| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886 | /* dggevx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__0 = 0;static doublereal c_b59 = 0.;static doublereal c_b60 = 1.;/* Subroutine */ int _starpu_dggevx_(char *balanc, char *jobvl, char *jobvr, char *	sense, integer *n, doublereal *a, integer *lda, doublereal *b, 	integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *	beta, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, 	integer *ilo, integer *ihi, doublereal *lscale, doublereal *rscale, 	doublereal *abnrm, doublereal *bbnrm, doublereal *rconde, doublereal *	rcondv, doublereal *work, integer *lwork, integer *iwork, logical *	bwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 	    vr_offset, i__1, i__2;    doublereal d__1, d__2, d__3, d__4;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, m, jc, in, mm, jr;    doublereal eps;    logical ilv, pair;    doublereal anrm, bnrm;    integer ierr, itau;    doublereal temp;    logical ilvl, ilvr;    integer iwrk, iwrk1;    extern logical _starpu_lsame_(char *, char *);    integer icols;    logical noscl;    integer irows;    extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *), _starpu_dggbak_(	    char *, char *, integer *, integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dggbal_(char *, integer *, doublereal *, integer 	    *, doublereal *, integer *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern /* Subroutine */ int _starpu_dgghrd_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);    logical ilascl, ilbscl;    extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), 	    _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dlaset_(char *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *);    logical ldumma[1];    char chtemp[1];    doublereal bignum;    extern /* Subroutine */ int _starpu_dhgeqz_(char *, char *, char *, integer *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *), _starpu_dtgevc_(char *, char *, 	    logical *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *, integer *, doublereal *, integer *);    integer ijobvl;    extern /* Subroutine */ int _starpu_dtgsna_(char *, char *, logical *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, integer *, doublereal *, integer *, integer *, integer 	    *), _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ijobvr;    logical wantsb;    extern /* Subroutine */ int _starpu_dorgqr_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *);    doublereal anrmto;    logical wantse;    doublereal bnrmto;    extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    integer minwrk, maxwrk;    logical wantsn;    doublereal smlnum;    logical lquery, wantsv;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) *//*  the generalized eigenvalues, and optionally, the left and/or right *//*  generalized eigenvectors. *//*  Optionally also, it computes a balancing transformation to improve *//*  the conditioning of the eigenvalues and eigenvectors (ILO, IHI, *//*  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for *//*  the eigenvalues (RCONDE), and reciprocal condition numbers for the *//*  right eigenvectors (RCONDV). *//*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar *//*  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is *//*  singular. It is usually represented as the pair (alpha,beta), as *//*  there is a reasonable interpretation for beta=0, and even for both *//*  being zero. *//*  The right eigenvector v(j) corresponding to the eigenvalue lambda(j) *//*  of (A,B) satisfies *//*                   A * v(j) = lambda(j) * B * v(j) . *//*  The left eigenvector u(j) corresponding to the eigenvalue lambda(j) *//*  of (A,B) satisfies *//*                   u(j)**H * A  = lambda(j) * u(j)**H * B. *//*  where u(j)**H is the conjugate-transpose of u(j). *//*  Arguments *//*  ========= *//*  BALANC  (input) CHARACTER*1 *//*          Specifies the balance option to be performed. *//*          = 'N':  do not diagonally scale or permute; *//*          = 'P':  permute only; *//*          = 'S':  scale only; *//*          = 'B':  both permute and scale. *//*          Computed reciprocal condition numbers