| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 | /* dlatrz.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlatrz_(integer *m, integer *n, integer *l, doublereal *	a, integer *lda, doublereal *tau, doublereal *work){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer i__;    extern /* Subroutine */ int _starpu_dlarz_(char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *), _starpu_dlarfp_(integer *, doublereal *, 	    doublereal *, integer *, doublereal *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix *//*  [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means *//*  of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal *//*  matrix and, R and A1 are M-by-M upper triangular matrices. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  L       (input) INTEGER *//*          The number of columns of the matrix A containing the *//*          meaningful part of the Householder vectors. N-M >= L >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the leading M-by-N upper trapezoidal part of the *//*          array A must contain the matrix to be factorized. *//*          On exit, the leading M-by-M upper triangular part of A *//*          contains the upper triangular matrix R, and elements N-L+1 to *//*          N of the first M rows of A, with the array TAU, represent the *//*          orthogonal matrix Z as a product of M elementary reflectors. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  TAU     (output) DOUBLE PRECISION array, dimension (M) *//*          The scalar factors of the elementary reflectors. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) *//*  Further Details *//*  =============== *//*  Based on contributions by *//*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA *//*  The factorization is obtained by Householder's method.  The kth *//*  transformation matrix, Z( k ), which is used to introduce zeros into *//*  the ( m - k + 1 )th row of A, is given in the form *//*     Z( k ) = ( I     0   ), *//*              ( 0  T( k ) ) *//*  where *//*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ), *//*                                                 (   0    ) *//*                                                 ( z( k ) ) *//*  tau is a scalar and z( k ) is an l element vector. tau and z( k ) *//*  are chosen to annihilate the elements of the kth row of A2. *//*  The scalar tau is returned in the kth element of TAU and the vector *//*  u( k ) in the kth row of A2, such that the elements of z( k ) are *//*  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in *//*  the upper triangular part of A1. *//*  Z is given by *//*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments *//*     Quick return if possible */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    if (*m == 0) {	return 0;    } else if (*m == *n) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    tau[i__] = 0.;/* L10: */	}	return 0;    }    for (i__ = *m; i__ >= 1; --i__) {/*        Generate elementary reflector H(i) to annihilate *//*        [ A(i,i) A(i,n-l+1:n) ] */	i__1 = *l + 1;	_starpu_dlarfp_(&i__1, &a[i__ + i__ * a_dim1], &a[i__ + (*n - *l + 1) * 		a_dim1], lda, &tau[i__]);/*        Apply H(i) to A(1:i-1,i:n) from the right */	i__1 = i__ - 1;	i__2 = *n - i__ + 1;	_starpu_dlarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], 		lda, &tau[i__], &a[i__ * a_dim1 + 1], lda, &work[1]);/* L20: */    }    return 0;/*     End of DLATRZ */} /* _starpu_dlatrz_ */
 |