| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 | 
							- /* dpteqr.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b7 = 0.;
 
- static doublereal c_b8 = 1.;
 
- static integer c__0 = 0;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dpteqr_(char *compz, integer *n, doublereal *d__, 
 
- 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal c__[1]	/* was [1][1] */;
 
-     integer i__;
 
-     doublereal vt[1]	/* was [1][1] */;
 
-     integer nru;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *), _starpu_dbdsqr_(char *, integer *, 
 
- 	    integer *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *);
 
-     integer icompz;
 
-     extern /* Subroutine */ int _starpu_dpttrf_(integer *, doublereal *, doublereal *, 
 
- 	     integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPTEQR computes all eigenvalues and, optionally, eigenvectors of a */
 
- /*  symmetric positive definite tridiagonal matrix by first factoring the */
 
- /*  matrix using DPTTRF, and then calling DBDSQR to compute the singular */
 
- /*  values of the bidiagonal factor. */
 
- /*  This routine computes the eigenvalues of the positive definite */
 
- /*  tridiagonal matrix to high relative accuracy.  This means that if the */
 
- /*  eigenvalues range over many orders of magnitude in size, then the */
 
- /*  small eigenvalues and corresponding eigenvectors will be computed */
 
- /*  more accurately than, for example, with the standard QR method. */
 
- /*  The eigenvectors of a full or band symmetric positive definite matrix */
 
- /*  can also be found if DSYTRD, DSPTRD, or DSBTRD has been used to */
 
- /*  reduce this matrix to tridiagonal form. (The reduction to tridiagonal */
 
- /*  form, however, may preclude the possibility of obtaining high */
 
- /*  relative accuracy in the small eigenvalues of the original matrix, if */
 
- /*  these eigenvalues range over many orders of magnitude.) */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  COMPZ   (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only. */
 
- /*          = 'V':  Compute eigenvectors of original symmetric */
 
- /*                  matrix also.  Array Z contains the orthogonal */
 
- /*                  matrix used to reduce the original matrix to */
 
- /*                  tridiagonal form. */
 
- /*          = 'I':  Compute eigenvectors of tridiagonal matrix also. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix.  N >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the n diagonal elements of the tridiagonal */
 
- /*          matrix. */
 
- /*          On normal exit, D contains the eigenvalues, in descending */
 
- /*          order. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 
- /*          matrix. */
 
- /*          On exit, E has been destroyed. */
 
- /*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
 
- /*          On entry, if COMPZ = 'V', the orthogonal matrix used in the */
 
- /*          reduction to tridiagonal form. */
 
- /*          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the */
 
- /*          original symmetric matrix; */
 
- /*          if COMPZ = 'I', the orthonormal eigenvectors of the */
 
- /*          tridiagonal matrix. */
 
- /*          If INFO > 0 on exit, Z contains the eigenvectors associated */
 
- /*          with only the stored eigenvalues. */
 
- /*          If  COMPZ = 'N', then Z is not referenced. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          COMPZ = 'V' or 'I', LDZ >= max(1,N). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = i, and i is: */
 
- /*                <= N  the Cholesky factorization of the matrix could */
 
- /*                      not be performed because the i-th principal minor */
 
- /*                      was not positive definite. */
 
- /*                > N   the SVD algorithm failed to converge; */
 
- /*                      if INFO = N+i, i off-diagonal elements of the */
 
- /*                      bidiagonal factor did not converge to zero. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (_starpu_lsame_(compz, "N")) {
 
- 	icompz = 0;
 
-     } else if (_starpu_lsame_(compz, "V")) {
 
- 	icompz = 1;
 
-     } else if (_starpu_lsame_(compz, "I")) {
 
- 	icompz = 2;
 
-     } else {
 
- 	icompz = -1;
 
-     }
 
-     if (icompz < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
 
- 	*info = -6;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DPTEQR", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	if (icompz > 0) {
 
- 	    z__[z_dim1 + 1] = 1.;
 
- 	}
 
- 	return 0;
 
-     }
 
-     if (icompz == 2) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b7, &c_b8, &z__[z_offset], ldz);
 
-     }
 
- /*     Call DPTTRF to factor the matrix. */
 
-     _starpu_dpttrf_(n, &d__[1], &e[1], info);
 
-     if (*info != 0) {
 
- 	return 0;
 
-     }
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	d__[i__] = sqrt(d__[i__]);
 
- /* L10: */
 
-     }
 
-     i__1 = *n - 1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	e[i__] *= d__[i__];
 
- /* L20: */
 
-     }
 
- /*     Call DBDSQR to compute the singular values/vectors of the */
 
- /*     bidiagonal factor. */
 
-     if (icompz > 0) {
 
- 	nru = *n;
 
-     } else {
 
- 	nru = 0;
 
-     }
 
-     _starpu_dbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[
 
- 	    z_offset], ldz, c__, &c__1, &work[1], info);
 
- /*     Square the singular values. */
 
-     if (*info == 0) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    d__[i__] *= d__[i__];
 
- /* L30: */
 
- 	}
 
-     } else {
 
- 	*info = *n + *info;
 
-     }
 
-     return 0;
 
- /*     End of DPTEQR */
 
- } /* _starpu_dpteqr_ */
 
 
  |