will be for the *//*          matrices after permuting and/or balancing. Permuting does *//*          not change condition numbers (in exact arithmetic), but *//*          balancing does. *//*  JOBVL   (input) CHARACTER*1 *//*          = 'N':  do not compute the left generalized eigenvectors; *//*          = 'V':  compute the left generalized eigenvectors. *//*  JOBVR   (input) CHARACTER*1 *//*          = 'N':  do not compute the right generalized eigenvectors; *//*          = 'V':  compute the right generalized eigenvectors. *//*  SENSE   (input) CHARACTER*1 *//*          Determines which reciprocal condition numbers are computed. *//*          = 'N': none are computed; *//*          = 'E': computed for eigenvalues only; *//*          = 'V': computed for eigenvectors only; *//*          = 'B': computed for eigenvalues and eigenvectors. *//*  N       (input) INTEGER *//*          The order of the matrices A, B, VL, and VR.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the matrix A in the pair (A,B). *//*          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' *//*          or both, then A contains the first part of the real Schur *//*          form of the "balanced" versions of the input A and B. *//*  LDA     (input) INTEGER *//*          The leading dimension of A.  LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) *//*          On entry, the matrix B in the pair (A,B). *//*          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' *//*          or both, then B contains the second part of the real Schur *//*          form of the "balanced" versions of the input A and B. *//*  LDB     (input) INTEGER *//*          The leading dimension of B.  LDB >= max(1,N). *//*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) *//*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) *//*  BETA    (output) DOUBLE PRECISION array, dimension (N) *//*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will *//*          be the generalized eigenvalues.  If ALPHAI(j) is zero, then *//*          the j-th eigenvalue is real; if positive, then the j-th and *//*          (j+1)-st eigenvalues are a complex conjugate pair, with *//*          ALPHAI(j+1) negative. *//*          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) *//*          may easily over- or underflow, and BETA(j) may even be zero. *//*          Thus, the user should avoid naively computing the ratio *//*          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less *//*          than and usually comparable with norm(A) in magnitude, and *//*          BETA always less than and usually comparable with norm(B). *//*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) *//*          If JOBVL = 'V', the left eigenvectors u(j) are stored one *//*          after another in the columns of VL, in the same order as *//*          their eigenvalues. If the j-th eigenvalue is real, then *//*          u(j) = VL(:,j), the j-th column of VL. If the j-th and *//*          (j+1)-th eigenvalues form a complex conjugate pair, then *//*          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). *//*          Each eigenvector will be scaled so the largest component have *//*          abs(real part) + abs(imag. part) = 1. *//*          Not referenced if JOBVL = 'N'. *//*  LDVL    (input) INTEGER *//*          The leading dimension of the matrix VL. LDVL >= 1, and *//*          if JOBVL = 'V', LDVL >= N. *//*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) *//*          If JOBVR = 'V', the right eigenvectors v(j) are stored one *//*          after another in the columns of VR, in the same order as *//*          their eigenvalues. If the j-th eigenvalue is real, then *//*          v(j) = VR(:,j), the j-th column of VR. If the j-th and *//*          (j+1)-th eigenvalues form a complex conjugate pair, then *//*          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). *//*          Each eigenvector will be scaled so the largest component have *//*          abs(real part) + abs(imag. part) = 1. *//*          Not referenced if JOBVR = 'N'. *//*  LDVR    (input) INTEGER *//*          The leading dimension of the matrix VR. LDVR >= 1, and *//*          if JOBVR = 'V', LDVR >= N. *//*  ILO     (output) INTEGER *//*  IHI     (output) INTEGER *//*          ILO and IHI are integer values such that on exit *//*          A(i,j) = 0 and B(i,j) = 0 if i > j and *//*          j = 1,...,ILO-1 or i = IHI+1,...,N. *//*          If BALANC = 'N' or 'S', ILO = 1 and IHI = N. *//*  LSCALE  (output) DOUBLE PRECISION array, dimension (N) *//*          Details of the permutations and scaling factors applied *//*          to the left side of A and B.  