| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 | /* dlaed8.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b3 = -1.;static integer c__1 = 1;/* Subroutine */ int _starpu_dlaed8_(integer *icompq, integer *k, integer *n, integer 	*qsiz, doublereal *d__, doublereal *q, integer *ldq, integer *indxq, 	doublereal *rho, integer *cutpnt, doublereal *z__, doublereal *dlamda, 	 doublereal *q2, integer *ldq2, doublereal *w, integer *perm, integer 	*givptr, integer *givcol, doublereal *givnum, integer *indxp, integer 	*indx, integer *info){    /* System generated locals */    integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal c__;    integer i__, j;    doublereal s, t;    integer k2, n1, n2, jp, n1p1;    doublereal eps, tau, tol;    integer jlam, imax, jmax;    extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *), _starpu_dscal_(	    integer *, doublereal *, doublereal *, integer *), _starpu_dcopy_(integer 	    *, doublereal *, integer *, doublereal *, integer *);    extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *, 	    integer *, integer *, integer *), _starpu_dlacpy_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAED8 merges the two sets of eigenvalues together into a single *//*  sorted set.  Then it tries to deflate the size of the problem. *//*  There are two ways in which deflation can occur:  when two or more *//*  eigenvalues are close together or if there is a tiny element in the *//*  Z vector.  For each such occurrence the order of the related secular *//*  equation problem is reduced by one. *//*  Arguments *//*  ========= *//*  ICOMPQ  (input) INTEGER *//*          = 0:  Compute eigenvalues only. *//*          = 1:  Compute eigenvectors of original dense symmetric matrix *//*                also.  On entry, Q contains the orthogonal matrix used *//*                to reduce the original matrix to tridiagonal form. *//*  K      (output) INTEGER *//*         The number of non-deflated eigenvalues, and the order of the *//*         related secular equation. *//*  N      (input) INTEGER *//*         The dimension of the symmetric tridiagonal matrix.  N >= 0. *//*  QSIZ   (input) INTEGER *//*         The dimension of the orthogonal matrix used to reduce *//*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. *//*  D      (input/output) DOUBLE PRECISION array, dimension (N) *//*         On entry, the eigenvalues of the two submatrices to be *//*         combined.  On exit, the trailing (N-K) updated eigenvalues *//*         (those which were deflated) sorted into increasing order. *//*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ,N) *//*         If ICOMPQ = 0, Q is not referenced.  Otherwise, *//*         on entry, Q contains the eigenvectors of the partially solved *//*         system which has been previously updated in matrix *//*         multiplies with other partially solved eigensystems. *//*         On exit, Q contains the trailing (N-K) updated eigenvectors *//*         (those which were deflated) in its last N-K columns. *//*  LDQ    (input) INTEGER *//*         The leading dimension of the array Q.  LDQ >= max(1,N). *//*  INDXQ  (input) INTEGER array, dimension (N) *//*         The permutation which separately sorts the two sub-problems *//*         in D into ascending order.  Note that elements in the second *//*         half of this permutation must first have CUTPNT added to *//*         their values in order to be accurate. *//*  RHO    (input/output) DOUBLE PRECISION *//*         On entry, the off-diagonal element associated with the rank-1 *//*         cut which originally split the two submatrices which are now *//*         being recombined. *//*         On exit, RHO has been modified to the value required by *//*         DLAED3. *//*  CUTPNT (input) INTEGER *//*         The location of the last eigenvalue in the leading *//*         sub-matrix.  