starpu.texi 165 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. * Function Index:: Index of C functions.
  38. @end menu
  39. @c ---------------------------------------------------------------------
  40. @c Introduction to StarPU
  41. @c ---------------------------------------------------------------------
  42. @node Introduction
  43. @chapter Introduction to StarPU
  44. @menu
  45. * Motivation:: Why StarPU ?
  46. * StarPU in a Nutshell:: The Fundamentals of StarPU
  47. @end menu
  48. @node Motivation
  49. @section Motivation
  50. @c complex machines with heterogeneous cores/devices
  51. The use of specialized hardware such as accelerators or coprocessors offers an
  52. interesting approach to overcome the physical limits encountered by processor
  53. architects. As a result, many machines are now equipped with one or several
  54. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  55. efforts have been devoted to offload computation onto such accelerators, very
  56. little attention as been paid to portability concerns on the one hand, and to the
  57. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  58. StarPU is a runtime system that offers support for heterogeneous multicore
  59. architectures, it not only offers a unified view of the computational resources
  60. (i.e. CPUs and accelerators at the same time), but it also takes care of
  61. efficiently mapping and executing tasks onto an heterogeneous machine while
  62. transparently handling low-level issues such as data transfers in a portable
  63. fashion.
  64. @c this leads to a complicated distributed memory design
  65. @c which is not (easily) manageable by hand
  66. @c added value/benefits of StarPU
  67. @c - portability
  68. @c - scheduling, perf. portability
  69. @node StarPU in a Nutshell
  70. @section StarPU in a Nutshell
  71. @menu
  72. * Codelet and Tasks::
  73. * StarPU Data Management Library::
  74. * Research Papers::
  75. @end menu
  76. From a programming point of view, StarPU is not a new language but a library
  77. that executes tasks explicitly submitted by the application. The data that a
  78. task manipulates are automatically transferred onto the accelerator so that the
  79. programmer does not have to take care of complex data movements. StarPU also
  80. takes particular care of scheduling those tasks efficiently and allows
  81. scheduling experts to implement custom scheduling policies in a portable
  82. fashion.
  83. @c explain the notion of codelet and task (i.e. g(A, B)
  84. @node Codelet and Tasks
  85. @subsection Codelet and Tasks
  86. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  87. computational kernel that can possibly be implemented on multiple architectures
  88. such as a CPU, a CUDA device or a Cell's SPU.
  89. @c TODO insert illustration f : f_spu, f_cpu, ...
  90. Another important data structure is the @b{task}. Executing a StarPU task
  91. consists in applying a codelet on a data set, on one of the architectures on
  92. which the codelet is implemented. In addition to the codelet that a task
  93. useuses, it also describes which data are accessed, and how they are
  94. accessed during the computation (read and/or write).
  95. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  96. operation. The task structure can also specify a @b{callback} function that is
  97. called once StarPU has properly executed the task. It also contains optional
  98. fields that the application may use to give hints to the scheduler (such as
  99. priority levels).
  100. A task may be identified by a unique 64-bit number chosen by the application
  101. which we refer as a @b{tag}.
  102. Task dependencies can be enforced either by the means of callback functions, by
  103. expressing dependencies between explicit tasks or by expressing dependencies
  104. between tags (which can thus correspond to tasks that have not been submitted
  105. yet).
  106. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  107. @c DSM
  108. @node StarPU Data Management Library
  109. @subsection StarPU Data Management Library
  110. Because StarPU schedules tasks at runtime, data transfers have to be
  111. done automatically and ``just-in-time'' between processing units,
  112. relieving the application programmer from explicit data transfers.
  113. Moreover, to avoid unnecessary transfers, StarPU keeps data
  114. where it was last needed, even if was modified there, and it
  115. allows multiple copies of the same data to reside at the same time on
  116. several processing units as long as it is not modified.
  117. @node Research Papers
  118. @subsection Research Papers
  119. Research papers about StarPU can be found at
  120. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  121. Notably a good overview in the research report
  122. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  123. @c ---------------------------------------------------------------------
  124. @c Installing StarPU
  125. @c ---------------------------------------------------------------------
  126. @node Installing StarPU
  127. @chapter Installing StarPU
  128. @menu
  129. * Downloading StarPU::
  130. * Configuration of StarPU::
  131. * Building and Installing StarPU::
  132. @end menu
  133. StarPU can be built and installed by the standard means of the GNU
  134. autotools. The following chapter is intended to briefly remind how these tools
  135. can be used to install StarPU.
  136. @node Downloading StarPU
  137. @section Downloading StarPU
  138. @menu
  139. * Getting Sources::
  140. * Optional dependencies::
  141. @end menu
  142. @node Getting Sources
  143. @subsection Getting Sources
  144. The simplest way to get StarPU sources is to download the latest official
  145. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  146. or the latest nightly snapshot from
  147. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  148. how to get the very latest version from the subversion repository itself, it
  149. should be needed only if you need the very latest changes (i.e. less than a
  150. day!)
  151. The source code is managed by a Subversion server hosted by the
  152. InriaGforge. To get the source code, you need:
  153. @itemize
  154. @item
  155. To install the client side of the software Subversion if it is
  156. not already available on your system. The software can be obtained from
  157. @indicateurl{http://subversion.tigris.org} . If you are running
  158. on Windows, you will probably prefer to use TortoiseSVN from
  159. @indicateurl{http://tortoisesvn.tigris.org/} .
  160. @item
  161. You can check out the project's SVN repository through anonymous
  162. access. This will provide you with a read access to the
  163. repository.
  164. If you need to have write access on the StarPU project, you can also choose to
  165. become a member of the project @code{starpu}. For this, you first need to get
  166. an account to the gForge server. You can then send a request to join the project
  167. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  168. @item
  169. More information on how to get a gForge account, to become a member of
  170. a project, or on any other related task can be obtained from the
  171. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  172. thing is to upload your public SSH key on the gForge server (see the
  173. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  174. instructions).
  175. @end itemize
  176. You can now check out the latest version from the Subversion server:
  177. @itemize
  178. @item
  179. using the anonymous access via svn:
  180. @example
  181. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  182. @end example
  183. @item
  184. using the anonymous access via https:
  185. @example
  186. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  187. @end example
  188. The password is @code{anonsvn}.
  189. @item
  190. using your gForge account
  191. @example
  192. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  193. @end example
  194. @end itemize
  195. The following step requires the availability of @code{autoconf} and
  196. @code{automake} to generate the @code{./configure} script. This is
  197. done by calling @code{./autogen.sh}. The required version for
  198. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  199. @example
  200. % ./autogen.sh
  201. @end example
  202. If the autotools are not available on your machine or not recent
  203. enough, you can choose to download the latest nightly tarball, which
  204. is provided with a @code{configure} script.
  205. @example
  206. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  207. @end example
  208. @node Optional dependencies
  209. @subsection Optional dependencies
  210. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  211. but strongly recommended. It allows to increase performance, and to
  212. perform some topology aware scheduling.
