| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399 | /* dlantr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;doublereal _starpu_dlantr_(char *norm, char *uplo, char *diag, integer *m, integer *n, 	 doublereal *a, integer *lda, doublereal *work){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;    doublereal ret_val, d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j;    doublereal sum, scale;    logical udiag;    extern logical _starpu_lsame_(char *, char *);    doublereal value;    extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *, 	    doublereal *, doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLANTR  returns the value of the one norm,  or the Frobenius norm, or *//*  the  infinity norm,  or the  element of  largest absolute value  of a *//*  trapezoidal or triangular matrix A. *//*  Description *//*  =========== *//*  DLANTR returns the value *//*     DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' *//*              ( *//*              ( norm1(A),         NORM = '1', 'O' or 'o' *//*              ( *//*              ( normI(A),         NORM = 'I' or 'i' *//*              ( *//*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' *//*  where  norm1  denotes the  one norm of a matrix (maximum column sum), *//*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and *//*  normF  denotes the  Frobenius norm of a matrix (square root of sum of *//*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. *//*  Arguments *//*  ========= *//*  NORM    (input) CHARACTER*1 *//*          Specifies the value to be returned in DLANTR as described *//*          above. *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the matrix A is upper or lower trapezoidal. *//*          = 'U':  Upper trapezoidal *//*          = 'L':  Lower trapezoidal *//*          Note that A is triangular instead of trapezoidal if M = N. *//*  DIAG    (input) CHARACTER*1 *//*          Specifies whether or not the matrix A has unit diagonal. *//*          = 'N':  Non-unit diagonal *//*          = 'U':  Unit diagonal *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0, and if *//*          UPLO = 'U', M <= N.  When M = 0, DLANTR is set to zero. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0, and if *//*          UPLO = 'L', N <= M.  When N = 0, DLANTR is set to zero. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          The trapezoidal matrix A (A is triangular if M = N). *//*          If UPLO = 'U', the leading m by n upper trapezoidal part of *//*          the array A contains the upper trapezoidal matrix, and the *//*          strictly lower triangular part of A is not referenced. *//*          If UPLO = 'L', the leading m by n lower trapezoidal part of *//*          the array A contains the lower trapezoidal matrix, and the *//*          strictly upper triangular part of A is not referenced.  Note *//*          that when DIAG = 'U', the diagonal elements of A are not *//*          referenced and are assumed to be one. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(M,1). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), *//*          where LWORK >= M when NORM = 'I'; otherwise, WORK is not *//*          referenced. *//* ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --work;    /* Function Body */    if (min(*m,*n) == 0) {	value = 0.;    } else if (_starpu_lsame_(norm, "M")) {/*        Find max(abs(A(i,j))). */	if (_starpu_lsame_(diag, "U")) {	    value = 1.;	    if (_starpu_lsame_(uplo, "U")) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {/* Computing MIN */		    i__3 = *m, i__4 = j - 1;		    i__2 = min(i__3,i__4);		    for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(				d__1));			value = max(d__2,d__3);/* L10: */		    }/* L20: */		}	    } else {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *m;		    for (i__ = j + 1; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(				d__1));			value = max(d__2,d__3);/* L30: */		    }/* L40: */		}	    }	} else {	    value = 0.;	    if (_starpu_lsame_(uplo, "U")) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = min(*m,j);		    for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(				d__1));			value = max(d__2,d__3);/* L50: */		    }/* L60: */		}	    } else {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *m;		    for (i__ = j; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(				d__1));			value = max(d__2,d__3);/* L70: */		    }/* L80: */		}	    }	}    } else if (_starpu_lsame_(norm, "O") || *(unsigned char *)	    norm == '1') {/*        Find norm1(A). */	value = 0.;	udiag = _starpu_lsame_(diag, "U");	if (_starpu_lsame_(uplo, "U")) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (udiag && j <= *m) {		    sum = 1.;		    i__2 = j - 1;		    for (i__ = 1; i__ <= i__2; ++i__) {			sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));/* L90: */		    }		} else {		    sum = 0.;		    i__2 = min(*m,j);		    for (i__ = 1; i__ <= i__2; ++i__) {			sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));/* L100: */		    }		}		value = max(value,sum);/* L110: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (udiag) {		    sum = 1.;		    i__2 = *m;		    for (i__ = j + 1; i__ <= i__2; ++i__) {			sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));/* L120: */		    }		} else {		    sum = 0.;		    i__2 = *m;		    for (i__ = j; i__ <= i__2; ++i__) {			sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));/* L130: */		    }		}		value = max(value,sum);/* L140: */	    }	}    } else if (_starpu_lsame_(norm, "I")) {/*        Find normI(A). */	if (_starpu_lsame_(uplo, "U")) {	    if (_starpu_lsame_(diag, "U")) {		i__1 = *m;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] = 1.;/* L150: */		}		i__1 = *n;		for (j = 1; j <= i__1; ++j) {/* Computing MIN */		    i__3 = *m, i__4 = j - 1;		    i__2 = min(i__3,i__4);		    for (i__ = 1; i__ <= i__2; ++i__) {			work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));/* L160: */		    }/* L170: */		}	    } else {		i__1 = *m;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] = 0.;/* L180: */		}		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = min(*m,j);		    for (i__ = 1; i__ <= i__2; ++i__) {			work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));/* L190: */		    }/* L200: */		}	    }	} else {	    if (_starpu_lsame_(diag, "U")) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] = 1.;/* L210: */		}		i__1 = *m;		for (i__ = *n + 1; i__ <= i__1; ++i__) {		    work[i__] = 0.;/* L220: */		}		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *m;		    for (i__ = j + 1; i__ <= i__2; ++i__) {			work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));/* L230: */		    }/* L240: */		}	    } else {		i__1 = *m;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] = 0.;/* L250: */		}		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *m;		    for (i__ = j; i__ <= i__2; ++i__) {			work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));/* L260: */		    }/* L270: */		}	    }	}	value = 0.;	i__1 = *m;	for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MAX */	    d__1 = value, d__2 = work[i__];	    value = max(d__1,d__2);/* L280: */	}    } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {/*        Find normF(A). */	if (_starpu_lsame_(uplo, "U")) {	    if (_starpu_lsame_(diag, "U")) {		scale = 1.;		sum = (doublereal) min(*m,*n);		i__1 = *n;		for (j = 2; j <= i__1; ++j) {/* Computing MIN */		    i__3 = *m, i__4 = j - 1;		    i__2 = min(i__3,i__4);		    _starpu_dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);/* L290: */		}	    } else {		scale = 0.;		sum = 1.;		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = min(*m,j);		    _starpu_dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);/* L300: */		}	    }	} else {	    if (_starpu_lsame_(diag, "U")) {		scale = 1.;		sum = (doublereal) min(*m,*n);		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *m - j;/* Computing MIN */		    i__3 = *m, i__4 = j + 1;		    _starpu_dlassq_(&i__2, &a[min(i__3, i__4)+ j * a_dim1], &c__1, &			    scale, &sum);/* L310: */		}	    } else {		scale = 0.;		sum = 1.;		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *m - j + 1;		    _starpu_dlassq_(&i__2, &a[j + j * a_dim1], &c__1, &scale, &sum);/* L320: */		}	    }	}	value = scale * sqrt(sum);    }    ret_val = value;    return ret_val;/*     End of DLANTR */} /* _starpu_dlantr_ */
 |