If PL(j) is the index of the *//*          row interchanged with row j, and DL(j) is the scaling *//*          factor applied to row j, then *//*            LSCALE(j) = PL(j)  for j = 1,...,ILO-1 *//*                      = DL(j)  for j = ILO,...,IHI *//*                      = PL(j)  for j = IHI+1,...,N. *//*          The order in which the interchanges are made is N to IHI+1, *//*          then 1 to ILO-1. *//*  RSCALE  (output) DOUBLE PRECISION array, dimension (N) *//*          Details of the permutations and scaling factors applied *//*          to the right side of A and B.  If PR(j) is the index of the *//*          column interchanged with column j, and DR(j) is the scaling *//*          factor applied to column j, then *//*            RSCALE(j) = PR(j)  for j = 1,...,ILO-1 *//*                      = DR(j)  for j = ILO,...,IHI *//*                      = PR(j)  for j = IHI+1,...,N *//*          The order in which the interchanges are made is N to IHI+1, *//*          then 1 to ILO-1. *//*  ABNRM   (output) DOUBLE PRECISION *//*          The one-norm of the balanced matrix A. *//*  BBNRM   (output) DOUBLE PRECISION *//*          The one-norm of the balanced matrix B. *//*  RCONDE  (output) DOUBLE PRECISION array, dimension (N) *//*          If SENSE = 'E' or 'B', the reciprocal condition numbers of *//*          the eigenvalues, stored in consecutive elements of the array. *//*          For a complex conjugate pair of eigenvalues two consecutive *//*          elements of RCONDE are set to the same value. Thus RCONDE(j), *//*          RCONDV(j), and the j-th columns of VL and VR all correspond *//*          to the j-th eigenpair. *//*          If SENSE = 'N or 'V', RCONDE is not referenced. *//*  RCONDV  (output) DOUBLE PRECISION array, dimension (N) *//*          If SENSE = 'V' or 'B', the estimated reciprocal condition *//*          numbers of the eigenvectors, stored in consecutive elements *//*          of the array. For a complex eigenvector two consecutive *//*          elements of RCONDV are set to the same value. If the *//*          eigenvalues cannot be reordered to compute RCONDV(j), *//*          RCONDV(j) is set to 0; this can only occur when the true *//*          value would be very small anyway. *//*          If SENSE = 'N' or 'E', RCONDV is not referenced. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,2*N). *//*          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', *//*          LWORK >= max(1,6*N). *//*          If SENSE = 'E' or 'B', LWORK >= max(1,10*N). *//*          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace) INTEGER array, dimension (N+6) *//*          If SENSE = 'E', IWORK is not referenced. *//*  BWORK   (workspace) LOGICAL array, dimension (N) *//*          If SENSE = 'N', BWORK is not referenced. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          = 1,...,N: *//*                The QZ iteration failed.  No eigenvectors have been *//*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) *//*                should be correct for j=INFO+1,...,N. *//*          > N:  =N+1: other than QZ iteration failed in DHGEQZ. *//*                =N+2: error return from DTGEVC. *//*  Further Details *//*  =============== *//*  Balancing a matrix pair (A,B) includes, first, permuting rows and *//*  columns to isolate eigenvalues, second, applying diagonal similarity *//*  transformation to the rows and columns to make the rows and columns *//*  as close in norm as possible. The computed reciprocal condition *//*  numbers correspond to the balanced matrix. Permuting rows and columns *//*  will not change the condition numbers (in exact arithmetic) but *//*  diagonal scaling will.  