| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 | 
							- /* dgels.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static doublereal c_b33 = 0.;
 
- static integer c__0 = 0;
 
- /* Subroutine */ int _starpu_dgels_(char *trans, integer *m, integer *n, integer *
 
- 	nrhs, doublereal *a, integer *lda, doublereal *b, integer *ldb, 
 
- 	doublereal *work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, j, nb, mn;
 
-     doublereal anrm, bnrm;
 
-     integer brow;
 
-     logical tpsd;
 
-     integer iascl, ibscl;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer wsize;
 
-     doublereal rwork[1];
 
-     extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *);
 
-     extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dgelqf_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dlascl_(char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, integer *, doublereal *, integer *, integer *),
 
- 	     _starpu_dgeqrf_(integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *), _starpu_dlaset_(char *, 
 
- 	     integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    integer *), _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer scllen;
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int _starpu_dormlq_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dormqr_(char *, char *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *);
 
-     doublereal smlnum;
 
-     logical lquery;
 
-     extern /* Subroutine */ int _starpu_dtrtrs_(char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGELS solves overdetermined or underdetermined real linear systems */
 
- /*  involving an M-by-N matrix A, or its transpose, using a QR or LQ */
 
- /*  factorization of A.  It is assumed that A has full rank. */
 
- /*  The following options are provided: */
 
- /*  1. If TRANS = 'N' and m >= n:  find the least squares solution of */
 
- /*     an overdetermined system, i.e., solve the least squares problem */
 
- /*                  minimize || B - A*X ||. */
 
- /*  2. If TRANS = 'N' and m < n:  find the minimum norm solution of */
 
- /*     an underdetermined system A * X = B. */
 
- /*  3. If TRANS = 'T' and m >= n:  find the minimum norm solution of */
 
- /*     an undetermined system A**T * X = B. */
 
- /*  4. If TRANS = 'T' and m < n:  find the least squares solution of */
 
- /*     an overdetermined system, i.e., solve the least squares problem */
 
- /*                  minimize || B - A**T * X ||. */
 
- /*  Several right hand side vectors b and solution vectors x can be */
 
- /*  handled in a single call; they are stored as the columns of the */
 
- /*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
 
- /*  matrix X. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  TRANS   (input) CHARACTER*1 */
 
- /*          = 'N': the linear system involves A; */
 
- /*          = 'T': the linear system involves A**T. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of */
 
- /*          columns of the matrices B and X. NRHS >=0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, */
 
- /*            if M >= N, A is overwritten by details of its QR */
 
- /*                       factorization as returned by DGEQRF; */
 
- /*            if M <  N, A is overwritten by details of its LQ */
 
- /*                       factorization as returned by DGELQF. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the matrix B of right hand side vectors, stored */
 
- /*          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
 
- /*          if TRANS = 'T'. */
 
- /*          On exit, if INFO = 0, B is overwritten by the solution */
 
- /*          vectors, stored columnwise: */
 
- /*          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
 
- /*          squares solution vectors; the residual sum of squares for the */
 
- /*          solution in each column is given by the sum of squares of */
 
- /*          elements N+1 to M in that column; */
 
- /*          if TRANS = 'N' and m < n, rows 1 to N of B contain the */
 
- /*          minimum norm solution vectors; */
 
- /*          if TRANS = 'T' and m >= n, rows 1 to M of B contain the */
 
- /*          minimum norm solution vectors; */
 
- /*          if TRANS = 'T' and m < n, rows 1 to M of B contain the */
 
- /*          least squares solution vectors; the residual sum of squares */
 
- /*          for the solution in each column is given by the sum of */
 
- /*          squares of elements M+1 to N in that column. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= MAX(1,M,N). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. */
 
- /*          LWORK >= max( 1, MN + max( MN, NRHS ) ). */
 
- /*          For optimal performance, */
 
- /*          LWORK >= max( 1, MN + max( MN, NRHS )*NB ). */
 
- /*          where MN = min(M,N) and NB is the optimum block size. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO =  i, the i-th diagonal element of the */
 
- /*                triangular factor of A is zero, so that A does not have */
 
- /*                full rank; the least squares solution could not be */
 
- /*                computed. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     mn = min(*m,*n);
 
-     lquery = *lwork == -1;
 