min(1,N) <= CUTPNT <= N. *//*  Z      (input) DOUBLE PRECISION array, dimension (N) *//*         On entry, Z contains the updating vector (the last row of *//*         the first sub-eigenvector matrix and the first row of the *//*         second sub-eigenvector matrix). *//*         On exit, the contents of Z are destroyed by the updating *//*         process. *//*  DLAMDA (output) DOUBLE PRECISION array, dimension (N) *//*         A copy of the first K eigenvalues which will be used by *//*         DLAED3 to form the secular equation. *//*  Q2     (output) DOUBLE PRECISION array, dimension (LDQ2,N) *//*         If ICOMPQ = 0, Q2 is not referenced.  Otherwise, *//*         a copy of the first K eigenvectors which will be used by *//*         DLAED7 in a matrix multiply (DGEMM) to update the new *//*         eigenvectors. *//*  LDQ2   (input) INTEGER *//*         The leading dimension of the array Q2.  LDQ2 >= max(1,N). *//*  W      (output) DOUBLE PRECISION array, dimension (N) *//*         The first k values of the final deflation-altered z-vector and *//*         will be passed to DLAED3. *//*  PERM   (output) INTEGER array, dimension (N) *//*         The permutations (from deflation and sorting) to be applied *//*         to each eigenblock. *//*  GIVPTR (output) INTEGER *//*         The number of Givens rotations which took place in this *//*         subproblem. *//*  GIVCOL (output) INTEGER array, dimension (2, N) *//*         Each pair of numbers indicates a pair of columns to take place *//*         in a Givens rotation. *//*  GIVNUM (output) DOUBLE PRECISION array, dimension (2, N) *//*         Each number indicates the S value to be used in the *//*         corresponding Givens rotation. *//*  INDXP  (workspace) INTEGER array, dimension (N) *//*         The permutation used to place deflated values of D at the end *//*         of the array.  INDXP(1:K) points to the nondeflated D-values *//*         and INDXP(K+1:N) points to the deflated eigenvalues. *//*  INDX   (workspace) INTEGER array, dimension (N) *//*         The permutation used to sort the contents of D into ascending *//*         order. *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --indxq;    --z__;    --dlamda;    q2_dim1 = *ldq2;    q2_offset = 1 + q2_dim1;    q2 -= q2_offset;    --w;    --perm;    givcol -= 3;    givnum -= 3;    --indxp;    --indx;    /* Function Body */    *info = 0;    if (*icompq < 0 || *icompq > 1) {	*info = -1;    } else if (*n < 0) {	*info = -3;    } else if (*icompq == 1 && *qsiz < *n) {	*info = -4;    } else if (*ldq < max(1,*n)) {	*info = -7;    } else if (*cutpnt < min(1,*n) || *cutpnt > *n) {	*info = -10;    } else if (*ldq2 < max(1,*n)) {	*info = -14;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLAED8", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    n1 = *cutpnt;    n2 = *n - n1;    n1p1 = n1 + 1;    if (*rho < 0.) {	_starpu_dscal_(&n2, &c_b3, &z__[n1p1], &c__1);    }/*     Normalize z so that norm(z) = 1 */    t = 1. / sqrt(2.);    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	indx[j] = j;/* L10: */    }    _starpu_dscal_(n, &t, &z__[1], &c__1);    *rho = (d__1 = *rho * 2., abs(d__1));/*     Sort the eigenvalues into increasing order */    i__1 = *n;    for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {	indxq[i__] += *cutpnt;/* L20: */    }    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	dlamda[i__] = d__[indxq[i__]];	w[i__] = z__[indxq[i__]];/* L30: */    }    i__ = 1;    j = *cutpnt + 1;    _starpu_dlamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	d__[i__] = dlamda[indx[i__]];	z__[i__] = w[indx[i__]];/* L40: */    }/*     Calculate the allowable deflation tolerence */    imax = _starpu_idamax_(n, &z__[1], &c__1);    jmax = _starpu_idamax_(n, &d__[1], &c__1);    eps = _starpu_dlamch_("Epsilon");    tol = eps * 8. * (d__1 = d__[jmax], abs(d__1));/*     If the rank-1 modifier is small enough, no more needs to be done *//*     except to reorganize Q so that its columns correspond with the *//*     elements in D. */    if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {	*k = 0;	if (*icompq == 0) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		perm[j] = indxq[indx[j]];/* L50: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		perm[j] = indxq[indx[j]];		_starpu_dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 			+ 1], &c__1);/* L60: */	    }	    _starpu_dlacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);	}	return 0;    }/*     If there are multiple eigenvalues then the problem deflates.  