For further explanation of balancing, see *//*  section 4.11.1.2 of LAPACK Users' Guide. *//*  An approximate error bound on the chordal distance between the i-th *//*  computed generalized eigenvalue w and the corresponding exact *//*  eigenvalue lambda is *//*       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) *//*  An approximate error bound for the angle between the i-th computed *//*  eigenvector VL(i) or VR(i) is given by *//*       EPS * norm(ABNRM, BBNRM) / DIF(i). *//*  For further explanation of the reciprocal condition numbers RCONDE *//*  and RCONDV, see section 4.11 of LAPACK User's Guide. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --alphar;    --alphai;    --beta;    vl_dim1 = *ldvl;    vl_offset = 1 + vl_dim1;    vl -= vl_offset;    vr_dim1 = *ldvr;    vr_offset = 1 + vr_dim1;    vr -= vr_offset;    --lscale;    --rscale;    --rconde;    --rcondv;    --work;    --iwork;    --bwork;    /* Function Body */    if (_starpu_lsame_(jobvl, "N")) {	ijobvl = 1;	ilvl = FALSE_;    } else if (_starpu_lsame_(jobvl, "V")) {	ijobvl = 2;	ilvl = TRUE_;    } else {	ijobvl = -1;	ilvl = FALSE_;    }    if (_starpu_lsame_(jobvr, "N")) {	ijobvr = 1;	ilvr = FALSE_;    } else if (_starpu_lsame_(jobvr, "V")) {	ijobvr = 2;	ilvr = TRUE_;    } else {	ijobvr = -1;	ilvr = FALSE_;    }    ilv = ilvl || ilvr;    noscl = _starpu_lsame_(balanc, "N") || _starpu_lsame_(balanc, "P");    wantsn = _starpu_lsame_(sense, "N");    wantse = _starpu_lsame_(sense, "E");    wantsv = _starpu_lsame_(sense, "V");    wantsb = _starpu_lsame_(sense, "B");/*     Test the input arguments */    *info = 0;    lquery = *lwork == -1;    if (! (_starpu_lsame_(balanc, "N") || _starpu_lsame_(balanc, "S") || _starpu_lsame_(balanc, "P") 	    || _starpu_lsame_(balanc, "B"))) {	*info = -1;    } else if (ijobvl <= 0) {	*info = -2;    } else if (ijobvr <= 0) {	*info = -3;    } else if (! (wantsn || wantse || wantsb || wantsv)) {	*info = -4;    } else if (*n < 0) {	*info = -5;    } else if (*lda < max(1,*n)) {	*info = -7;    } else if (*ldb < max(1,*n)) {	*info = -9;    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {	*info = -14;    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {	*info = -16;    }/*     Compute workspace *//*      (Note: Comments in the code beginning "Workspace:" describe the *//*       minimal amount of workspace needed at that point in the code, *//*       as well as the preferred amount for good performance. *//*       NB refers to the optimal block size for the immediately *//*       following subroutine, as returned by ILAENV. The workspace is *//*       computed assuming ILO = 1 and IHI = N, the worst case.) */    if (*info == 0) {	if (*n == 0) {	    minwrk = 1;	    maxwrk = 1;	} else {	    if (noscl && ! ilv) {		minwrk = *n << 1;	    } else {		minwrk = *n * 6;	    }	    if (wantse || wantsb) {		minwrk = *n * 10;	    }	    if (wantsv || wantsb) {/* Computing MAX */		i__1 = minwrk, i__2 = (*n << 1) * (*n + 4) + 16;		minwrk = max(i__1,i__2);	    }	    maxwrk = minwrk;/* Computing MAX */	    i__1 = maxwrk, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, &		    c__1, n, &c__0);	    maxwrk = max(i__1,i__2);/* Computing MAX */	    i__1 = maxwrk, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DORMQR", " ", n, &		    c__1, n, &c__0);	    maxwrk = max(i__1,i__2);	    if (ilvl) {/* Computing MAX */		i__1 = maxwrk, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DORGQR", 			" ", n, &c__1, n, &c__0);		maxwrk = max(i__1,i__2);	    }	}	work[1] = (doublereal) maxwrk;	if (*lwork < minwrk && ! lquery) {	    *info = -26;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGGEVX", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Get machine constants */    eps = _starpu_dlamch_("P");    smlnum = _starpu_dlamch_("S");    bignum = 1. / smlnum;    _starpu_dlabad_(&smlnum, &bignum);    smlnum = sqrt(smlnum) / eps;    bignum = 1. / smlnum;/*     Scale A if max element outside range [SMLNUM,BIGNUM] */    anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]);    ilascl = FALSE_;    if (anrm > 0. && anrm < smlnum) {	anrmto = smlnum;	