  213. @code{hwloc} is available in major distributions and for most OSes and can be
  214. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  215. @node Configuration of StarPU
  216. @section Configuration of StarPU
  217. @menu
  218. * Generating Makefiles and configuration scripts::
  219. * Running the configuration::
  220. @end menu
  221. @node Generating Makefiles and configuration scripts
  222. @subsection Generating Makefiles and configuration scripts
  223. This step is not necessary when using the tarball releases of StarPU. If you
  224. are using the source code from the svn repository, you first need to generate
  225. the configure scripts and the Makefiles.
  226. @example
  227. % ./autogen.sh
  228. @end example
  229. @node Running the configuration
  230. @subsection Running the configuration
  231. @example
  232. % ./configure
  233. @end example
  234. Details about options that are useful to give to @code{./configure} are given in
  235. @ref{Compilation configuration}.
  236. @node Building and Installing StarPU
  237. @section Building and Installing StarPU
  238. @menu
  239. * Building::
  240. * Sanity Checks::
  241. * Installing::
  242. @end menu
  243. @node Building
  244. @subsection Building
  245. @example
  246. % make
  247. @end example
  248. @node Sanity Checks
  249. @subsection Sanity Checks
  250. In order to make sure that StarPU is working properly on the system, it is also
  251. possible to run a test suite.
  252. @example
  253. % make check
  254. @end example
  255. @node Installing
  256. @subsection Installing
  257. In order to install StarPU at the location that was specified during
  258. configuration:
  259. @example
  260. % make install
  261. @end example
  262. @c ---------------------------------------------------------------------
  263. @c Using StarPU
  264. @c ---------------------------------------------------------------------
  265. @node Using StarPU
  266. @chapter Using StarPU
  267. @menu
  268. * Setting flags for compiling and linking applications::
  269. * Running a basic StarPU application::
  270. * Kernel threads started by StarPU::
  271. * Using accelerators::
  272. @end menu
  273. @node Setting flags for compiling and linking applications
  274. @section Setting flags for compiling and linking applications
  275. Compiling and linking an application against StarPU may require to use
  276. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  277. To this end, it is possible to use the @code{pkg-config} tool.
  278. If StarPU was not installed at some standard location, the path of StarPU's
  279. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  280. that @code{pkg-config} can find it. For example if StarPU was installed in
  281. @code{$prefix_dir}:
  282. @example
  283. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  284. @end example
  285. The flags required to compile or link against StarPU are then
  286. accessible with the following commands:
  287. @example
  288. % pkg-config --cflags libstarpu # options for the compiler
  289. % pkg-config --libs libstarpu # options for the linker
  290. @end example
  291. @node Running a basic StarPU application
  292. @section Running a basic StarPU application
  293. Basic examples using StarPU have been built in the directory
  294. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  295. example @code{vector_scal}.
  296. @example
  297. % $prefix_dir/lib/starpu/examples/vector_scal
  298. BEFORE : First element was 1.000000
  299. AFTER First element is 3.140000
  300. %
  301. @end example
  302. When StarPU is used for the first time, the directory
  303. @code{$HOME/.starpu/} is created, performance models will be stored in
  304. that directory.
  305. Please note that buses are benchmarked when StarPU is launched for the
  306. first time. This may take a few minutes, or less if @code{hwloc} is
  307. installed. This step is done only once per user and per machine.
  308. @node Kernel threads started by StarPU
  309. @section Kernel threads started by StarPU
  310. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  311. them per GPU. The application is not supposed to do computations in its own
  312. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  313. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  314. worker).
  315. @node Using accelerators
  316. @section Using accelerators
  317. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  318. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  319. This design choice was necessary as OpenCL and CUDA can not run at the
  320. same time on the same NVIDIA GPU, as there is currently no interoperability
  321. between them.
  322. Details on how to specify devices running OpenCL and the ones running
  323. CUDA are given in @ref{Enabling OpenCL}.
  324. @c ---------------------------------------------------------------------
  325. @c Basic Examples
  326. @c ---------------------------------------------------------------------
  327. @node Basic Examples
  328. @chapter Basic Examples
  329. @menu
  330. * Compiling and linking options::
  331. * Hello World:: Submitting Tasks
  332. * Scaling a Vector:: Manipulating Data
  333. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  334. * Task and Worker Profiling::
  335. * Partitioning Data:: Partitioning Data
  336. * Performance model example::
  337. * Theoretical lower bound on execution time::
  338. * Insert Task Utility::
  339. * More examples:: More examples shipped with StarPU
  340. @end menu
  341. @node Compiling and linking options
  342. @section Compiling and linking options
  343. Let's suppose StarPU has been installed in the directory
  344. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  345. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  346. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  347. libraries at runtime.
  348. @example
  349. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  350. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  351. @end example
  352. The Makefile could for instance contain the following lines to define which
  353. options must be given to the compiler and to the linker:
  354. @cartouche
  355. @example
  356. CFLAGS += $$(pkg-config --cflags libstarpu)
  357. LDFLAGS += $$(pkg-config --libs libstarpu)
  358. @end example
  359. @end cartouche
  360. @node Hello World
  361. @section Hello World
  362. @menu
  363. * Required Headers::
  364. * Defining a Codelet::
  365. * Submitting a Task::
  366. * Execution of Hello World::
  367. @end menu
  368. In this section, we show how to implement a simple program that submits a task to StarPU.
  369. @node Required Headers
  370. @subsection Required Headers
  371. The @code{starpu.h} header should be included in any code using StarPU.
  372. @cartouche
  373. @smallexample
  374. #include <starpu.h>
  375. @end smallexample
  376. @end cartouche
  377. @node Defining a Codelet
  378. @subsection Defining a Codelet
  379. @cartouche
  380. @smallexample
  381. struct params @{
  382. int i;
  383. float f;
  384. @};
  385. void cpu_func(void *buffers[], void *cl_arg)
  386. @{
  387. struct params *params = cl_arg;
  388. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  389. @}
  390. starpu_codelet cl =
  391. @{
  392. .where = STARPU_CPU,
  393. .cpu_func = cpu_func,
  394. .nbuffers = 0
  395. @};
  396. @end smallexample
  397. @end cartouche
  398. A codelet is a structure that represents a computational kernel. Such a codelet
  399. may contain an implementation of the same kernel on different architectures
  400. (e.g. CUDA, Cell's SPU, x86, ...).
  401. The @code{nbuffers} field specifies the number of data buffers that are
  402. manipulated by the codelet: here the codelet does not access or modify any data
  403. that is controlled by our data management library. Note that the argument
  404. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  405. structure) does not count as a buffer since it is not managed by our data
  406. management library, but just contain trivial parameters.
  407. @c TODO need a crossref to the proper description of "where" see bla for more ...
  408. We create a codelet which may only be executed on the CPUs. The @code{where}
  409. field is a bitmask that defines where the codelet may be executed. Here, the
  410. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  411. (@pxref{Codelets and Tasks} for more details on this field).
  412. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  413. which @emph{must} have the following prototype:
  414. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  415. In this example, we can ignore the first argument of this function which gives a
  416. description of the input and output buffers (e.g. the size and the location of
  417. the matrices) since there is none.
  418. The second argument is a pointer to a buffer passed as an
  419. argument to the codelet by the means of the @code{cl_arg} field of the
  420. @code{starpu_task} structure.
