| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794 | /* dlarrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;static integer c__0 = 0;/* Subroutine */ int _starpu_dlarrd_(char *range, char *order, integer *n, doublereal 	*vl, doublereal *vu, integer *il, integer *iu, doublereal *gers, 	doublereal *reltol, doublereal *d__, doublereal *e, doublereal *e2, 	doublereal *pivmin, integer *nsplit, integer *isplit, integer *m, 	doublereal *w, doublereal *werr, doublereal *wl, doublereal *wu, 	integer *iblock, integer *indexw, doublereal *work, integer *iwork, 	integer *info){    /* System generated locals */    integer i__1, i__2, i__3;    doublereal d__1, d__2;    /* Builtin functions */    double log(doublereal);    /* Local variables */    integer i__, j, ib, ie, je, nb;    doublereal gl;    integer im, in;    doublereal gu;    integer iw, jee;    doublereal eps;    integer nwl;    doublereal wlu, wul;    integer nwu;    doublereal tmp1, tmp2;    integer iend, jblk, ioff, iout, itmp1, itmp2, jdisc;    extern logical _starpu_lsame_(char *, char *);    integer iinfo;    doublereal atoli;    integer iwoff, itmax;    doublereal wkill, rtoli, uflow, tnorm;    extern doublereal _starpu_dlamch_(char *);    integer ibegin;    extern /* Subroutine */ int _starpu_dlaebz_(integer *, integer *, integer *, 	    integer *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *);    integer irange, idiscl, idumma[1];    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer idiscu;    logical ncnvrg, toofew;/*  -- LAPACK auxiliary routine (version 3.2.1)                        -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//*  -- April 2009                                                      -- *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLARRD computes the eigenvalues of a symmetric tridiagonal *//*  matrix T to suitable accuracy. This is an auxiliary code to be *//*  called from DSTEMR. *//*  The user may ask for all eigenvalues, all eigenvalues *//*  in the half-open interval (VL, VU], or the IL-th through IU-th *//*  eigenvalues. *//*  To avoid overflow, the matrix must be scaled so that its *//*  largest element is no greater than overflow**(1/2) * *//*  underflow**(1/4) in absolute value, and for greatest *//*  accuracy, it should not be much smaller than that. *//*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal *//*  Matrix", Report CS41, Computer Science Dept., Stanford *//*  University, July 21, 1966. *//*  Arguments *//*  ========= *//*  RANGE   (input) CHARACTER *//*          = 'A': ("All")   all eigenvalues will be found. *//*          = 'V': ("Value") all eigenvalues in the half-open interval *//*                           (VL, VU] will be found. *//*          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the *//*                           entire matrix) will be found. *//*  ORDER   (input) CHARACTER *//*          = 'B': ("By Block") the eigenvalues will be grouped by *//*                              split-off block (see IBLOCK, ISPLIT) and *//*                              ordered from smallest to largest within *//*                              the block. *//*          = 'E': ("Entire matrix") *//*                              the eigenvalues for the entire matrix *//*                              will be ordered from smallest to *//*                              largest. *//*  N       (input) INTEGER *//*          The order of the tridiagonal matrix T.  N >= 0. *//*  VL      (input) DOUBLE PRECISION *//*  VU      (input) DOUBLE PRECISION *//*          If RANGE='V', the lower and upper bounds of the interval to *//*          be searched for eigenvalues.  Eigenvalues less than or equal *//*          to VL, or greater than VU, will not be returned.  