ilascl = TRUE_;    } else if (anrm > bignum) {	anrmto = bignum;	ilascl = TRUE_;    }    if (ilascl) {	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &		ierr);    }/*     Scale B if max element outside range [SMLNUM,BIGNUM] */    bnrm = _starpu_dlange_("M", n, n, &b[b_offset], ldb, &work[1]);    ilbscl = FALSE_;    if (bnrm > 0. && bnrm < smlnum) {	bnrmto = smlnum;	ilbscl = TRUE_;    } else if (bnrm > bignum) {	bnrmto = bignum;	ilbscl = TRUE_;    }    if (ilbscl) {	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &		ierr);    }/*     Permute and/or balance the matrix pair (A,B) *//*     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */    _starpu_dggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &	    lscale[1], &rscale[1], &work[1], &ierr);/*     Compute ABNRM and BBNRM */    *abnrm = _starpu_dlange_("1", n, n, &a[a_offset], lda, &work[1]);    if (ilascl) {	work[1] = *abnrm;	_starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &		c__1, &ierr);	*abnrm = work[1];    }    *bbnrm = _starpu_dlange_("1", n, n, &b[b_offset], ldb, &work[1]);    if (ilbscl) {	work[1] = *bbnrm;	_starpu_dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &		c__1, &ierr);	*bbnrm = work[1];    }/*     Reduce B to triangular form (QR decomposition of B) *//*     (Workspace: need N, prefer N*NB ) */    irows = *ihi + 1 - *ilo;    if (ilv || ! wantsn) {	icols = *n + 1 - *ilo;    } else {	icols = irows;    }    itau = 1;    iwrk = itau + irows;    i__1 = *lwork + 1 - iwrk;    _starpu_dgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[	    iwrk], &i__1, &ierr);/*     Apply the orthogonal transformation to A *//*     (Workspace: need N, prefer N*NB) */    i__1 = *lwork + 1 - iwrk;    _starpu_dormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &	    work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &	    ierr);/*     Initialize VL and/or VR *//*     (Workspace: need N, prefer N*NB) */    if (ilvl) {	_starpu_dlaset_("Full", n, n, &c_b59, &c_b60, &vl[vl_offset], ldvl)		;	if (irows > 1) {	    i__1 = irows - 1;	    i__2 = irows - 1;	    _starpu_dlacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[		    *ilo + 1 + *ilo * vl_dim1], ldvl);	}	i__1 = *lwork + 1 - iwrk;	_starpu_dorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &		work[itau], &work[iwrk], &i__1, &ierr);    }    if (ilvr) {	_starpu_dlaset_("Full", n, n, &c_b59, &c_b60, &vr[vr_offset], ldvr)		;    }/*     Reduce to generalized Hessenberg form *//*     (Workspace: none needed) */    if (ilv || ! wantsn) {/*        Eigenvectors requested -- work on whole matrix. */	_starpu_dgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], 		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);    } else {	_starpu_dgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1], 		lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[		vr_offset], ldvr, &ierr);    }/*     Perform QZ algorithm (Compute eigenvalues, and optionally, the *//*     Schur forms and Schur vectors) *//*     (Workspace: need N) */    if (ilv || ! wantsn) {	*(unsigned char *)chtemp = 'S';    } else {	*(unsigned char *)chtemp = 'E';    }    _starpu_dhgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &	    vr[vr_offset], ldvr, &work[1], lwork, &ierr);    if (ierr != 0) {	if (ierr > 0 && ierr <= *n) {	    *info = ierr;	} else if (ierr > *n && ierr <= *n << 1) {	    *info = ierr - *n;	} else {	    *info = *n + 1;	}	goto L130;    }/*     Compute Eigenvectors and estimate condition numbers if desired *//*     (Workspace: DTGEVC: need 6*N *//*                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', *//*                         need N otherwise ) */    if (ilv || ! wantsn) {	if (ilv) {	    if (ilvl) {		if (ilvr) {		    *(unsigned char *)chtemp = 'B';		} else {		    *(unsigned char *)chtemp = 'L';		}	    } else {		*(unsigned char *)chtemp = 'R';	    }	    _starpu_dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], 		    ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &		    work[1], &ierr);	    if (ierr != 0) {		*info = *n + 2;		goto L130;	    }	}	if (! wantsn) {/*           compute eigenvectors (DTGEVC) and estimate condition *//*           