  421. @c TODO rewrite so that it is a little clearer ?
  422. Be aware that this may be a pointer to a
  423. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  424. if the codelet modifies this buffer, there is no guarantee that the initial
  425. buffer will be modified as well: this for instance implies that the buffer
  426. cannot be used as a synchronization medium. If synchronization is needed, data
  427. has to be registered to StarPU, see @ref{Scaling a Vector}.
  428. @node Submitting a Task
  429. @subsection Submitting a Task
  430. @cartouche
  431. @smallexample
  432. void callback_func(void *callback_arg)
  433. @{
  434. printf("Callback function (arg %x)\n", callback_arg);
  435. @}
  436. int main(int argc, char **argv)
  437. @{
  438. /* @b{initialize StarPU} */
  439. starpu_init(NULL);
  440. struct starpu_task *task = starpu_task_create();
  441. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  442. struct params params = @{ 1, 2.0f @};
  443. task->cl_arg = &params;
  444. task->cl_arg_size = sizeof(params);
  445. task->callback_func = callback_func;
  446. task->callback_arg = 0x42;
  447. /* @b{starpu_task_submit will be a blocking call} */
  448. task->synchronous = 1;
  449. /* @b{submit the task to StarPU} */
  450. starpu_task_submit(task);
  451. /* @b{terminate StarPU} */
  452. starpu_shutdown();
  453. return 0;
  454. @}
  455. @end smallexample
  456. @end cartouche
  457. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  458. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  459. be submitted after the termination of StarPU by a call to
  460. @code{starpu_shutdown}.
  461. In the example above, a task structure is allocated by a call to
  462. @code{starpu_task_create}. This function only allocates and fills the
  463. corresponding structure with the default settings (@pxref{starpu_task_create}),
  464. but it does not submit the task to StarPU.
  465. @c not really clear ;)
  466. The @code{cl} field is a pointer to the codelet which the task will
  467. execute: in other words, the codelet structure describes which computational
  468. kernel should be offloaded on the different architectures, and the task
  469. structure is a wrapper containing a codelet and the piece of data on which the
  470. codelet should operate.
  471. The optional @code{cl_arg} field is a pointer to a buffer (of size
  472. @code{cl_arg_size}) with some parameters for the kernel
  473. described by the codelet. For instance, if a codelet implements a computational
  474. kernel that multiplies its input vector by a constant, the constant could be
  475. specified by the means of this buffer, instead of registering it as a StarPU
  476. data.
  477. Once a task has been executed, an optional callback function is be called.
  478. While the computational kernel could be offloaded on various architectures, the
  479. callback function is always executed on a CPU. The @code{callback_arg}
  480. pointer is passed as an argument of the callback. The prototype of a callback
  481. function must be:
  482. @code{void (*callback_function)(void *);}
  483. If the @code{synchronous} field is non-zero, task submission will be
  484. synchronous: the @code{starpu_task_submit} function will not return until the
  485. task was executed. Note that the @code{starpu_shutdown} method does not
  486. guarantee that asynchronous tasks have been executed before it returns,
  487. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  488. acquired (@code{starpu_data_acquire(vector_handle, STARPU_R);}), which will
  489. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  490. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  491. @code{starpu_data_set_sequential_consistency_flag}.
  492. @node Execution of Hello World
  493. @subsection Execution of Hello World
  494. @smallexample
  495. % make hello_world
  496. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  497. % ./hello_world
  498. Hello world (params = @{1, 2.000000@} )
  499. Callback function (arg 42)
  500. @end smallexample
  501. @node Scaling a Vector
  502. @section Manipulating Data: Scaling a Vector
  503. The previous example has shown how to submit tasks. In this section,
  504. we show how StarPU tasks can manipulate data. The full source code for
  505. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  506. @menu
  507. * Source code of Vector Scaling::
  508. * Execution of Vector Scaling::
  509. @end menu
  510. @node Source code of Vector Scaling
  511. @subsection Source code of Vector Scaling
  512. Programmers can describe the data layout of their application so that StarPU is
  513. responsible for enforcing data coherency and availability across the machine.
  514. Instead of handling complex (and non-portable) mechanisms to perform data
  515. movements, programmers only declare which piece of data is accessed and/or
  516. modified by a task, and StarPU makes sure that when a computational kernel
  517. starts somewhere (e.g. on a GPU), its data are available locally.
  518. Before submitting those tasks, the programmer first needs to declare the
  519. different pieces of data to StarPU using the @code{starpu_*_data_register}
  520. functions. To ease the development of applications for StarPU, it is possible
  521. to describe multiple types of data layout. A type of data layout is called an
  522. @b{interface}. There are different predefined interfaces available in StarPU:
  523. here we will consider the @b{vector interface}.
  524. The following lines show how to declare an array of @code{NX} elements of type
  525. @code{float} using the vector interface:
  526. @cartouche
  527. @smallexample
  528. float vector[NX];
  529. starpu_data_handle vector_handle;
  530. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  531. sizeof(vector[0]));
  532. @end smallexample
  533. @end cartouche
  534. The first argument, called the @b{data handle}, is an opaque pointer which
  535. designates the array in StarPU. This is also the structure which is used to
  536. describe which data is used by a task. The second argument is the node number
  537. where the data originally resides. Here it is 0 since the @code{vector} array is in
  538. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  539. the number of elements in the vector and the size of each element.
  540. The following shows how to construct a StarPU task that will manipulate the
  541. vector and a constant factor.
  542. @cartouche
  543. @smallexample
  544. float factor = 3.14;
  545. struct starpu_task *task = starpu_task_create();
  546. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  547. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  548. task->buffers[0].mode = STARPU_RW;
  549. task->cl_arg = &factor;
  550. task->cl_arg_size = sizeof(factor);
  551. task->synchronous = 1;
  552. starpu_task_submit(task);
  553. @end smallexample
  554. @end cartouche
  555. Since the factor is a mere constant float value parameter,
  556. it does not need a preliminary registration, and
  557. can just be passed through the @code{cl_arg} pointer like in the previous
  558. example. The vector parameter is described by its handle.
  559. There are two fields in each element of the @code{buffers} array.
  560. @code{handle} is the handle of the data, and @code{mode} specifies how the
  561. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  562. write-only and @code{STARPU_RW} for read and write access).
  563. The definition of the codelet can be written as follows:
  564. @cartouche
  565. @smallexample
  566. void scal_cpu_func(void *buffers[], void *cl_arg)
  567. @{
  568. unsigned i;
  569. float *factor = cl_arg;
  570. /* length of the vector */
  571. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  572. /* local copy of the vector pointer */
  573. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  574. for (i = 0; i < n; i++)
  575. val[i] *= *factor;
  576. @}
  577. starpu_codelet cl = @{
  578. .where = STARPU_CPU,
  579. .cpu_func = scal_cpu_func,
  580. .nbuffers = 1
  581. @};
  582. @end smallexample
  583. @end cartouche
  584. The first argument is an array that gives
  585. a description of all the buffers passed in the @code{task->buffers}@ array. The
  586. size of this array is given by the @code{nbuffers} field of the codelet
  587. structure. For the sake of genericity, this array contains pointers to the
  588. different interfaces describing each buffer. In the case of the @b{vector
  589. interface}, the location of the vector (resp. its length) is accessible in the
  590. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  591. read-write fashion, any modification will automatically affect future accesses
  592. to this vector made by other tasks.
