| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 | 
							- /* dgeqp3.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__3 = 3;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int _starpu_dgeqp3_(integer *m, integer *n, doublereal *a, integer *
 
- 	lda, integer *jpvt, doublereal *tau, doublereal *work, integer *lwork, 
 
- 	 integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     /* Local variables */
 
-     integer j, jb, na, nb, sm, sn, nx, fjb, iws, nfxd;
 
-     extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
 
-     integer nbmin, minmn;
 
-     extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer minws;
 
-     extern /* Subroutine */ int _starpu_dlaqp2_(integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *), _starpu_dgeqrf_(integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    integer *), _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlaqps_(integer *, integer *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     integer topbmn, sminmn;
 
-     extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGEQP3 computes a QR factorization with column pivoting of a */
 
- /*  matrix A:  A*P = Q*R  using Level 3 BLAS. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A. M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, the upper triangle of the array contains the */
 
- /*          min(M,N)-by-N upper trapezoidal matrix R; the elements below */
 
- /*          the diagonal, together with the array TAU, represent the */
 
- /*          orthogonal matrix Q as a product of min(M,N) elementary */
 
- /*          reflectors. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,M). */
 
- /*  JPVT    (input/output) INTEGER array, dimension (N) */
 
- /*          On entry, if JPVT(J).ne.0, the J-th column of A is permuted */
 
- /*          to the front of A*P (a leading column); if JPVT(J)=0, */
 
- /*          the J-th column of A is a free column. */
 
- /*          On exit, if JPVT(J)=K, then the J-th column of A*P was the */
 
- /*          the K-th column of A. */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The scalar factors of the elementary reflectors. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO=0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK >= 3*N+1. */
 
- /*          For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB */
 
- /*          is the optimal blocksize. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit. */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrix Q is represented as a product of elementary reflectors */
 
- /*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real/complex scalar, and v is a real/complex vector */
 
- /*  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in */
 
- /*  A(i+1:m,i), and tau in TAU(i). */
 
- /*  Based on contributions by */
 
- /*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
 
- /*    X. Sun, Computer Science Dept., Duke University, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test input arguments */
 
- /*     ==================== */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --jpvt;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     lquery = *lwork == -1;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info == 0) {
 
- 	minmn = min(*m,*n);
 
- 	if (minmn == 0) {
 
- 	    iws = 1;
 
- 	    lwkopt = 1;
 
- 	} else {
 
- 	    iws = *n * 3 + 1;
 
- 	    nb = _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
 
- 	    lwkopt = (*n << 1) + (*n + 1) * nb;
 
- 	}
 
- 	work[1] = (doublereal) lwkopt;
 
- 	if (*lwork < iws && ! lquery) {
 
- 	    *info = -8;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGEQP3", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (minmn == 0) {
 
- 	return 0;
 
-     }
 
- /*     Move initial columns up front. */
 
-     nfxd = 1;
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	if (jpvt[j] != 0) {
 
- 	    if (j != nfxd) {
 
- 		_starpu_dswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], &
 
- 			c__1);
 
- 		jpvt[j] = jpvt[nfxd];
 
- 		jpvt[nfxd] = j;
 
- 	    } else {
 
- 		jpvt[j] = j;
 
- 	    }
 
- 	    ++nfxd;
 
- 	} else {
 
- 	    jpvt[j] = j;
 
- 	}
 
- /* L10: */
 
-     }
 
-     --nfxd;
 
- /*     Factorize fixed columns */
 
- /*     ======================= */
 
- /*     Compute the QR factorization of fixed columns and update */
 
- /*     remaining columns. */
 
-     if (nfxd > 0) {
 
- 	na = min(*m,nfxd);
 
- /* CC      CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */
 
- 	_starpu_dgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info);
 
- /* Computing MAX */
 
- 	i__1 = iws, i__2 = (integer) work[1];
 
- 	iws = max(i__1,i__2);
 
- 	if (na < *n) {
 
- /* CC         CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA, */
 
- /* CC  $                   TAU, A( 1, NA+1 ), LDA, WORK, INFO ) */
 
- 	    i__1 = *n - na;
 