-     if (! (_starpu_lsame_(trans, "N") || _starpu_lsame_(trans, "T"))) {
 
- 	*info = -1;
 
-     } else if (*m < 0) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -4;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -6;
 
-     } else /* if(complicated condition) */ {
 
- /* Computing MAX */
 
- 	i__1 = max(1,*m);
 
- 	if (*ldb < max(i__1,*n)) {
 
- 	    *info = -8;
 
- 	} else /* if(complicated condition) */ {
 
- /* Computing MAX */
 
- 	    i__1 = 1, i__2 = mn + max(mn,*nrhs);
 
- 	    if (*lwork < max(i__1,i__2) && ! lquery) {
 
- 		*info = -10;
 
- 	    }
 
- 	}
 
-     }
 
- /*     Figure out optimal block size */
 
-     if (*info == 0 || *info == -10) {
 
- 	tpsd = TRUE_;
 
- 	if (_starpu_lsame_(trans, "N")) {
 
- 	    tpsd = FALSE_;
 
- 	}
 
- 	if (*m >= *n) {
 
- 	    nb = _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
 
- 	    if (tpsd) {
 
- /* Computing MAX */
 
- 		i__1 = nb, i__2 = _starpu_ilaenv_(&c__1, "DORMQR", "LN", m, nrhs, n, &
 
- 			c_n1);
 
- 		nb = max(i__1,i__2);
 
- 	    } else {
 
- /* Computing MAX */
 
- 		i__1 = nb, i__2 = _starpu_ilaenv_(&c__1, "DORMQR", "LT", m, nrhs, n, &
 
- 			c_n1);
 
- 		nb = max(i__1,i__2);
 
- 	    }
 
- 	} else {
 
- 	    nb = _starpu_ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, &c_n1);
 
- 	    if (tpsd) {
 
- /* Computing MAX */
 
- 		i__1 = nb, i__2 = _starpu_ilaenv_(&c__1, "DORMLQ", "LT", n, nrhs, m, &
 
- 			c_n1);
 
- 		nb = max(i__1,i__2);
 
- 	    } else {
 
- /* Computing MAX */
 
- 		i__1 = nb, i__2 = _starpu_ilaenv_(&c__1, "DORMLQ", "LN", n, nrhs, m, &
 
- 			c_n1);
 
- 		nb = max(i__1,i__2);
 
- 	    }
 
- 	}
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = mn + max(mn,*nrhs) * nb;
 
- 	wsize = max(i__1,i__2);
 
- 	work[1] = (doublereal) wsize;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGELS ", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
- /* Computing MIN */
 
-     i__1 = min(*m,*n);
 
-     if (min(i__1,*nrhs) == 0) {
 
- 	i__1 = max(*m,*n);
 
- 	_starpu_dlaset_("Full", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);
 
- 	return 0;
 
-     }
 
- /*     Get machine parameters */
 
-     smlnum = _starpu_dlamch_("S") / _starpu_dlamch_("P");
 
-     bignum = 1. / smlnum;
 
-     _starpu_dlabad_(&smlnum, &bignum);
 
- /*     Scale A, B if max element outside range [SMLNUM,BIGNUM] */
 
-     anrm = _starpu_dlange_("M", m, n, &a[a_offset], lda, rwork);
 
-     iascl = 0;
 
-     if (anrm > 0. && anrm < smlnum) {
 
- /*        Scale matrix norm up to SMLNUM */
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
 
- 		info);
 
- 	iascl = 1;
 
-     } else if (anrm > bignum) {
 
- /*        Scale matrix norm down to BIGNUM */
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
 
- 		info);
 
- 	iascl = 2;
 
-     } else if (anrm == 0.) {
 
- /*        Matrix all zero. Return zero solution. */
 
- 	i__1 = max(*m,*n);
 
- 	_starpu_dlaset_("F", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);
 
- 	goto L50;
 
-     }
 
-     brow = *m;
 
-     if (tpsd) {
 
- 	brow = *n;
 
-     }
 
-     bnrm = _starpu_dlange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);
 
-     ibscl = 0;
 
-     if (bnrm > 0. && bnrm < smlnum) {
 
- /*        Scale matrix norm up to SMLNUM */
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset], 
 
- 		ldb, info);
 
- 	ibscl = 1;
 