  593. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  594. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  595. constant factor from this pointer.
  596. @node Execution of Vector Scaling
  597. @subsection Execution of Vector Scaling
  598. @smallexample
  599. % make vector_scal
  600. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  601. % ./vector_scal
  602. 0.000000 3.000000 6.000000 9.000000 12.000000
  603. @end smallexample
  604. @node Vector Scaling on an Hybrid CPU/GPU Machine
  605. @section Vector Scaling on an Hybrid CPU/GPU Machine
  606. Contrary to the previous examples, the task submitted in this example may not
  607. only be executed by the CPUs, but also by a CUDA device.
  608. @menu
  609. * Definition of the CUDA Kernel::
  610. * Definition of the OpenCL Kernel::
  611. * Definition of the Main Code::
  612. * Execution of Hybrid Vector Scaling::
  613. @end menu
  614. @node Definition of the CUDA Kernel
  615. @subsection Definition of the CUDA Kernel
  616. The CUDA implementation can be written as follows. It needs to be
  617. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  618. driver.
  619. @cartouche
  620. @smallexample
  621. #include <starpu.h>
  622. static __global__ void vector_mult_cuda(float *val, unsigned n,
  623. float factor)
  624. @{
  625. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  626. if (i < n)
  627. val[i] *= factor;
  628. @}
  629. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  630. @{
  631. float *factor = (float *)_args;
  632. /* length of the vector */
  633. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  634. /* local copy of the vector pointer */
  635. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  636. unsigned threads_per_block = 64;
  637. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  638. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  639. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  640. @}
  641. @end smallexample
  642. @end cartouche
  643. @node Definition of the OpenCL Kernel
  644. @subsection Definition of the OpenCL Kernel
  645. The OpenCL implementation can be written as follows. StarPU provides
  646. tools to compile a OpenCL kernel stored in a file.
  647. @cartouche
  648. @smallexample
  649. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  650. @{
  651. const int i = get_global_id(0);
  652. if (i < nx) @{
  653. val[i] *= factor;
  654. @}
  655. @}
  656. @end smallexample
  657. @end cartouche
  658. @cartouche
  659. @smallexample
  660. #include <starpu.h>
  661. @i{#include <starpu_opencl.h>}
  662. @i{extern struct starpu_opencl_program programs;}
  663. void scal_opencl_func(void *buffers[], void *_args)
  664. @{
  665. float *factor = _args;
  666. @i{ int id, devid, err;}
  667. @i{ cl_kernel kernel;}
  668. @i{ cl_command_queue queue;}
  669. @i{ cl_event event;}
  670. /* length of the vector */
  671. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  672. /* local copy of the vector pointer */
  673. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  674. @i{ id = starpu_worker_get_id();}
  675. @i{ devid = starpu_worker_get_devid(id);}
  676. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  677. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  678. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  679. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  680. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  681. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  682. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  683. @i{ @{}
  684. @i{ size_t global=1;}
  685. @i{ size_t local=1;}
  686. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  687. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  688. @i{ @}}
  689. @i{ clFinish(queue);}
  690. @i{ starpu_opencl_collect_stats(event);}
  691. @i{ clReleaseEvent(event);}
  692. @i{ starpu_opencl_release_kernel(kernel);}
  693. @}
  694. @end smallexample
  695. @end cartouche
  696. @node Definition of the Main Code
  697. @subsection Definition of the Main Code
  698. The CPU implementation is the same as in the previous section.
  699. Here is the source of the main application. You can notice the value of the
  700. field @code{where} for the codelet. We specify
  701. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  702. can be executed either on a CPU or on a CUDA or an OpenCL device.
  703. @cartouche
  704. @smallexample
  705. #include <starpu.h>
  706. #define NX 2048
  707. extern void scal_cuda_func(void *buffers[], void *_args);
  708. extern void scal_cpu_func(void *buffers[], void *_args);
  709. extern void scal_opencl_func(void *buffers[], void *_args);
  710. /* @b{Definition of the codelet} */
  711. static starpu_codelet cl = @{
  712. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  713. /* @b{on a CUDA device, or on an OpenCL device} */
  714. .cuda_func = scal_cuda_func;
  715. .cpu_func = scal_cpu_func;
  716. .opencl_func = scal_opencl_func;
  717. .nbuffers = 1;
  718. @}
  719. #ifdef STARPU_USE_OPENCL
  720. /* @b{The compiled version of the OpenCL program} */
  721. struct starpu_opencl_program programs;
  722. #endif
  723. int main(int argc, char **argv)
  724. @{
  725. float *vector;
  726. int i, ret;
  727. float factor=3.0;
  728. struct starpu_task *task;
  729. starpu_data_handle vector_handle;
  730. starpu_init(NULL); /* @b{Initialising StarPU} */
  731. #ifdef STARPU_USE_OPENCL
  732. starpu_opencl_load_opencl_from_file(
  733. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  734. &programs, NULL);
  735. #endif
  736. vector = malloc(NX*sizeof(vector[0]));
  737. assert(vector);
  738. for(i=0 ; i<NX ; i++) vector[i] = i;
  739. @end smallexample
  740. @end cartouche
  741. @cartouche
  742. @smallexample
  743. /* @b{Registering data within StarPU} */
  744. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  745. NX, sizeof(vector[0]));
  746. /* @b{Definition of the task} */
  747. task = starpu_task_create();
  748. task->cl = &cl;
  749. task->buffers[0].handle = vector_handle;
  750. task->buffers[0].mode = STARPU_RW;
  751. task->cl_arg = &factor;
  752. task->cl_arg_size = sizeof(factor);
  753. @end smallexample
  754. @end cartouche
  755. @cartouche
  756. @smallexample
  757. /* @b{Submitting the task} */
  758. ret = starpu_task_submit(task);
  759. if (ret == -ENODEV) @{
  760. fprintf(stderr, "No worker may execute this task\n");
  761. return 1;
  762. @}
  763. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  764. /* @b{Waiting for its termination} */
  765. starpu_task_wait_for_all();
  766. /* @b{Update the vector in RAM} */
  767. starpu_data_acquire(vector_handle, STARPU_R);
  768. @end smallexample
  769. @end cartouche
  770. @cartouche
  771. @smallexample
  772. /* @b{Access the data} */
  773. for(i=0 ; i<NX; i++) @{
  774. fprintf(stderr, "%f ", vector[i]);
  775. @}
  776. fprintf(stderr, "\n");
  777. /* @b{Release the data and shutdown StarPU} */
  778. starpu_data_release(vector_handle);
  779. starpu_shutdown();
  780. return 0;
  781. @}
  782. @end smallexample
  783. @end cartouche
  784. @node Execution of Hybrid Vector Scaling
  785. @subsection Execution of Hybrid Vector Scaling
  786. The Makefile given at the beginning of the section must be extended to
  787. give the rules to compile the CUDA source code. Note that the source
  788. file of the OpenCL kernel does not need to be compiled now, it will
  789. be compiled at run-time when calling the function
  790. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  791. @cartouche
  792. @smallexample
  793. CFLAGS += $(shell pkg-config --cflags libstarpu)
  794. LDFLAGS += $(shell pkg-config --libs libstarpu)
  795. CC = gcc
  796. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  797. %.o: %.cu
  798. nvcc $(CFLAGS) $< -c $@
  799. clean:
  800. rm -f vector_scal *.o
  801. @end smallexample
  802. @end cartouche
  803. @smallexample
  804. % make
  805. @end smallexample
  806. and to execute it, with the default configuration:
  807. @smallexample
  808. % ./vector_scal
  809. 0.000000 3.000000 6.000000 9.000000 12.000000
  810. @end smallexample
  811. or for example, by disabling CPU devices:
  812. @smallexample
  813. % STARPU_NCPUS=0 ./vector_scal
  814. 0.000000 3.000000 6.000000 9.000000 12.000000
  815. @end smallexample
  816. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  817. see @ref{Using accelerators}):
  818. @smallexample
  819. % STARPU_NCUDA=0 ./vector_scal
  820. 0.000000 3.000000 6.000000 9.000000 12.000000
  821. @end smallexample
  822. @node Task and Worker Profiling
  823. @section Task and Worker Profiling
  824. A full example showing how to use the profiling API is available in
  825. the StarPU sources in the directory @code{examples/profiling/}.
