| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 | /* dlagts.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlagts_(integer *job, integer *n, doublereal *a, 	doublereal *b, doublereal *c__, doublereal *d__, integer *in, 	doublereal *y, doublereal *tol, integer *info){    /* System generated locals */    integer i__1;    doublereal d__1, d__2, d__3, d__4, d__5;    /* Builtin functions */    double d_sign(doublereal *, doublereal *);    /* Local variables */    integer k;    doublereal ak, eps, temp, pert, absak, sfmin;    extern doublereal _starpu_dlamch_(char *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAGTS may be used to solve one of the systems of equations *//*     (T - lambda*I)*x = y   or   (T - lambda*I)'*x = y, *//*  where T is an n by n tridiagonal matrix, for x, following the *//*  factorization of (T - lambda*I) as *//*     (T - lambda*I) = P*L*U , *//*  by routine DLAGTF. The choice of equation to be solved is *//*  controlled by the argument JOB, and in each case there is an option *//*  to perturb zero or very small diagonal elements of U, this option *//*  being intended for use in applications such as inverse iteration. *//*  Arguments *//*  ========= *//*  JOB     (input) INTEGER *//*          Specifies the job to be performed by DLAGTS as follows: *//*          =  1: The equations  (T - lambda*I)x = y  are to be solved, *//*                but diagonal elements of U are not to be perturbed. *//*          = -1: The equations  (T - lambda*I)x = y  are to be solved *//*                and, if overflow would otherwise occur, the diagonal *//*                elements of U are to be perturbed. See argument TOL *//*                below. *//*          =  2: The equations  (T - lambda*I)'x = y  are to be solved, *//*                but diagonal elements of U are not to be perturbed. *//*          = -2: The equations  (T - lambda*I)'x = y  are to be solved *//*                and, if overflow would otherwise occur, the diagonal *//*                elements of U are to be perturbed. See argument TOL *//*                below. *//*  N       (input) INTEGER *//*          The order of the matrix T. *//*  A       (input) DOUBLE PRECISION array, dimension (N) *//*          On entry, A must contain the diagonal elements of U as *//*          returned from DLAGTF. *//*  B       (input) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, B must contain the first super-diagonal elements of *//*          U as returned from DLAGTF. *//*  C       (input) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, C must contain the sub-diagonal elements of L as *//*          returned from DLAGTF. *//*  D       (input) DOUBLE PRECISION array, dimension (N-2) *//*          On entry, D must contain the second super-diagonal elements *//*          of U as returned from DLAGTF. *//*  IN      (input) INTEGER array, dimension (N) *//*          On entry, IN must contain details of the matrix P as returned *//*          from DLAGTF. *//*  Y       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the right hand side vector y. *//*          On exit, Y is overwritten by the solution vector x. *//*  TOL     (input/output) DOUBLE PRECISION *//*          On entry, with  JOB .lt. 0, TOL should be the minimum *//*          perturbation to be made to very small diagonal elements of U. *//*          TOL should normally be chosen as about eps*norm(U), where eps *//*          is the relative machine precision, but if TOL is supplied as *//*          non-positive, then it is reset to eps*max( abs( u(i,j) ) ). *//*          If  JOB .gt. 0  then TOL is not referenced. *//*          On exit, TOL is changed as described above, only if TOL is *//*          non-positive on entry. Otherwise TOL is unchanged. *//*  INFO    (output) INTEGER *//*          = 0   : successful exit *//*          .lt. 0: if INFO = -i, the i-th argument had an illegal value *//*          .gt. 0: overflow would occur when computing the INFO(th) *//*                  element of the solution vector x. This can only occur *//*                  when JOB is supplied as positive and either means *//*                  that a diagonal element of U is very small, or that *//*                  the elements of the right-hand side vector y are very *//*                  large. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --y;    --in;    --d__;    --c__;    --b;    --a;    /* Function Body */    *info = 0;    if (abs(*job) > 2 || *job == 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLAGTS", &i__1);	return 0;    }    if (*n == 0) {	return 0;    }    eps = _starpu_dlamch_("Epsilon");    sfmin = _starpu_dlamch_("Safe minimum");    bignum = 1. / sfmin;    if (*job < 0) {	if (*tol <= 0.) {	    *tol = abs(a[1]);	    if (*n > 1) {/* Computing MAX */		d__1 = *tol, d__2 = abs(a[2]), d__1 = max(d__1,d__2), d__2 = 			abs(b[1]);		*tol = max(d__1,d__2);	    }	    i__1 = *n;	    for (k = 3; k <= i__1; ++k) {/* Computing MAX */		d__4 = *tol, d__5 = (d__1 = a[k], abs(d__1)), d__4 = max(d__4,			d__5), d__5 = (d__2 = b[k - 1], abs(d__2)), d__4 = 			max(d__4,d__5), d__5 = (d__3 = d__[k - 2], abs(d__3));		*tol = max(d__4,d__5);/* L10: */	    }	    *tol *= eps;	    if (*tol == 0.) {		*tol = eps;	    }	}    }    if (abs(*job) == 1) {	i__1 = *n;	for (k = 2; k <= i__1; ++k) {	    if (in[k - 1] == 0) {		y[k] -= c__[k - 1] * y[k - 1];	    } else {		temp = y[k - 1];		y[k - 1] = y[k];		y[k] = temp - c__[k - 1] * y[k];	    }/* L20: */	}	if (*job == 1) {	    for (k = *n; k >= 1; --k) {		if (k <= *n - 2) {		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];		} else if (k == *n - 1) {		    temp = y[k] - b[k] * y[k + 1];		} else {		    temp = y[k];		}		ak = a[k];		absak = abs(ak);		if (absak < 1.) {		    if (absak < sfmin) {			if (absak == 0. || abs(temp) * sfmin > absak) {			    *info = k;			    return 0;			} else {			    temp *= bignum;			    ak *= bignum;			}		    } else if (abs(temp) > absak * bignum) {			*info = k;			return 0;		    }		}		y[k] = temp / ak;/* L30: */	    }	} else {	    for (k = *n; k >= 1; --k) {		if (k <= *n - 2) {		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];		} else if (k == *n - 1) {		    temp = y[k] - b[k] * y[k + 1];		} else {		    temp = y[k];		}		ak = a[k];		pert = d_sign(tol, &ak);L40:		absak = abs(ak);		if (absak < 1.) {		    if (absak < sfmin) {			if (absak == 0. || abs(temp) * sfmin > absak) {			    ak += pert;			    pert *= 2;			    goto L40;			} else {			    temp *= bignum;			    ak *= bignum;			}		    } else if (abs(temp) > absak * bignum) {			ak += pert;			pert *= 2;			goto L40;		    }		}		y[k] = temp / ak;/* L50: */	    }	}    } else {/*        Come to here if  JOB = 2 or -2 */	if (*job == 2) {	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {		if (k >= 3) {		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];		} else if (k == 2) {		    temp = y[k] - b[k - 1] * y[k - 1];		} else {		    temp = y[k];		}		ak = a[k];		absak = abs(ak);		if (absak < 1.) {		    if (absak < sfmin) {			if (absak == 0. || abs(temp) * sfmin > absak) {			    *info = k;			    return 0;			} else {			    temp *= bignum;			    ak *= bignum;			}		    } else if (abs(temp) > absak * bignum) {			*info = k;			return 0;		    }		}		y[k] = temp / ak;/* L60: */	    }	} else {	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {		if (k >= 3) {		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];		} else if (k == 2) {		    temp = y[k] - b[k - 1] * y[k - 1];		} else {		    temp = y[k];		}		ak = a[k];		pert = d_sign(tol, &ak);L70:		absak = abs(ak);		if (absak < 1.) {		    if (absak < sfmin) {			if (absak == 0. || abs(temp) * sfmin > absak) {			    ak += pert;			    pert *= 2;			    goto L70;			} else {			    temp *= bignum;			    ak *= bignum;			}		    } else if (abs(temp) > absak * bignum) {			ak += pert;			pert *= 2;			goto L70;		    }		}		y[k] = temp / ak;/* L80: */	    }	}	for (k = *n; k >= 2; --k) {	    if (in[k - 1] == 0) {		y[k - 1] -= c__[k - 1] * y[k];	    } else {		temp = y[k - 1];		y[k - 1] = y[k];		y[k] = temp - c__[k - 1] * y[k];	    }/* L90: */	}    }/*     End of DLAGTS */    return 0;} /* _starpu_dlagts_ */
 |