- 	    _starpu_dormqr_("Left", "Transpose", m, &i__1, &na, &a[a_offset], lda, &
 
- 		    tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1], lwork, 
 
- 		    info);
 
- /* Computing MAX */
 
- 	    i__1 = iws, i__2 = (integer) work[1];
 
- 	    iws = max(i__1,i__2);
 
- 	}
 
-     }
 
- /*     Factorize free columns */
 
- /*     ====================== */
 
-     if (nfxd < minmn) {
 
- 	sm = *m - nfxd;
 
- 	sn = *n - nfxd;
 
- 	sminmn = minmn - nfxd;
 
- /*        Determine the block size. */
 
- 	nb = _starpu_ilaenv_(&c__1, "DGEQRF", " ", &sm, &sn, &c_n1, &c_n1);
 
- 	nbmin = 2;
 
- 	nx = 0;
 
- 	if (nb > 1 && nb < sminmn) {
 
- /*           Determine when to cross over from blocked to unblocked code. */
 
- /* Computing MAX */
 
- 	    i__1 = 0, i__2 = _starpu_ilaenv_(&c__3, "DGEQRF", " ", &sm, &sn, &c_n1, &
 
- 		    c_n1);
 
- 	    nx = max(i__1,i__2);
 
- 	    if (nx < sminmn) {
 
- /*              Determine if workspace is large enough for blocked code. */
 
- 		minws = (sn << 1) + (sn + 1) * nb;
 
- 		iws = max(iws,minws);
 
- 		if (*lwork < minws) {
 
- /*                 Not enough workspace to use optimal NB: Reduce NB and */
 
- /*                 determine the minimum value of NB. */
 
- 		    nb = (*lwork - (sn << 1)) / (sn + 1);
 
- /* Computing MAX */
 
- 		    i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DGEQRF", " ", &sm, &sn, &
 
- 			    c_n1, &c_n1);
 
- 		    nbmin = max(i__1,i__2);
 
- 		}
 
- 	    }
 
- 	}
 
- /*        Initialize partial column norms. The first N elements of work */
 
- /*        store the exact column norms. */
 
- 	i__1 = *n;
 
- 	for (j = nfxd + 1; j <= i__1; ++j) {
 
- 	    work[j] = _starpu_dnrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1);
 
- 	    work[*n + j] = work[j];
 
- /* L20: */
 
- 	}
 
- 	if (nb >= nbmin && nb < sminmn && nx < sminmn) {
 
- /*           Use blocked code initially. */
 
- 	    j = nfxd + 1;
 
- /*           Compute factorization: while loop. */
 
- 	    topbmn = minmn - nx;
 
- L30:
 
- 	    if (j <= topbmn) {
 
- /* Computing MIN */
 
- 		i__1 = nb, i__2 = topbmn - j + 1;
 
- 		jb = min(i__1,i__2);
 
- /*              Factorize JB columns among columns J:N. */
 
- 		i__1 = *n - j + 1;
 
- 		i__2 = j - 1;
 
- 		i__3 = *n - j + 1;
 
- 		_starpu_dlaqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, &
 
- 			jpvt[j], &tau[j], &work[j], &work[*n + j], &work[(*n 
 
- 			<< 1) + 1], &work[(*n << 1) + jb + 1], &i__3);
 
- 		j += fjb;
 
- 		goto L30;
 
- 	    }
 
- 	} else {
 
- 	    j = nfxd + 1;
 
- 	}
 
- /*        Use unblocked code to factor the last or only block. */
 
- 	if (j <= minmn) {
 
- 	    i__1 = *n - j + 1;
 
- 	    i__2 = j - 1;
 
- 	    _starpu_dlaqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[
 
- 		    j], &work[j], &work[*n + j], &work[(*n << 1) + 1]);
 
- 	}
 
-     }
 
-     work[1] = (doublereal) iws;
 
-     return 0;
 
- /*     End of DGEQP3 */
 
- } /* _starpu_dgeqp3_ */
 
 
  |