  826. @cartouche
  827. @smallexample
  828. struct starpu_task *task = starpu_task_create();
  829. task->cl = &cl;
  830. task->synchronous = 1;
  831. /* We will destroy the task structure by hand so that we can
  832. * query the profiling info before the task is destroyed. */
  833. task->destroy = 0;
  834. /* Submit and wait for completion (since synchronous was set to 1) */
  835. starpu_task_submit(task);
  836. /* The task is finished, get profiling information */
  837. struct starpu_task_profiling_info *info = task->profiling_info;
  838. /* How much time did it take before the task started ? */
  839. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  840. /* How long was the task execution ? */
  841. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  842. /* We don't need the task structure anymore */
  843. starpu_task_destroy(task);
  844. @end smallexample
  845. @end cartouche
  846. @cartouche
  847. @smallexample
  848. /* Display the occupancy of all workers during the test */
  849. int worker;
  850. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  851. @{
  852. struct starpu_worker_profiling_info worker_info;
  853. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  854. STARPU_ASSERT(!ret);
  855. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  856. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  857. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  858. float executing_ratio = 100.0*executing_time/total_time;
  859. float sleeping_ratio = 100.0*sleeping_time/total_time;
  860. char workername[128];
  861. starpu_worker_get_name(worker, workername, 128);
  862. fprintf(stderr, "Worker %s:\n", workername);
  863. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  864. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  865. executing_ratio);
  866. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  867. sleeping_ratio);
  868. @}
  869. @end smallexample
  870. @end cartouche
  871. @node Partitioning Data
  872. @section Partitioning Data
  873. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  874. @cartouche
  875. @smallexample
  876. int vector[NX];
  877. starpu_data_handle handle;
  878. /* Declare data to StarPU */
  879. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  880. /* Partition the vector in PARTS sub-vectors */
  881. starpu_filter f =
  882. @{
  883. .filter_func = starpu_block_filter_func_vector,
  884. .nchildren = PARTS,
  885. .get_nchildren = NULL,
  886. .get_child_ops = NULL
  887. @};
  888. starpu_data_partition(handle, &f);
  889. @end smallexample
  890. @end cartouche
  891. @cartouche
  892. @smallexample
  893. /* Submit a task on each sub-vector */
  894. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  895. /* Get subdata number i (there is only 1 dimension) */
  896. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  897. struct starpu_task *task = starpu_task_create();
  898. task->buffers[0].handle = sub_handle;
  899. task->buffers[0].mode = STARPU_RW;
  900. task->cl = &cl;
  901. task->synchronous = 1;
  902. task->cl_arg = &factor;
  903. task->cl_arg_size = sizeof(factor);
  904. starpu_task_submit(task);
  905. @}
  906. @end smallexample
  907. @end cartouche
  908. Partitioning can be applied several times, see
  909. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  910. @node Performance model example
  911. @section Performance model example
  912. To achieve good scheduling, StarPU scheduling policies need to be able to
  913. estimate in advance the duration of a task. This is done by giving to codelets a
  914. performance model. There are several kinds of performance models.
  915. @itemize
  916. @item
  917. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  918. see for instance
  919. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  920. @item
  921. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  922. given set of data input/output sizes, the performance will always be about the
  923. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  924. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  925. few different sets of data input/output sizes. StarPU will then keep record of
  926. the average time of previous executions on the various processing units, and use
  927. it as an estimation. History is done per task size, by using a hash of the input
  928. and ouput sizes as an index.
  929. It will also save it in @code{~/.starpu/sampling/codelets}
  930. for further executions, and can be observed by using the
  931. @code{starpu_perfmodel_display} command. The following is a small code example.
  932. @cartouche
  933. @smallexample
  934. static struct starpu_perfmodel_t mult_perf_model = @{
  935. .type = STARPU_HISTORY_BASED,
  936. .symbol = "mult_perf_model"
  937. @};
  938. starpu_codelet cl = @{
  939. .where = STARPU_CPU,
  940. .cpu_func = cpu_mult,
  941. .nbuffers = 3,
  942. /* for the scheduling policy to be able to use performance models */
  943. .model = &mult_perf_model
  944. @};
  945. @end smallexample
  946. @end cartouche
  947. @item
  948. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  949. type). This still assumes performance regularity, but can work with various data
  950. input sizes, by applying a*n^b+c regression over observed execution times.
  951. @end itemize
  952. How to use schedulers which can benefit from such performance model is explained
  953. in @ref{Task scheduling policy}.
  954. The same can be done for task power consumption estimation, by setting the
  955. @code{power_model} field the same way as the @code{model} field. Note: for
  956. now, the application has to give to the power consumption performance model
  957. a name which is different from the execution time performance model.
  958. @node Theoretical lower bound on execution time
  959. @section Theoretical lower bound on execution time
  960. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  961. bound for the execution time of a whole set of tasks. See for
  962. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  963. call @code{starpu_bound_start}, and after complete execution, call
  964. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  965. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  966. problem corresponding to the schedule of your tasks. Run it through
  967. @code{lp_solve} or any other linear programming solver, and that will give you a
  968. lower bound for the total execution time of your tasks. If StarPU was compiled
  969. with the glpk library installed, @code{starpu_bound_compute} can be used to
  970. solve it immediately and get the optimized minimum. Its @code{integer}
  971. parameter allows to decide whether integer resolution should be computed
  972. and returned.
  973. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  974. dependencies into account. It must be understood that the linear programming
  975. problem size is quadratic with the number of tasks and thus the time to solve it
  976. will be very long, it could be minutes for just a few dozen tasks. You should
  977. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  978. problem to MPS format and then use a better solver, @code{glpsol} might be
  979. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  980. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  981. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  982. of @code{lp_solve}. For instance, we often just use
  983. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  984. the @code{-gr} option can also be quite useful.