VL < VU. *//*          Not referenced if RANGE = 'A' or 'I'. *//*  IL      (input) INTEGER *//*  IU      (input) INTEGER *//*          If RANGE='I', the indices (in ascending order) of the *//*          smallest and largest eigenvalues to be returned. *//*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. *//*          Not referenced if RANGE = 'A' or 'V'. *//*  GERS    (input) DOUBLE PRECISION array, dimension (2*N) *//*          The N Gerschgorin intervals (the i-th Gerschgorin interval *//*          is (GERS(2*i-1), GERS(2*i)). *//*  RELTOL  (input) DOUBLE PRECISION *//*          The minimum relative width of an interval.  When an interval *//*          is narrower than RELTOL times the larger (in *//*          magnitude) endpoint, then it is considered to be *//*          sufficiently small, i.e., converged.  Note: this should *//*          always be at least radix*machine epsilon. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the tridiagonal matrix T. *//*  E       (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) off-diagonal elements of the tridiagonal matrix T. *//*  E2      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) squared off-diagonal elements of the tridiagonal matrix T. *//*  PIVMIN  (input) DOUBLE PRECISION *//*          The minimum pivot allowed in the Sturm sequence for T. *//*  NSPLIT  (input) INTEGER *//*          The number of diagonal blocks in the matrix T. *//*          1 <= NSPLIT <= N. *//*  ISPLIT  (input) INTEGER array, dimension (N) *//*          The splitting points, at which T breaks up into submatrices. *//*          The first submatrix consists of rows/columns 1 to ISPLIT(1), *//*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), *//*          etc., and the NSPLIT-th consists of rows/columns *//*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. *//*          (Only the first NSPLIT elements will actually be used, but *//*          since the user cannot know a priori what value NSPLIT will *//*          have, N words must be reserved for ISPLIT.) *//*  M       (output) INTEGER *//*          The actual number of eigenvalues found. 0 <= M <= N. *//*          (See also the description of INFO=2,3.) *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          On exit, the first M elements of W will contain the *//*          eigenvalue approximations. DLARRD computes an interval *//*          I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue *//*          approximation is given as the interval midpoint *//*          W(j)= ( a_j + b_j)/2. The corresponding error is bounded by *//*          WERR(j) = abs( a_j - b_j)/2 *//*  WERR    (output) DOUBLE PRECISION array, dimension (N) *//*          The error bound on the corresponding eigenvalue approximation *//*          in W. *//*  WL      (output) DOUBLE PRECISION *//*  WU      (output) DOUBLE PRECISION *//*          The interval (WL, WU] contains all the wanted eigenvalues. *//*          If RANGE='V', then WL=VL and WU=VU. *//*          If RANGE='A', then WL and WU are the global Gerschgorin bounds *//*                        on the spectrum. *//*          If RANGE='I', then WL and WU are computed by DLAEBZ from the *//*                        index range specified. *//*  IBLOCK  (output) INTEGER array, dimension (N) *//*          At each row/column j where E(j) is zero or small, the *//*          matrix T is considered to split into a block diagonal *//*          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which *//*          block (from 1 to the number of blocks) the eigenvalue W(i) *//*          belongs.  (DLARRD may use the remaining N-M elements as *//*          workspace.) *//*  INDEXW  (output) INTEGER array, dimension (N) *//*          The indices of the eigenvalues within each block (submatrix); *//*          for example, INDEXW(i)= j and IBLOCK(i)=k imply that the *//*          i-th eigenvalue W(i) is the j-th eigenvalue in block k. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) *//*  IWORK   (workspace) INTEGER array, dimension (3*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  some or all of the eigenvalues failed to converge or *//*                were not computed: *//*                =1 or 3: Bisection failed to converge for some *//*                        eigenvalues; these eigenvalues are flagged by a *//*                        negative block number.  