| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 | /* dopgtr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dopgtr_(char *uplo, integer *n, doublereal *ap, 	doublereal *tau, doublereal *q, integer *ldq, doublereal *work, 	integer *info){    /* System generated locals */    integer q_dim1, q_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, j, ij;    extern logical _starpu_lsame_(char *, char *);    integer iinfo;    logical upper;    extern /* Subroutine */ int _starpu_dorg2l_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *), 	    _starpu_dorg2r_(integer *, integer *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DOPGTR generates a real orthogonal matrix Q which is defined as the *//*  product of n-1 elementary reflectors H(i) of order n, as returned by *//*  DSPTRD using packed storage: *//*  if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), *//*  if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U': Upper triangular packed storage used in previous *//*                 call to DSPTRD; *//*          = 'L': Lower triangular packed storage used in previous *//*                 call to DSPTRD. *//*  N       (input) INTEGER *//*          The order of the matrix Q. N >= 0. *//*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          The vectors which define the elementary reflectors, as *//*          returned by DSPTRD. *//*  TAU     (input) DOUBLE PRECISION array, dimension (N-1) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i), as returned by DSPTRD. *//*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N) *//*          The N-by-N orthogonal matrix Q. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q. LDQ >= max(1,N). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N-1) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    --ap;    --tau;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --work;    /* Function Body */    *info = 0;    upper = _starpu_lsame_(uplo, "U");    if (! upper && ! _starpu_lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*ldq < max(1,*n)) {	*info = -6;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DOPGTR", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (upper) {/*        Q was determined by a call to DSPTRD with UPLO = 'U' *//*        Unpack the vectors which define the elementary reflectors and *//*        set the last row and column of Q equal to those of the unit *//*        matrix */	ij = 2;	i__1 = *n - 1;	for (j = 1; j <= i__1; ++j) {	    i__2 = j - 1;	    for (i__ = 1; i__ <= i__2; ++i__) {		q[i__ + j * q_dim1] = ap[ij];		++ij;/* L10: */	    }	    ij += 2;	    q[*n + j * q_dim1] = 0.;/* L20: */	}	i__1 = *n - 1;	for (i__ = 1; i__ <= i__1; ++i__) {	    q[i__ + *n * q_dim1] = 0.;/* L30: */	}	q[*n + *n * q_dim1] = 1.;/*        Generate Q(1:n-1,1:n-1) */	i__1 = *n - 1;	i__2 = *n - 1;	i__3 = *n - 1;	_starpu_dorg2l_(&i__1, &i__2, &i__3, &q[q_offset], ldq, &tau[1], &work[1], &		iinfo);    } else {/*        Q was determined by a call to DSPTRD with UPLO = 'L'. *//*        Unpack the vectors which define the elementary reflectors and *//*        set the first row and column of Q equal to those of the unit *//*        matrix */	q[q_dim1 + 1] = 1.;	i__1 = *n;	for (i__ = 2; i__ <= i__1; ++i__) {	    q[i__ + q_dim1] = 0.;/* L40: */	}	ij = 3;	i__1 = *n;	for (j = 2; j <= i__1; ++j) {	    q[j * q_dim1 + 1] = 0.;	    i__2 = *n;	    for (i__ = j + 1; i__ <= i__2; ++i__) {		q[i__ + j * q_dim1] = ap[ij];		++ij;/* L50: */	    }	    ij += 2;/* L60: */	}	if (*n > 1) {/*           Generate Q(2:n,2:n) */	    i__1 = *n - 1;	    i__2 = *n - 1;	    i__3 = *n - 1;	    _starpu_dorg2r_(&i__1, &i__2, &i__3, &q[(q_dim1 << 1) + 2], ldq, &tau[1], 		    &work[1], &iinfo);	}    }    return 0;/*     End of DOPGTR */} /* _starpu_dopgtr_ */
 |