  985. Setting @code{deps} to 0 will only take into account the actual computations
  986. on processing units. It however still properly takes into account the varying
  987. performances of kernels and processing units, which is quite more accurate than
  988. just comparing StarPU performances with the fastest of the kernels being used.
  989. The @code{prio} parameter tells StarPU whether to simulate taking into account
  990. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  991. tasks before less prioritized tasks, to check to which extend this results
  992. to a less optimal solution. This increases even more computation time.
  993. Note that for simplicity, all this however doesn't take into account data
  994. transfers, which are assumed to be completely overlapped.
  995. @node Insert Task Utility
  996. @section Insert Task Utility
  997. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  998. the creation and submission of tasks.
  999. @deftypefun int starpu_insert_task (starpu_codelet *cl, ...)
  1000. Create and submit a task corresponding to @var{cl} with the following
  1001. arguments. The argument list must be zero-terminated.
  1002. The arguments following the codelets can be of the following types:
  1003. @itemize
  1004. @item
  1005. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  1006. @item
  1007. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1008. the size of the constant;
  1009. @item
  1010. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1011. @item
  1012. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1013. argument to the callback function;
  1014. @item
  1015. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1016. @end itemize
  1017. Parameters to be passed to the codelet implementation are defined
  1018. through the type @code{STARPU_VALUE}. The function
  1019. @code{starpu_unpack_cl_args} must be called within the codelet
  1020. implementation to retrieve them.
  1021. @end deftypefun
  1022. Here the implementation of the codelet:
  1023. @smallexample
  1024. void func_cpu(void *descr[], void *_args)
  1025. @{
  1026. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1027. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1028. int ifactor;
  1029. float ffactor;
  1030. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1031. *x0 = *x0 * ifactor;
  1032. *x1 = *x1 * ffactor;
  1033. @}
  1034. starpu_codelet mycodelet = @{
  1035. .where = STARPU_CPU,
  1036. .cpu_func = func_cpu,
  1037. .nbuffers = 2
  1038. @};
  1039. @end smallexample
  1040. And the call to the @code{starpu_insert_task} wrapper:
  1041. @smallexample
  1042. starpu_insert_task(&mycodelet,
  1043. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1044. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1045. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1046. 0);
  1047. @end smallexample
  1048. The call to @code{starpu_insert_task} is equivalent to the following
  1049. code:
  1050. @smallexample
  1051. struct starpu_task *task = starpu_task_create();
  1052. task->cl = &mycodelet;
  1053. task->buffers[0].handle = data_handles[0];
  1054. task->buffers[0].mode = STARPU_RW;
  1055. task->buffers[1].handle = data_handles[1];
  1056. task->buffers[1].mode = STARPU_RW;
  1057. char *arg_buffer;
  1058. size_t arg_buffer_size;
  1059. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1060. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1061. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1062. 0);
  1063. task->cl_arg = arg_buffer;
  1064. task->cl_arg_size = arg_buffer_size;
  1065. int ret = starpu_task_submit(task);
  1066. @end smallexample
  1067. @node More examples
  1068. @section More examples
  1069. More examples are available in the StarPU sources in the @code{examples/}
  1070. directory. Simple examples include:
  1071. @table @asis
  1072. @item @code{incrementer/}:
  1073. Trivial incrementation test.
  1074. @item @code{basic_examples/}:
  1075. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1076. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1077. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1078. interface, and an example using the variable data interface.
  1079. @item @code{matvecmult/}:
  1080. OpenCL example from NVidia, adapted to StarPU.
  1081. @item @code{axpy/}:
  1082. AXPY CUBLAS operation adapted to StarPU.
  1083. @item @code{fortran/}:
  1084. Example of Fortran bindings.
  1085. @end table
  1086. More advanced examples include:
  1087. @table @asis
  1088. @item @code{filters/}:
  1089. Examples using filters, as shown in @ref{Partitioning Data}.
  1090. @item @code{lu/}:
  1091. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1092. @item @code{cholesky/}:
  1093. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1094. @end table
  1095. @c ---------------------------------------------------------------------
  1096. @c Performance options
  1097. @c ---------------------------------------------------------------------
  1098. @node Performance optimization
  1099. @chapter How to optimize performance with StarPU
  1100. TODO: improve!
  1101. @menu
  1102. * Data management::
  1103. * Task submission::
  1104. * Task priorities::
  1105. * Task scheduling policy::
  1106. * Task distribution vs Data transfer::
  1107. * Power-based scheduling::
  1108. * Profiling::
  1109. * CUDA-specific optimizations::
  1110. @end menu
  1111. Simply encapsulating application kernels into tasks already permits to
  1112. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1113. few additional changes are needed.
  1114. @node Data management
  1115. @section Data management
  1116. By default, StarPU does not enable data prefetching, because CUDA does
  1117. not announce when too many data transfers were scheduled and can thus block
  1118. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1119. .
  1120. By default, StarPU leaves replicates of data wherever they were used, in case they
  1121. will be re-used by other tasks, thus saving the data transfer time. When some
  1122. task modifies some data, all the other replicates are invalidated, and only the
  1123. processing unit will have a valid replicate of the data. If the application knows
  1124. that this data will not be re-used by further tasks, it should advise StarPU to
  1125. immediately replicate it to a desired list of memory nodes (given through a
  1126. bitmask). This can be understood like the write-through mode of CPU caches.
  1127. @example
  1128. starpu_data_set_wt_mask(img_handle, 1<<0);
  1129. @end example
  1130. will for instance request to always transfer a replicate into the main memory (node
  1131. 0), as bit 0 of the write-through bitmask is being set.
  1132. When the application allocates data, whenever possible it should use the
  1133. @code{starpu_malloc} function, which will ask CUDA or
  1134. OpenCL to make the allocation itself and pin the corresponding allocated
  1135. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1136. transfer to overlap with computations.
  1137. @node Task submission
  1138. @section Task submission
  1139. To let StarPU make online optimizations, tasks should be submitted
  1140. asynchronously as much as possible. Ideally, all the tasks should be
  1141. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1142. @code{starpu_data_acquire} be done to wait for
  1143. termination. StarPU will then be able to rework the whole schedule, overlap
  1144. computation with communication, manage accelerator local memory usage, etc.
  1145. @node Task priorities
  1146. @section Task priorities
  1147. By default, StarPU will consider the tasks in the order they are submitted by
  1148. the application. If the application programmer knows that some tasks should
  1149. be performed in priority (for instance because their output is needed by many
  1150. other tasks and may thus be a bottleneck if not executed early enough), the
  1151. @code{priority} field of the task structure should be set to transmit the
  1152. priority information to StarPU.
  1153. @node Task scheduling policy
  1154. @section Task scheduling policy
  1155. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1156. because it provides correct load balance even if the application codelets do not
  1157. have performance models. If your application codelets have performance models
  1158. (@pxref{Performance model example} for examples showing how to do it),
  1159. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1160. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1161. the list of available schedulers.