numbers (DTGSNA). Note that the definition of the condition *//*           number is not invariant under transformation (u,v) to *//*           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized *//*           Schur form (S,T), Q and Z are orthogonal matrices. In order *//*           to avoid using extra 2*N*N workspace, we have to recalculate *//*           eigenvectors and estimate one condition numbers at a time. */	    pair = FALSE_;	    i__1 = *n;	    for (i__ = 1; i__ <= i__1; ++i__) {		if (pair) {		    pair = FALSE_;		    goto L20;		}		mm = 1;		if (i__ < *n) {		    if (a[i__ + 1 + i__ * a_dim1] != 0.) {			pair = TRUE_;			mm = 2;		    }		}		i__2 = *n;		for (j = 1; j <= i__2; ++j) {		    bwork[j] = FALSE_;/* L10: */		}		if (mm == 1) {		    bwork[i__] = TRUE_;		} else if (mm == 2) {		    bwork[i__] = TRUE_;		    bwork[i__ + 1] = TRUE_;		}		iwrk = mm * *n + 1;		iwrk1 = iwrk + mm * *n;/*              Compute a pair of left and right eigenvectors. *//*              (compute workspace: need up to 4*N + 6*N) */		if (wantse || wantsb) {		    _starpu_dtgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[			    b_offset], ldb, &work[1], n, &work[iwrk], n, &mm, 			    &m, &work[iwrk1], &ierr);		    if (ierr != 0) {			*info = *n + 2;			goto L130;		    }		}		i__2 = *lwork - iwrk1 + 1;		_starpu_dtgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[			b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[			i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &			iwork[1], &ierr);L20:		;	    }	}    }/*     Undo balancing on VL and VR and normalization *//*     (Workspace: none needed) */    if (ilvl) {	_starpu_dggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[		vl_offset], ldvl, &ierr);	i__1 = *n;	for (jc = 1; jc <= i__1; ++jc) {	    if (alphai[jc] < 0.) {		goto L70;	    }	    temp = 0.;	    if (alphai[jc] == 0.) {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {/* Computing MAX */		    d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], abs(			    d__1));		    temp = max(d__2,d__3);/* L30: */		}	    } else {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {/* Computing MAX */		    d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], abs(			    d__1)) + (d__2 = vl[jr + (jc + 1) * vl_dim1], abs(			    d__2));		    temp = max(d__3,d__4);/* L40: */		}	    }	    if (temp < smlnum) {		goto L70;	    }	    temp = 1. / temp;	    if (alphai[jc] == 0.) {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {		    vl[jr + jc * vl_dim1] *= temp;/* L50: */		}	    } else {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {		    vl[jr + jc * vl_dim1] *= temp;		    vl[jr + (jc + 1) * vl_dim1] *= temp;/* L60: */		}	    }L70:	    ;	}    }    if (ilvr) {	_starpu_dggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[		vr_offset], ldvr, &ierr);	i__1 = *n;	for (jc = 1; jc <= i__1; ++jc) {	    if (alphai[jc] < 0.) {		goto L120;	    }	    temp = 0.;	    if (alphai[jc] == 0.) {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {/* Computing MAX */		    d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], abs(			    d__1));		    temp = max(d__2,d__3);/* L80: */		}	    } else {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {/* Computing MAX */		    d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], abs(			    d__1)) + (d__2 = vr[jr + (jc + 1) * vr_dim1], abs(			    d__2));		    temp = max(d__3,d__4);/* L90: */		}	    }	    if (temp < smlnum) {		goto L120;	    }	    temp = 1. / temp;	    if (alphai[jc] == 0.) {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {		    vr[jr + jc * vr_dim1] *= temp;/* L100: */		}	    } else {		i__2 = *n;		for (jr = 1; jr <= i__2; ++jr) {		    vr[jr + jc * vr_dim1] *= temp;		    vr[jr + (jc + 1) * vr_dim1] *= temp;/* L110: */		}	    }L120:	    ;	}    }/*     Undo scaling if necessary */    if (ilascl) {	_starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &		ierr);	_starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &		ierr);    }    if (ilbscl) {	_starpu_dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &		ierr);    }L130:    work[1] = (doublereal) maxwrk;    return 0;/*     End of DGGEVX */} /* _starpu_dggevx_ */
 |