The effect is that the *//*                        eigenvalues may not be as accurate as the *//*                        absolute and relative tolerances.  This is *//*                        generally caused by unexpectedly inaccurate *//*                        arithmetic. *//*                =2 or 3: RANGE='I' only: Not all of the eigenvalues *//*                        IL:IU were found. *//*                        Effect: M < IU+1-IL *//*                        Cause:  non-monotonic arithmetic, causing the *//*                                Sturm sequence to be non-monotonic. *//*                        Cure:   recalculate, using RANGE='A', and pick *//*                                out eigenvalues IL:IU.  In some cases, *//*                                increasing the PARAMETER "FUDGE" may *//*                                make things work. *//*                = 4:    RANGE='I', and the Gershgorin interval *//*                        initially used was too small.  No eigenvalues *//*                        were computed. *//*                        Probable cause: your machine has sloppy *//*                                        floating-point arithmetic. *//*                        Cure: Increase the PARAMETER "FUDGE", *//*                              recompile, and try again. *//*  Internal Parameters *//*  =================== *//*  FUDGE   DOUBLE PRECISION, default = 2 *//*          A "fudge factor" to widen the Gershgorin intervals.  Ideally, *//*          a value of 1 should work, but on machines with sloppy *//*          arithmetic, this needs to be larger.  The default for *//*          publicly released versions should be large enough to handle *//*          the worst machine around.  Note that this has no effect *//*          on accuracy of the solution. *//*  Based on contributions by *//*     W. Kahan, University of California, Berkeley, USA *//*     Beresford Parlett, University of California, Berkeley, USA *//*     Jim Demmel, University of California, Berkeley, USA *//*     Inderjit Dhillon, University of Texas, Austin, USA *//*     Osni Marques, LBNL/NERSC, USA *//*     Christof Voemel, University of California, Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --iwork;    --work;    --indexw;    --iblock;    --werr;    --w;    --isplit;    --e2;    --e;    --d__;    --gers;    /* Function Body */    *info = 0;/*     Decode RANGE */    if (_starpu_lsame_(range, "A")) {	irange = 1;    } else if (_starpu_lsame_(range, "V")) {	irange = 2;    } else if (_starpu_lsame_(range, "I")) {	irange = 3;    } else {	irange = 0;    }/*     Check for Errors */    if (irange <= 0) {	*info = -1;    } else if (! (_starpu_lsame_(order, "B") || _starpu_lsame_(order, 	    "E"))) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (irange == 2) {	if (*vl >= *vu) {	    *info = -5;	}    } else if (irange == 3 && (*il < 1 || *il > max(1,*n))) {	*info = -6;    } else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) {	*info = -7;    }    if (*info != 0) {	return 0;    }/*     Initialize error flags */    *info = 0;    ncnvrg = FALSE_;    toofew = FALSE_;/*     Quick return if possible */    *m = 0;    if (*n == 0) {	return 0;    }/*     Simplification: */    if (irange == 3 && *il == 1 && *iu == *n) {	irange = 1;    }/*     Get machine constants */    eps = _starpu_dlamch_("P");    uflow = _starpu_dlamch_("U");/*     Special Case when N=1 *//*     Treat case of 1x1 matrix for quick return */    if (*n == 1) {	if (irange == 1 || irange == 2 && d__[1] > *vl && d__[1] <= *vu || 		irange == 3 && *il == 1 && *iu == 1) {	    *m = 1;	    w[1] = d__[1];/*           The computation error of the eigenvalue is zero */	    werr[1] = 0.;	    iblock[1] = 1;	    indexw[1] = 1;	}	return 0;    }/*     NB is the minimum vector length for vector bisection, or 0 *//*     if only scalar is to be done. */    nb = _starpu_ilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1);    