| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 | /* dgetf2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b8 = -1.;/* Subroutine */ int _starpu_dgetf2_(integer *m, integer *n, doublereal *a, integer *	lda, integer *ipiv, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    doublereal d__1;    /* Local variables */    integer i__, j, jp;    extern /* Subroutine */ int _starpu_dger_(integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *), _starpu_dscal_(integer *, doublereal *, doublereal *, integer 	    *);    doublereal sfmin;    extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGETF2 computes an LU factorization of a general m-by-n matrix A *//*  using partial pivoting with row interchanges. *//*  The factorization has the form *//*     A = P * L * U *//*  where P is a permutation matrix, L is lower triangular with unit *//*  diagonal elements (lower trapezoidal if m > n), and U is upper *//*  triangular (upper trapezoidal if m < n). *//*  This is the right-looking Level 2 BLAS version of the algorithm. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the m by n matrix to be factored. *//*          On exit, the factors L and U from the factorization *//*          A = P*L*U; the unit diagonal elements of L are not stored. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  IPIV    (output) INTEGER array, dimension (min(M,N)) *//*          The pivot indices; for 1 <= i <= min(M,N), row i of the *//*          matrix was interchanged with row IPIV(i). *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -k, the k-th argument had an illegal value *//*          > 0: if INFO = k, U(k,k) is exactly zero. The factorization *//*               has been completed, but the factor U is exactly *//*               singular, and division by zero will occur if it is used *//*               to solve a system of equations. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGETF2", &i__1);	return 0;    }/*     Quick return if possible */    if (*m == 0 || *n == 0) {	return 0;    }/*     Compute machine safe minimum */    sfmin = _starpu_dlamch_("S");    i__1 = min(*m,*n);    for (j = 1; j <= i__1; ++j) {/*        Find pivot and test for singularity. */	i__2 = *m - j + 1;	jp = j - 1 + _starpu_idamax_(&i__2, &a[j + j * a_dim1], &c__1);	ipiv[j] = jp;	if (a[jp + j * a_dim1] != 0.) {/*           Apply the interchange to columns 1:N. */	    if (jp != j) {		_starpu_dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);	    }/*           Compute elements J+1:M of J-th column. */	    if (j < *m) {		if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {		    i__2 = *m - j;		    d__1 = 1. / a[j + j * a_dim1];		    _starpu_dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);		} else {		    i__2 = *m - j;		    for (i__ = 1; i__ <= i__2; ++i__) {			a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];/* L20: */		    }		}	    }	} else if (*info == 0) {	    *info = j;	}	if (j < min(*m,*n)) {/*           Update trailing submatrix. */	    i__2 = *m - j;	    i__3 = *n - j;	    _starpu_dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + (		    j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda);	}/* L10: */    }    return 0;/*     End of DGETF2 */} /* _starpu_dgetf2_ */
 |