  1162. @c TODO: give some details about each scheduler.
  1163. Most schedulers are based on an estimation of codelet duration on each kind
  1164. of processing unit. For this to be possible, the application programmer needs
  1165. to configure a performance model for the codelets of the application (see
  1166. @ref{Performance model example} for instance). History-based performance models
  1167. use on-line calibration. StarPU will automatically calibrate codelets
  1168. which have never been calibrated yet. To force continuing calibration, use
  1169. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1170. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1171. Note: due to CUDA limitations, to be able to measure kernel duration,
  1172. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1173. disables data transfer / computation overlapping, and should thus not be used
  1174. for eventual benchmarks. Note 2: history-based performance model get calibrated
  1175. only if a performance-model-based scheduler is chosen.
  1176. @node Task distribution vs Data transfer
  1177. @section Task distribution vs Data transfer
  1178. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1179. thus needs to find a balance between both. The target function that the
  1180. @code{dmda} scheduler of StarPU
  1181. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1182. @code{T_execution} is the estimated execution time of the codelet (usually
  1183. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1184. latter is however estimated based on bus calibration before execution start,
  1185. i.e. with an idle machine. You can force bus re-calibration by running
  1186. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1187. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1188. This is of course imprecise, but in practice, a rough estimation already gives
  1189. the good results that a precise estimation would give.
  1190. @node Power-based scheduling
  1191. @section Power-based scheduling
  1192. If the application can provide some power performance model (through
  1193. the @code{power_model} field of the codelet structure), StarPU will
  1194. take it into account when distributing tasks. The target function that
  1195. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1196. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1197. is the estimated task consumption in Joules. To tune this parameter, use
  1198. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1199. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1200. alpha and beta to zero permits to only take into account power consumption.
  1201. This is however not sufficient to correctly optimize power: the scheduler would
  1202. simply tend to run all computations on the most energy-conservative processing
  1203. unit. To account for the consumption of the whole machine (including idle
  1204. processing units), the idle power of the machine should be given by setting
  1205. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1206. be obtained from the machine power supplier.
  1207. The power actually consumed by the total execution can be displayed by setting
  1208. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1209. @node Profiling
  1210. @section Profiling
  1211. A quick view of how many tasks each worker has executed can be obtained by setting
  1212. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1213. execution did happen on accelerators without penalizing performance with
  1214. the profiling overhead.
  1215. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1216. calling @code{starpu_profiling_status_set} from the source code.
  1217. Statistics on the execution can then be obtained by using @code{export
  1218. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1219. More details on performance feedback are provided by the next chapter.
  1220. @node CUDA-specific optimizations
  1221. @section CUDA-specific optimizations
  1222. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1223. communications and the codelet computations if the application does not use a
  1224. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1225. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1226. operations. For instance:
  1227. @example
  1228. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1229. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1230. @end example
  1231. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1232. kernels. That will lower the potential for overlapping.
  1233. @c ---------------------------------------------------------------------
  1234. @c Performance feedback
  1235. @c ---------------------------------------------------------------------
  1236. @node Performance feedback
  1237. @chapter Performance feedback
  1238. @menu
  1239. * On-line:: On-line performance feedback
  1240. * Off-line:: Off-line performance feedback
  1241. * Codelet performance:: Performance of codelets
  1242. @end menu
  1243. @node On-line
  1244. @section On-line performance feedback
  1245. @menu
  1246. * Enabling monitoring:: Enabling on-line performance monitoring
  1247. * Task feedback:: Per-task feedback
  1248. * Codelet feedback:: Per-codelet feedback
  1249. * Worker feedback:: Per-worker feedback
  1250. * Bus feedback:: Bus-related feedback
  1251. @end menu
  1252. @node Enabling monitoring
  1253. @subsection Enabling on-line performance monitoring
  1254. In order to enable online performance monitoring, the application can call
  1255. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1256. detect whether monitoring is already enabled or not by calling
  1257. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1258. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1259. can also be set to 1 to achieve the same effect.
  1260. Likewise, performance monitoring is stopped by calling
  1261. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1262. does not reset the performance counters so that the application may consult
  1263. them later on.
  1264. More details about the performance monitoring API are available in section
  1265. @ref{Profiling API}.
  1266. @node Task feedback
  1267. @subsection Per-task feedback
  1268. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1269. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1270. structure when a task terminates.
  1271. This structure is automatically destroyed when the task structure is destroyed,
  1272. either automatically or by calling @code{starpu_task_destroy}.
  1273. The @code{starpu_task_profiling_info} structure indicates the date when the
  1274. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1275. terminated (@code{end_time}), relative to the initialization of
  1276. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1277. that has executed the task (@code{workerid}).
  1278. These date are stored as @code{timespec} structures which the user may convert
  1279. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1280. function.
  1281. It it worth noting that the application may directly access this structure from
  1282. the callback executed at the end of the task. The @code{starpu_task} structure
  1283. associated to the callback currently being executed is indeed accessible with
  1284. the @code{starpu_get_current_task()} function.
  1285. @node Codelet feedback
  1286. @subsection Per-codelet feedback
  1287. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1288. an array of counters. The i-th entry of the array is incremented every time a
  1289. task implementing the codelet is executed on the i-th worker.
  1290. This array is not reinitialized when profiling is enabled or disabled.
  1291. @node Worker feedback
  1292. @subsection Per-worker feedback
  1293. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1294. function is a @code{starpu_worker_profiling_info} structure that gives
  1295. statistics about the specified worker. This structure specifies when StarPU
  1296. started collecting profiling information for that worker (@code{start_time}),
  1297. the duration of the profiling measurement interval (@code{total_time}), the
  1298. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1299. because there is no task to execute at all (@code{sleeping_time}), and the
  1300. number of tasks that were executed while profiling was enabled.
  1301. These values give an estimation of the proportion of time spent do real work,
  1302. and the time spent either sleeping because there are not enough executable
  1303. tasks or simply wasted in pure StarPU overhead.
  1304. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1305. information associated to a worker.
  1306. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1307. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1308. generate a graphic showing the evolution of these values during the time, for
  1309. the different workers.
  1310. @node Bus feedback
  1311. @subsection Bus-related feedback
  1312. TODO
  1313. @c how to enable/disable performance monitoring
  1314. @c what kind of information do we get ?
  1315. @node Off-line
  1316. @section Off-line performance feedback
  1317. @menu
  1318. * Generating traces:: Generating traces with FxT
  1319. * Gantt diagram:: Creating a Gantt Diagram
  1320. * DAG:: Creating a DAG with graphviz
  1321. * starpu-top:: Monitoring activity
  1322. @end menu
  1323. @node Generating traces
  1324. @subsection Generating traces with FxT
  1325. StarPU can use the FxT library (see
  1326. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1327. with a limited runtime overhead.