Here *//*     the number of equal eigenvalues are found.  As each equal *//*     eigenvalue is found, an elementary reflector is computed to rotate *//*     the corresponding eigensubspace so that the corresponding *//*     components of Z are zero in this new basis. */    *k = 0;    *givptr = 0;    k2 = *n + 1;    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {/*           Deflate due to small z component. */	    --k2;	    indxp[k2] = j;	    if (j == *n) {		goto L110;	    }	} else {	    jlam = j;	    goto L80;	}/* L70: */    }L80:    ++j;    if (j > *n) {	goto L100;    }    if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {/*        Deflate due to small z component. */	--k2;	indxp[k2] = j;    } else {/*        Check if eigenvalues are close enough to allow deflation. */	s = z__[jlam];	c__ = z__[j];/*        Find sqrt(a**2+b**2) without overflow or *//*        destructive underflow. */	tau = _starpu_dlapy2_(&c__, &s);	t = d__[j] - d__[jlam];	c__ /= tau;	s = -s / tau;	if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {/*           Deflation is possible. */	    z__[j] = tau;	    z__[jlam] = 0.;/*           Record the appropriate Givens rotation */	    ++(*givptr);	    givcol[(*givptr << 1) + 1] = indxq[indx[jlam]];	    givcol[(*givptr << 1) + 2] = indxq[indx[j]];	    givnum[(*givptr << 1) + 1] = c__;	    givnum[(*givptr << 1) + 2] = s;	    if (*icompq == 1) {		_starpu_drot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[			indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s);	    }	    t = d__[jlam] * c__ * c__ + d__[j] * s * s;	    d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;	    d__[jlam] = t;	    --k2;	    i__ = 1;L90:	    if (k2 + i__ <= *n) {		if (d__[jlam] < d__[indxp[k2 + i__]]) {		    indxp[k2 + i__ - 1] = indxp[k2 + i__];		    indxp[k2 + i__] = jlam;		    ++i__;		    goto L90;		} else {		    indxp[k2 + i__ - 1] = jlam;		}	    } else {		indxp[k2 + i__ - 1] = jlam;	    }	    jlam = j;	} else {	    ++(*k);	    w[*k] = z__[jlam];	    dlamda[*k] = d__[jlam];	    indxp[*k] = jlam;	    jlam = j;	}    }    goto L80;L100:/*     Record the last eigenvalue. */    ++(*k);    w[*k] = z__[jlam];    dlamda[*k] = d__[jlam];    indxp[*k] = jlam;L110:/*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA *//*     and Q2 respectively.  The eigenvalues/vectors which were not *//*     deflated go into the first K slots of DLAMDA and Q2 respectively, *//*     while those which were deflated go into the last N - K slots. */    if (*icompq == 0) {	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    jp = indxp[j];	    dlamda[j] = d__[jp];	    perm[j] = indxq[indx[jp]];/* L120: */	}    } else {	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    jp = indxp[j];	    dlamda[j] = d__[jp];	    perm[j] = indxq[indx[jp]];	    _starpu_dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1], &c__1);/* L130: */	}    }/*     The deflated eigenvalues and their corresponding vectors go back *//*     into the last N - K slots of D and Q respectively. */    if (*k < *n) {	if (*icompq == 0) {	    i__1 = *n - *k;	    _starpu_dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);	} else {	    i__1 = *n - *k;	    _starpu_dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);	    i__1 = *n - *k;	    _starpu_dlacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*		    k + 1) * q_dim1 + 1], ldq);	}    }    return 0;/*     End of DLAED8 */} /* _starpu_dlaed8_ */
 |