-     } else if (bnrm > bignum) {
 
- /*        Scale matrix norm down to BIGNUM */
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset], 
 
- 		ldb, info);
 
- 	ibscl = 2;
 
-     }
 
-     if (*m >= *n) {
 
- /*        compute QR factorization of A */
 
- 	i__1 = *lwork - mn;
 
- 	_starpu_dgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
 
- 		;
 
- /*        workspace at least N, optimally N*NB */
 
- 	if (! tpsd) {
 
- /*           Least-Squares Problem min || A * X - B || */
 
- /*           B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */
 
- 	    i__1 = *lwork - mn;
 
- 	    _starpu_dormqr_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &work[
 
- 		    1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
 
- /*           workspace at least NRHS, optimally NRHS*NB */
 
- /*           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */
 
- 	    _starpu_dtrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset]
 
- , lda, &b[b_offset], ldb, info);
 
- 	    if (*info > 0) {
 
- 		return 0;
 
- 	    }
 
- 	    scllen = *n;
 
- 	} else {
 
- /*           Overdetermined system of equations A' * X = B */
 
- /*           B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) */
 
- 	    _starpu_dtrtrs_("Upper", "Transpose", "Non-unit", n, nrhs, &a[a_offset], 
 
- 		    lda, &b[b_offset], ldb, info);
 
- 	    if (*info > 0) {
 
- 		return 0;
 
- 	    }
 
- /*           B(N+1:M,1:NRHS) = ZERO */
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *m;
 
- 		for (i__ = *n + 1; i__ <= i__2; ++i__) {
 
- 		    b[i__ + j * b_dim1] = 0.;
 
- /* L10: */
 
- 		}
 
- /* L20: */
 
- 	    }
 
- /*           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */
 
- 	    i__1 = *lwork - mn;
 
- 	    _starpu_dormqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, &
 
- 		    work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
 
- /*           workspace at least NRHS, optimally NRHS*NB */
 
- 	    scllen = *m;
 
- 	}
 
-     } else {
 
- /*        Compute LQ factorization of A */
 
- 	i__1 = *lwork - mn;
 
- 	_starpu_dgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
 
- 		;
 
- /*        workspace at least M, optimally M*NB. */
 
- 	if (! tpsd) {
 
- /*           underdetermined system of equations A * X = B */
 
- /*           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */
 
- 	    _starpu_dtrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset]
 
- , lda, &b[b_offset], ldb, info);
 
- 	    if (*info > 0) {
 
- 		return 0;
 
- 	    }
 
- /*           B(M+1:N,1:NRHS) = 0 */
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *n;
 
- 		for (i__ = *m + 1; i__ <= i__2; ++i__) {
 
- 		    b[i__ + j * b_dim1] = 0.;
 
- /* L30: */
 
- 		}
 
- /* L40: */
 
- 	    }
 
- /*           B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) */
 
- 	    i__1 = *lwork - mn;
 
- 	    _starpu_dormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &work[
 
- 		    1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
 
- /*           workspace at least NRHS, optimally NRHS*NB */
 
- 	    scllen = *n;
 
- 	} else {
 
- /*           overdetermined system min || A' * X - B || */
 
- /*           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */
 
- 	    i__1 = *lwork - mn;
 
- 	    _starpu_dormlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, &
 
- 		    work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
 
- /*           workspace at least NRHS, optimally NRHS*NB */
 
- /*           B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) */
 
- 	    _starpu_dtrtrs_("Lower", "Transpose", "Non-unit", m, nrhs, &a[a_offset], 
 
- 		    lda, &b[b_offset], ldb, info);
 
- 	    if (*info > 0) {
 
- 		return 0;
 
- 	    }
 
- 	    scllen = *m;
 
- 	}
 
-     }
 
- /*     Undo scaling */
 
-     if (iascl == 1) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
 
- , ldb, info);
 
-     } else if (iascl == 2) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
 
- , ldb, info);
 
-     }
 
-     if (ibscl == 1) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
 
- , ldb, info);
 
-     } else if (ibscl == 2) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
 
- , ldb, info);
 
-     }
 
- L50:
 
-     work[1] = (doublereal) wsize;
 
-     return 0;
 
- /*     End of DGELS */
 
- } /* _starpu_dgels_ */
 
 
  |