if (nb <= 1) {	nb = 0;    }/*     Find global spectral radius */    gl = d__[1];    gu = d__[1];    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MIN */	d__1 = gl, d__2 = gers[(i__ << 1) - 1];	gl = min(d__1,d__2);/* Computing MAX */	d__1 = gu, d__2 = gers[i__ * 2];	gu = max(d__1,d__2);/* L5: */    }/*     Compute global Gerschgorin bounds and spectral diameter *//* Computing MAX */    d__1 = abs(gl), d__2 = abs(gu);    tnorm = max(d__1,d__2);    gl = gl - tnorm * 2. * eps * *n - *pivmin * 4.;    gu = gu + tnorm * 2. * eps * *n + *pivmin * 4.;/*     [JAN/28/2009] remove the line below since SPDIAM variable not use *//*     SPDIAM = GU - GL *//*     Input arguments for DLAEBZ: *//*     The relative tolerance.  An interval (a,b] lies within *//*     "relative tolerance" if  b-a < RELTOL*max(|a|,|b|), */    rtoli = *reltol;/*     Set the absolute tolerance for interval convergence to zero to force *//*     interval convergence based on relative size of the interval. *//*     This is dangerous because intervals might not converge when RELTOL is *//*     small. But at least a very small number should be selected so that for *//*     strongly graded matrices, the code can get relatively accurate *//*     eigenvalues. */    atoli = uflow * 4. + *pivmin * 4.;    if (irange == 3) {/*        RANGE='I': Compute an interval containing eigenvalues *//*        IL through IU. The initial interval [GL,GU] from the global *//*        Gerschgorin bounds GL and GU is refined by DLAEBZ. */	itmax = (integer) ((log(tnorm + *pivmin) - log(*pivmin)) / log(2.)) + 		2;	work[*n + 1] = gl;	work[*n + 2] = gl;	work[*n + 3] = gu;	work[*n + 4] = gu;	work[*n + 5] = gl;	work[*n + 6] = gu;	iwork[1] = -1;	iwork[2] = -1;	iwork[3] = *n + 1;	iwork[4] = *n + 1;	iwork[5] = *il - 1;	iwork[6] = *iu;	_starpu_dlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, pivmin, &		d__[1], &e[1], &e2[1], &iwork[5], &work[*n + 1], &work[*n + 5], &iout, &iwork[1], &w[1], &iblock[1], &iinfo);	if (iinfo != 0) {	    *info = iinfo;	    return 0;	}/*        On exit, output intervals may not be ordered by ascending negcount */	if (iwork[6] == *iu) {	    *wl = work[*n + 1];	    wlu = work[*n + 3];	    nwl = iwork[1];	    *wu = work[*n + 4];	    wul = work[*n + 2];	    nwu = iwork[4];	} else {	    *wl = work[*n + 2];	    wlu = work[*n + 4];	    nwl = iwork[2];	    *wu = work[*n + 3];	    wul = work[*n + 1];	    nwu = iwork[3];	}/*        On exit, the interval [WL, WLU] contains a value with negcount NWL, *//*        and [WUL, WU] contains a value with negcount NWU. */	if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {	    *info = 4;	    return 0;	}    } else if (irange == 2) {	*wl = *vl;	*wu = *vu;    } else if (irange == 1) {	*wl = gl;	*wu = gu;    }/*     Find Eigenvalues -- Loop Over blocks and recompute NWL and NWU. *//*     NWL accumulates the number of eigenvalues .le. WL, *//*     NWU accumulates the number of eigenvalues .le. WU */    *m = 0;    iend = 0;    *info = 0;    nwl = 0;    nwu = 0;    i__1 = *nsplit;    for (jblk = 1; jblk <= i__1; ++jblk) {	ioff = iend;	ibegin = ioff + 1;	iend = isplit[jblk];	in = iend - ioff;	if (in == 1) {/*           1x1 block */	    if (*wl >= d__[ibegin] - *pivmin) {		++nwl;	    }	    if (*wu >= d__[ibegin] - *pivmin) {		++nwu;	    }	    if (irange == 1 || *wl < d__[ibegin] - *pivmin && *wu >= d__[		    ibegin] - *pivmin) {		++(*m);		w[*m] = d__[ibegin];		werr[*m] = 0.;/*              The gap for a single block doesn't matter for the later *//*              algorithm and is assigned an arbitrary large value */		iblock[*m] = jblk;		indexw[*m] = 1;	    }/*        Disabled 2x2 case because of a failure on the following matrix *//*        RANGE = 'I', IL = IU = 4 *//*          Original Tridiagonal, d = [ *//*           -0.150102010615740E+00 *//*           -0.849897989384260E+00 *//*           -0.128208148052635E-15 *//*            0.128257718286320E-15 *//*          ]; *//*          e = [ *//*           -0.357171383266986E+00 *//*           -0.180411241501588E-15 *//*           -0.175152352710251E-15 *//*          ]; *//*         ELSE IF( IN.EQ.2 ) THEN *//* *           2x2 block *//*            DISC = SQRT( (HALF*(D(IBEGIN)-D(IEND)))**2 + E(IBEGIN)**2 ) *//*            TMP1 = HALF*(D(IBEGIN)+D(IEND)) *//*            L1 = TMP1 - DISC *//*            IF( WL.GE. L1-PIVMIN ) *//*     $         NWL = NWL + 1 *//*            IF( WU.GE. L1-PIVMIN ) *//*     $         NWU = NWU + 1 *//*            IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L1-PIVMIN .AND. WU.GE. *//*     $          L1-PIVMIN ) ) THEN *//*               M = M + 1 *//*               W( M ) = L1 *//* *              The uncertainty of eigenvalues of a 2x2 matrix is very small *//*               WERR( M ) = EPS * ABS( W( M ) ) * TWO *//*               IBLOCK( M ) = JBLK *//*               INDEXW( M ) = 1 *//*            ENDIF *//*            L2 = TMP1 + DISC *//*            IF( WL.GE. L2-PIVMIN ) *//*     $         NWL = NWL + 1 *//*            IF( WU.GE. L2-PIVMIN ) *//*     $         NWU = NWU + 1 *//*            IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L2-PIVMIN .AND. WU.GE. *//*     $          L2-PIVMIN ) ) THEN *//*               M = M + 1 *//*               W( M ) = L2 *//* *              The uncertainty of eigenvalues of a 2x2 matrix is very small *//*               WERR( M ) = EPS * ABS( W( M ) ) * TWO *//*               IBLOCK( M ) = JBLK *//*               INDEXW( M ) = 2 *//*            ENDIF */	} else {/*           General Case - block of size IN >= 2 *//*           Compute local Gerschgorin interval and use it as the initial *//*           interval for DLAEBZ */	    gu = d__[ibegin];	    gl = d__[ibegin];	    tmp1 = 0.;	    i__2 = iend;	    for (j = ibegin; j <= i__2; ++j) {/* Computing MIN */		d__1 = gl, d__2 = gers[(j << 1) - 1];		gl = min(d__1,d__2);/* Computing MAX */		d__1 = gu, d__2 = gers[j * 2];		gu = max(d__1,d__2);/* L40: */	    }/*           [JAN/28/2009] *//*           change SPDIAM by TNORM in lines 2 and 3 thereafter *//*           line 1: remove computation of SPDIAM (not useful anymore) *//*           SPDIAM = GU - GL *//*           GL = GL - FUDGE*SPDIAM*EPS*IN - FUDGE*PIVMIN *//*           GU = GU + FUDGE*SPDIAM*EPS*IN + FUDGE*PIVMIN */	    gl = gl - tnorm * 2. * eps * in - *pivmin * 2.;	    gu = gu + tnorm * 2. * eps * in + *pivmin * 2.;	    if (irange > 1) {		if (gu < *wl) {/*                 the local block contains none of the wanted eigenvalues */		    nwl += in;		    nwu += in;		    goto L70;		}/*              refine search interval if possible, only range (WL,WU] matters */		gl = max(gl,*wl);		gu = min(gu,*wu);		if (gl >= gu) {		    goto L70;		}	    }/*           Find negcount of initial interval boundaries GL and GU */	    work[*n + 1] = gl;	    work[*n + in + 1] = gu;	    _starpu_dlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, 		    pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, &		    work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &		    w[*m + 1], &iblock[*m + 1], &iinfo);	    if (iinfo != 0) {		*info = iinfo;		return 0;	    }	    nwl += iwork[1];	    nwu += iwork[in + 1];	    iwoff = *m - iwork[1];/*           Compute Eigenvalues */	    itmax = (integer) ((log(gu - gl + *pivmin) - log(*pivmin)) / log(		    2.)) + 2;	    _starpu_dlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, 		    pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, &		    work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1], 		     &w[*m + 1], &iblock[*m + 1], &iinfo);	    if (iinfo != 0) {		*info = iinfo;		return 0;	    }/*           Copy eigenvalues into W and IBLOCK *//*           Use -JBLK for block number for unconverged eigenvalues. *//*           Loop over the number of output intervals from DLAEBZ */	    i__2 = iout;	    for (j = 1; j <= i__2; ++j) {/*              eigenvalue approximation is middle point of interval */		tmp1 = (work[j + *n] + work[j + in + *n]) * .5;/*              semi length of error interval */		tmp2 = (d__1 = work[j + *n] - work[j + in + *n], abs(d__1)) * 			.5;		if (j > iout - iinfo) {/*                 Flag non-convergence. */		    ncnvrg = TRUE_;		    ib = -jblk;		} else {		    ib = jblk;		}		i__3 = iwork[j + in] + iwoff;		for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {		    w[je] = tmp1;		    werr[je] = tmp2;		    indexw[je] = je - iwoff;		    iblock[je] = ib;/* L50: */		}/* L60: */	    }	    *m += im;	}L70:	;    }/*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU *//*     If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */    if (irange == 3) {	idiscl = *il - 1 - nwl;	idiscu = nwu - *iu;	if (idiscl > 0) {	    im = 0;	    i__1 = *m;	    for (je = 1; je <= i__1; ++je) {/*              Remove some of the smallest eigenvalues from the left so that *//*              at the end IDISCL =0. Move all eigenvalues up to the left. */		if (w[je] <= wlu && idiscl > 0) {		    --idiscl;		} else {		    ++im;		    w[im] = w[je];		    werr[im] = werr[je];		    indexw[im] = indexw[je];		    iblock[im] = iblock[je];		}/* L80: */	    }	    *m = im;	}	if (idiscu > 0) {/*           Remove some of the largest eigenvalues from the right so that *//*           at the end IDISCU =0. Move all eigenvalues up to the left. */	    im = *m + 1;	    for (je = *m; je >= 1; --je) {		if (w[je] >= wul && idiscu > 0) {		    --idiscu;		} else {		    --im;		    w[im] = w[je];		    werr[im] = werr[je];		    indexw[im] = indexw[je];		    iblock[im] = iblock[je];		}/* L81: */	    }	    jee = 0;	    i__1 = *m;	    for (je = im; je <= i__1; ++je) {		++jee;		w[jee] = w[je];		werr[jee] = werr[je];		indexw[jee] = indexw[je];		iblock[jee] = iblock[je];/* L82: */	    }	    *m = *m - im + 1;	}	if (idiscl > 0 || idiscu > 0) {/*           Code to deal with effects of bad arithmetic. (If N(w) is *//*           monotone non-decreasing, this should never happen.) *//*           Some low eigenvalues to be discarded are not in (WL,WLU], *//*           or high eigenvalues to be discarded are not in (WUL,WU] *//*           so just kill off the smallest IDISCL/largest IDISCU *//*           eigenvalues, by marking the corresponding IBLOCK = 0 */	    if (idiscl > 0) {		wkill = *wu;		i__1 = idiscl;		for (jdisc = 1; jdisc <= i__1; ++jdisc) {		    iw = 0;		    i__2 = *m;		    for (je = 1; je <= i__2; ++je) {			if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {			    iw = je;			    wkill = w[je];			}/* L90: */		    }		    iblock[iw] = 0;/* L100: */		}	    }	    if (idiscu > 0) {		wkill = *wl;		i__1 = idiscu;		for (jdisc = 1; jdisc <= i__1; ++jdisc) {		    iw = 0;		    i__2 = *m;		    for (je = 1; je <= i__2; ++je) {			if (iblock[je] != 0 && (w[je] >= wkill || iw == 0)) {			    iw = je;			    wkill = w[je];			}/* L110: */		    }		    iblock[iw] = 0;/* L120: */		}	    }/*           Now erase all eigenvalues with IBLOCK set to zero */	    im = 0;	    i__1 = *m;	    for (je = 1; je <= i__1; ++je) {		if (iblock[je] != 0) {		    ++im;		    w[im] = w[je];		    werr[im] = werr[je];		    indexw[im] = indexw[je];		    iblock[im] = iblock[je];		}/* L130: */	    }	    *m = im;	}	if (idiscl < 0 || idiscu < 0) {	    toofew = TRUE_;	}    }    if (irange == 1 && *m != *n || irange == 3 && *m != *iu - *il + 1) {	toofew = TRUE_;    }/*     If ORDER='B', do nothing the eigenvalues are already sorted by *//*        block. *//*     If ORDER='E', sort the eigenvalues from smallest to largest */    if (_starpu_lsame_(order, "E") && *nsplit > 1) {	i__1 = *m - 1;	for (je = 1; je <= i__1; ++je) {	    ie = 0;	    tmp1 = w[je];	    i__2 = *m;	    for (j = je + 1; j <= i__2; ++j) {		if (w[j] < tmp1) {		    ie = j;		    tmp1 = w[j];		}/* L140: */	    }	    if (ie != 0) {		tmp2 = werr[ie];		itmp1 = iblock[ie];		itmp2 = indexw[ie];		w[ie] = w[je];		werr[ie] = werr[je];		iblock[ie] = iblock[je];		indexw[ie] = indexw[je];		w[je] = tmp1;		werr[je] = tmp2;		iblock[je] = itmp1;		indexw[je] = itmp2;	    }/* L150: */	}    }    *info = 0;    if (ncnvrg) {	++(*info);    }    if (toofew) {	*info += 2;    }    return 0;/*     End of DLARRD */} /* _starpu_dlarrd_ */
 |