| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 | /* _starpu_dla_gbrcond.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;doublereal _starpu_dla_gbrcond__(char *trans, integer *n, integer *kl, integer *ku, 	doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb, 	integer *ipiv, integer *cmode, doublereal *c__, integer *info, 	doublereal *work, integer *iwork, ftnlen trans_len){    /* System generated locals */    integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;    doublereal ret_val, d__1;    /* Local variables */    integer i__, j, kd, ke;    doublereal tmp;    integer kase;    extern logical _starpu_lsame_(char *, char *);    integer isave[3];    extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *), _starpu_xerbla_(char *, 	    integer *), _starpu_dgbtrs_(char *, integer *, integer *, integer 	    *, integer *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *);    doublereal ainvnm;    logical notrans;/*     -- LAPACK routine (version 3.2.1)                               -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- April 2009                                                   -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*     DLA_GERCOND Estimates the Skeel condition number of  op(A) * op2(C) *//*     where op2 is determined by CMODE as follows *//*     CMODE =  1    op2(C) = C *//*     CMODE =  0    op2(C) = I *//*     CMODE = -1    op2(C) = inv(C) *//*     The Skeel condition number  cond(A) = norminf( |inv(A)||A| ) *//*     is computed by computing scaling factors R such that *//*     diag(R)*A*op2(C) is row equilibrated and computing the standard *//*     infinity-norm condition number. *//*  Arguments *//*  ========= *//*     TRANS   (input) CHARACTER*1 *//*     Specifies the form of the system of equations: *//*       = 'N':  A * X = B     (No transpose) *//*       = 'T':  A**T * X = B  (Transpose) *//*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose) *//*     N       (input) INTEGER *//*     The number of linear equations, i.e., the order of the *//*     matrix A.  N >= 0. *//*     KL      (input) INTEGER *//*     The number of subdiagonals within the band of A.  KL >= 0. *//*     KU      (input) INTEGER *//*     The number of superdiagonals within the band of A.  KU >= 0. *//*     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) *//*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1. *//*     The j-th column of A is stored in the j-th column of the *//*     array AB as follows: *//*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) *//*     LDAB    (input) INTEGER *//*     The leading dimension of the array AB.  LDAB >= KL+KU+1. *//*     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N) *//*     Details of the LU factorization of the band matrix A, as *//*     computed by DGBTRF.  U is stored as an upper triangular *//*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, *//*     and the multipliers used during the factorization are stored *//*     in rows KL+KU+2 to 2*KL+KU+1. *//*     LDAFB   (input) INTEGER *//*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1. *//*     IPIV    (input) INTEGER array, dimension (N) *//*     The pivot indices from the factorization A = P*L*U *//*     as computed by DGBTRF; row i of the matrix was interchanged *//*     with row IPIV(i). *//*     CMODE   (input) INTEGER *//*     Determines op2(C) in the formula op(A) * op2(C) as follows: *//*     CMODE =  1    op2(C) = C *//*     CMODE =  0    op2(C) = I *//*     CMODE = -1    op2(C) = inv(C) *//*     C       (input) DOUBLE PRECISION array, dimension (N) *//*     The vector C in the formula op(A) * op2(C). *//*     INFO    (output) INTEGER *//*       = 0:  Successful exit. *//*     i > 0:  The ith argument is invalid. *//*     WORK    (input) DOUBLE PRECISION array, dimension (5*N). *//*     Workspace. *//*     IWORK   (input) INTEGER array, dimension (N). *//*     Workspace. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    afb_dim1 = *ldafb;    afb_offset = 1 + afb_dim1;    afb -= afb_offset;    --ipiv;    --c__;    --work;    --iwork;    /* Function Body */    ret_val = 0.;    *info = 0;    notrans = _starpu_lsame_(trans, "N");    if (! notrans && ! _starpu_lsame_(trans, "T") && ! _starpu_lsame_(	    trans, "C")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kl < 0 || *kl > *n - 1) {	*info = -3;    } else if (*ku < 0 || *ku > *n - 1) {	*info = -4;    } else if (*ldab < *kl + *ku + 1) {	*info = -6;    } else if (*ldafb < (*kl << 1) + *ku + 1) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLA_GBRCOND", &i__1);	return ret_val;    }    if (*n == 0) {	ret_val = 1.;	return ret_val;    }/*     Compute the equilibration matrix R such that *//*     inv(R)*A*C has unit 1-norm. */    kd = *ku + 1;    ke = *kl + 1;    if (notrans) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    tmp = 0.;	    if (*cmode == 1) {/* Computing MAX */		i__2 = i__ - *kl;/* Computing MIN */		i__4 = i__ + *ku;		i__3 = min(i__4,*n);		for (j = max(i__2,1); j <= i__3; ++j) {		    tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1] * c__[j], 			    abs(d__1));		}	    } else if (*cmode == 0) {/* Computing MAX */		i__3 = i__ - *kl;/* Computing MIN */		i__4 = i__ + *ku;		i__2 = min(i__4,*n);		for (j = max(i__3,1); j <= i__2; ++j) {		    tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(d__1));		}	    } else {/* Computing MAX */		i__2 = i__ - *kl;/* Computing MIN */		i__4 = i__ + *ku;		i__3 = min(i__4,*n);		for (j = max(i__2,1); j <= i__3; ++j) {		    tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1] / c__[j], 			    abs(d__1));		}	    }	    work[(*n << 1) + i__] = tmp;	}    } else {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    tmp = 0.;	    if (*cmode == 1) {/* Computing MAX */		i__3 = i__ - *kl;/* Computing MIN */		i__4 = i__ + *ku;		i__2 = min(i__4,*n);		for (j = max(i__3,1); j <= i__2; ++j) {		    tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1] * c__[j], 			    abs(d__1));		}	    } else if (*cmode == 0) {/* Computing MAX */		i__2 = i__ - *kl;/* Computing MIN */		i__4 = i__ + *ku;		i__3 = min(i__4,*n);		for (j = max(i__2,1); j <= i__3; ++j) {		    tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1], abs(d__1)			    );		}	    } else {/* Computing MAX */		i__3 = i__ - *kl;/* Computing MIN */		i__4 = i__ + *ku;		i__2 = min(i__4,*n);		for (j = max(i__3,1); j <= i__2; ++j) {		    tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1] / c__[j], 			    abs(d__1));		}	    }	    work[(*n << 1) + i__] = tmp;	}    }/*     Estimate the norm of inv(op(A)). */    ainvnm = 0.;    kase = 0;L10:    _starpu_dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);    if (kase != 0) {	if (kase == 2) {/*           Multiply by R. */	    i__1 = *n;	    for (i__ = 1; i__ <= i__1; ++i__) {		work[i__] *= work[(*n << 1) + i__];	    }	    if (notrans) {		_starpu_dgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], 			ldafb, &ipiv[1], &work[1], n, info);	    } else {		_starpu_dgbtrs_("Transpose", n, kl, ku, &c__1, &afb[afb_offset], 			ldafb, &ipiv[1], &work[1], n, info);	    }/*           Multiply by inv(C). */	    if (*cmode == 1) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] /= c__[i__];		}	    } else if (*cmode == -1) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] *= c__[i__];		}	    }	} else {/*           Multiply by inv(C'). */	    if (*cmode == 1) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] /= c__[i__];		}	    } else if (*cmode == -1) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] *= c__[i__];		}	    }	    if (notrans) {		_starpu_dgbtrs_("Transpose", n, kl, ku, &c__1, &afb[afb_offset], 			ldafb, &ipiv[1], &work[1], n, info);	    } else {		_starpu_dgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], 			ldafb, &ipiv[1], &work[1], n, info);	    }/*           Multiply by R. */	    i__1 = *n;	    for (i__ = 1; i__ <= i__1; ++i__) {		work[i__] *= work[(*n << 1) + i__];	    }	}	goto L10;    }/*     Compute the estimate of the reciprocal condition number. */    if (ainvnm != 0.) {	ret_val = 1. / ainvnm;    }    return ret_val;} /* _starpu_dla_gbrcond__ */
 |