| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | /* dorgbr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int _starpu_dorgbr_(char *vect, integer *m, integer *n, integer *k, 	doublereal *a, integer *lda, doublereal *tau, doublereal *work, 	integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, j, nb, mn;    extern logical _starpu_lsame_(char *, char *);    integer iinfo;    logical wantq;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_dorglq_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *), _starpu_dorgqr_(integer *, integer *, integer *, doublereal *, 	     integer *, doublereal *, doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DORGBR generates one of the real orthogonal matrices Q or P**T *//*  determined by DGEBRD when reducing a real matrix A to bidiagonal *//*  form: A = Q * B * P**T.  Q and P**T are defined as products of *//*  elementary reflectors H(i) or G(i) respectively. *//*  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q *//*  is of order M: *//*  if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n *//*  columns of Q, where m >= n >= k; *//*  if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an *//*  M-by-M matrix. *//*  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T *//*  is of order N: *//*  if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m *//*  rows of P**T, where n >= m >= k; *//*  if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as *//*  an N-by-N matrix. *//*  Arguments *//*  ========= *//*  VECT    (input) CHARACTER*1 *//*          Specifies whether the matrix Q or the matrix P**T is *//*          required, as defined in the transformation applied by DGEBRD: *//*          = 'Q':  generate Q; *//*          = 'P':  generate P**T. *//*  M       (input) INTEGER *//*          The number of rows of the matrix Q or P**T to be returned. *//*          M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix Q or P**T to be returned. *//*          N >= 0. *//*          If VECT = 'Q', M >= N >= min(M,K); *//*          if VECT = 'P', N >= M >= min(N,K). *//*  K       (input) INTEGER *//*          If VECT = 'Q', the number of columns in the original M-by-K *//*          matrix reduced by DGEBRD. *//*          If VECT = 'P', the number of rows in the original K-by-N *//*          matrix reduced by DGEBRD. *//*          K >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the vectors which define the elementary reflectors, *//*          as returned by DGEBRD. *//*          On exit, the M-by-N matrix Q or P**T. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,M). *//*  TAU     (input) DOUBLE PRECISION array, dimension *//*                                (min(M,K)) if VECT = 'Q' *//*                                (min(N,K)) if VECT = 'P' *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i) or G(i), which determines Q or P**T, as *//*          returned by DGEBRD in its array argument TAUQ or TAUP. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,min(M,N)). *//*          For optimum performance LWORK >= min(M,N)*NB, where NB *//*          is the optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    wantq = _starpu_lsame_(vect, "Q");    mn = min(*m,*n);    lquery = *lwork == -1;    if (! wantq && ! _starpu_lsame_(vect, "P")) {	*info = -1;    } else if (*m < 0) {	*info = -2;    } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && (	    *m > *n || *m < min(*n,*k))) {	*info = -3;    } else if (*k < 0) {	*info = -4;    } else if (*lda < max(1,*m)) {	*info = -6;    } else if (*lwork < max(1,mn) && ! lquery) {	*info = -9;    }    if (*info == 0) {	if (wantq) {	    nb = _starpu_ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1);	} else {	    nb = _starpu_ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1);	}	lwkopt = max(1,mn) * nb;	work[1] = (doublereal) lwkopt;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DORGBR", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*m == 0 || *n == 0) {	work[1] = 1.;	return 0;    }    if (wantq) {/*        Form Q, determined by a call to DGEBRD to reduce an m-by-k *//*        matrix */	if (*m >= *k) {/*           If m >= k, assume m >= n >= k */	    _starpu_dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &		    iinfo);	} else {/*           If m < k, assume m = n *//*           Shift the vectors which define the elementary reflectors one *//*           column to the right, and set the first row and column of Q *//*           to those of the unit matrix */	    for (j = *m; j >= 2; --j) {		a[j * a_dim1 + 1] = 0.;		i__1 = *m;		for (i__ = j + 1; i__ <= i__1; ++i__) {		    a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];/* L10: */		}/* L20: */	    }	    a[a_dim1 + 1] = 1.;	    i__1 = *m;	    for (i__ = 2; i__ <= i__1; ++i__) {		a[i__ + a_dim1] = 0.;/* L30: */	    }	    if (*m > 1) {/*              Form Q(2:m,2:m) */		i__1 = *m - 1;		i__2 = *m - 1;		i__3 = *m - 1;		_starpu_dorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[			1], &work[1], lwork, &iinfo);	    }	}    } else {/*        Form P', determined by a call to DGEBRD to reduce a k-by-n *//*        matrix */	if (*k < *n) {/*           If k < n, assume k <= m <= n */	    _starpu_dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &		    iinfo);	} else {/*           If k >= n, assume m = n *//*           Shift the vectors which define the elementary reflectors one *//*           row downward, and set the first row and column of P' to *//*           those of the unit matrix */	    a[a_dim1 + 1] = 1.;	    i__1 = *n;	    for (i__ = 2; i__ <= i__1; ++i__) {		a[i__ + a_dim1] = 0.;/* L40: */	    }	    i__1 = *n;	    for (j = 2; j <= i__1; ++j) {		for (i__ = j - 1; i__ >= 2; --i__) {		    a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1];/* L50: */		}		a[j * a_dim1 + 1] = 0.;/* L60: */	    }	    if (*n > 1) {/*              Form P'(2:n,2:n) */		i__1 = *n - 1;		i__2 = *n - 1;		i__3 = *n - 1;		_starpu_dorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[			1], &work[1], lwork, &iinfo);	    }	}    }    work[1] = (doublereal) lwkopt;    return 0;/*     End of DORGBR */} /* _starpu_dorgbr_ */
 |