| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 | /* dgerq2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dgerq2_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *tau, doublereal *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer i__, k;    doublereal aii;    extern /* Subroutine */ int _starpu_dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *), _starpu_dlarfp_(integer *, doublereal *, 	    doublereal *, integer *, doublereal *), _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGERQ2 computes an RQ factorization of a real m by n matrix A: *//*  A = R * Q. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the m by n matrix A. *//*          On exit, if m <= n, the upper triangle of the subarray *//*          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; *//*          if m >= n, the elements on and above the (m-n)-th subdiagonal *//*          contain the m by n upper trapezoidal matrix R; the remaining *//*          elements, with the array TAU, represent the orthogonal matrix *//*          Q as a product of elementary reflectors (see Further *//*          Details). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of elementary reflectors *//*     Q = H(1) H(2) . . . H(k), where k = min(m,n). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in *//*  A(m-k+i,1:n-k+i-1), and tau in TAU(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGERQ2", &i__1);	return 0;    }    k = min(*m,*n);    for (i__ = k; i__ >= 1; --i__) {/*        Generate elementary reflector H(i) to annihilate *//*        A(m-k+i,1:n-k+i-1) */	i__1 = *n - k + i__;	_starpu_dlarfp_(&i__1, &a[*m - k + i__ + (*n - k + i__) * a_dim1], &a[*m - k 		+ i__ + a_dim1], lda, &tau[i__]);/*        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */	aii = a[*m - k + i__ + (*n - k + i__) * a_dim1];	a[*m - k + i__ + (*n - k + i__) * a_dim1] = 1.;	i__1 = *m - k + i__ - 1;	i__2 = *n - k + i__;	_starpu_dlarf_("Right", &i__1, &i__2, &a[*m - k + i__ + a_dim1], lda, &tau[		i__], &a[a_offset], lda, &work[1]);	a[*m - k + i__ + (*n - k + i__) * a_dim1] = aii;/* L10: */    }    return 0;/*     End of DGERQ2 */} /* _starpu_dgerq2_ */
 |