//*                <= N:  D(i,i) is exactly zero.  The factorization *//*                       has been completed but the factor D is exactly *//*                       singular, so the solution and error bounds could *//*                       not be computed. RCOND = 0 is returned. *//*                = N+1: D is nonsingular, but RCOND is less than machine *//*                       precision, meaning that the matrix is singular *//*                       to working precision.  Nevertheless, the *//*                       solution and error bounds are computed because *//*                       there are a number of situations where the *//*                       computed solution can be more accurate than the *//*                       value of RCOND would suggest. *//*  Further Details *//*  =============== *//*  The packed storage scheme is illustrated by the following example *//*  when N = 4, UPLO = 'U': *//*  Two-dimensional storage of the symmetric matrix A: *//*     a11 a12 a13 a14 *//*         a22 a23 a24 *//*             a33 a34     (aij = aji) *//*                 a44 *//*  Packed storage of the upper triangle of A: *//*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ap;    --afp;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --ferr;    --berr;    --work;    --iwork;    /* Function Body */    *info = 0;    nofact = _starpu_lsame_(fact, "N");    if (! nofact && ! _starpu_lsame_(fact, "F")) {	*info = -1;    } else if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, 	    "L")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (*ldb < max(1,*n)) {	*info = -9;    } else if (*ldx < max(1,*n)) {	*info = -11;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSPSVX", &i__1);	return 0;    }    if (nofact) {/*        Compute the factorization A = U*D*U' or A = L*D*L'. */	i__1 = *n * (*n + 1) / 2;	_starpu_dcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);	_starpu_dsptrf_(uplo, n, &afp[1], &ipiv[1], info);/*        Return if INFO is non-zero. */	if (*info > 0) {	    *rcond = 0.;	    return 0;	}    }/*     Compute the norm of the matrix A. */    anorm = _starpu_dlansp_("I", uplo, n, &ap[1], &work[1]);/*     Compute the reciprocal of the condition number of A. */    _starpu_dspcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], &iwork[1], 	    info);/*     Compute the solution vectors X. */    _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);    _starpu_dsptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info);/*     Use iterative refinement to improve the computed solutions and *//*     compute error bounds and backward error estimates for them. */    _starpu_dsprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[	    x_offset], ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info);/*     Set INFO = N+1 if the matrix is singular to working precision. */    if (*rcond < _starpu_dlamch_("Epsilon")) {	*info = *n + 1;    }    return 0;/*     End of DSPSVX */} /* _starpu_dspsvx_ */
 |