  1328. You can either get the FxT library from CVS (autotools are required):
  1329. @example
  1330. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1331. % ./bootstrap
  1332. @end example
  1333. If autotools are not available on your machine, or if you prefer to do so,
  1334. FxT's code is also available as a tarball:
  1335. @example
  1336. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1337. @end example
  1338. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1339. done following the standard procedure:
  1340. @example
  1341. % ./configure --prefix=$FXTDIR
  1342. % make
  1343. % make install
  1344. @end example
  1345. In order to have StarPU to generate traces, StarPU should be configured with
  1346. the @code{--with-fxt} option:
  1347. @example
  1348. $ ./configure --with-fxt=$FXTDIR
  1349. @end example
  1350. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1351. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1352. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1353. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1354. @code{/tmp/} directory by default, or by the directory specified by
  1355. the @code{STARPU_FXT_PREFIX} environment variable.
  1356. @node Gantt diagram
  1357. @subsection Creating a Gantt Diagram
  1358. When the FxT trace file @code{filename} has been generated, it is possible to
  1359. generate a trace in the Paje format by calling:
  1360. @example
  1361. % starpu_fxt_tool -i filename
  1362. @end example
  1363. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1364. to 1 before application execution will make StarPU do it automatically at
  1365. application shutdown.
  1366. This will create a @code{paje.trace} file in the current directory that can be
  1367. inspected with the ViTE trace visualizing open-source tool. More information
  1368. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1369. possible to open the @code{paje.trace} file with ViTE by using the following
  1370. command:
  1371. @example
  1372. % vite paje.trace
  1373. @end example
  1374. @node DAG
  1375. @subsection Creating a DAG with graphviz
  1376. When the FxT trace file @code{filename} has been generated, it is possible to
  1377. generate a task graph in the DOT format by calling:
  1378. @example
  1379. $ starpu_fxt_tool -i filename
  1380. @end example
  1381. This will create a @code{dag.dot} file in the current directory. This file is a
  1382. task graph described using the DOT language. It is possible to get a
  1383. graphical output of the graph by using the graphviz library:
  1384. @example
  1385. $ dot -Tpdf dag.dot -o output.pdf
  1386. @end example
  1387. @node starpu-top
  1388. @subsection Monitoring activity
  1389. When the FxT trace file @code{filename} has been generated, it is possible to
  1390. generate a activity trace by calling:
  1391. @example
  1392. $ starpu_fxt_tool -i filename
  1393. @end example
  1394. This will create an @code{activity.data} file in the current
  1395. directory. A profile of the application showing the activity of StarPU
  1396. during the execution of the program can be generated:
  1397. @example
  1398. $ starpu_top.sh activity.data
  1399. @end example
  1400. This will create a file named @code{activity.eps} in the current directory.
  1401. This picture is composed of two parts.
  1402. The first part shows the activity of the different workers. The green sections
  1403. indicate which proportion of the time was spent executed kernels on the
  1404. processing unit. The red sections indicate the proportion of time spent in
  1405. StartPU: an important overhead may indicate that the granularity may be too
  1406. low, and that bigger tasks may be appropriate to use the processing unit more
  1407. efficiently. The black sections indicate that the processing unit was blocked
  1408. because there was no task to process: this may indicate a lack of parallelism
  1409. which may be alleviated by creating more tasks when it is possible.
  1410. The second part of the @code{activity.eps} picture is a graph showing the
  1411. evolution of the number of tasks available in the system during the execution.
  1412. Ready tasks are shown in black, and tasks that are submitted but not
  1413. schedulable yet are shown in grey.
  1414. @node Codelet performance
  1415. @section Performance of codelets
  1416. The performance model of codelets can be examined by using the
  1417. @code{starpu_perfmodel_display} tool:
  1418. @example
  1419. $ starpu_perfmodel_display -l
  1420. file: <malloc_pinned.hannibal>
  1421. file: <starpu_slu_lu_model_21.hannibal>
  1422. file: <starpu_slu_lu_model_11.hannibal>
  1423. file: <starpu_slu_lu_model_22.hannibal>
  1424. file: <starpu_slu_lu_model_12.hannibal>
  1425. @end example
  1426. Here, the codelets of the lu example are available. We can examine the
  1427. performance of the 22 kernel:
  1428. @example
  1429. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1430. performance model for cpu
  1431. # hash size mean dev n
  1432. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1433. performance model for cuda_0
  1434. # hash size mean dev n
  1435. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1436. performance model for cuda_1
  1437. # hash size mean dev n
  1438. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1439. performance model for cuda_2
  1440. # hash size mean dev n
  1441. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1442. @end example
  1443. We can see that for the given size, over a sample of a few hundreds of
  1444. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1445. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1446. CPUs.
  1447. @c ---------------------------------------------------------------------
  1448. @c MPI support
  1449. @c ---------------------------------------------------------------------
  1450. @node StarPU MPI support
  1451. @chapter StarPU MPI support
  1452. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1453. @c ---------------------------------------------------------------------
  1454. @c Configuration options
  1455. @c ---------------------------------------------------------------------
  1456. @node Configuring StarPU
  1457. @chapter Configuring StarPU
  1458. @menu
  1459. * Compilation configuration::
  1460. * Execution configuration through environment variables::
  1461. @end menu
  1462. @node Compilation configuration
  1463. @section Compilation configuration
  1464. The following arguments can be given to the @code{configure} script.
  1465. @menu
  1466. * Common configuration::
  1467. * Configuring workers::
  1468. * Advanced configuration::
  1469. @end menu
  1470. @node Common configuration
  1471. @subsection Common configuration
  1472. @menu
  1473. * --enable-debug::
  1474. * --enable-fast::
  1475. * --enable-verbose::
  1476. * --enable-coverage::
  1477. @end menu
  1478. @node --enable-debug
  1479. @subsubsection @code{--enable-debug}
  1480. @table @asis
  1481. @item @emph{Description}:
  1482. Enable debugging messages.
  1483. @end table
  1484. @node --enable-fast
  1485. @subsubsection @code{--enable-fast}
  1486. @table @asis
  1487. @item @emph{Description}:
  1488. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1489. @end table
  1490. @node --enable-verbose
  1491. @subsubsection @code{--enable-verbose}
  1492. @table @asis
  1493. @item @emph{Description}:
  1494. Augment the verbosity of the debugging messages. This can be disabled
  1495. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1496. any value.
  1497. @smallexample
  1498. % STARPU_SILENT=1 ./vector_scal
  1499. @end smallexample
  1500. @end table
  1501. @node --enable-coverage
  1502. @subsubsection @code{--enable-coverage}
  1503. @table @asis
  1504. @item @emph{Description}:
  1505. Enable flags for the @code{gcov} coverage tool.
  1506. @end table
  1507. @node Configuring workers
  1508. @subsection Configuring workers
  1509. @menu
  1510. * --enable-nmaxcpus::
  1511. * --disable-cpu::
  1512. * --enable-maxcudadev::
  1513. * --disable-cuda::
  1514. * --with-cuda-dir::
  1515. * --with-cuda-include-dir::
  1516. * --with-cuda-lib-dir::
  1517. * --enable-maxopencldev::
  1518. * --disable-opencl::
  1519. * --with-opencl-dir::
  1520. * --with-opencl-include-dir::
  1521. * --with-opencl-lib-dir::
  1522. * --enable-gordon::
  1523. * --with-gordon-dir::
  1524. @end menu
  1525. @node --enable-nmaxcpus
  1526. @subsubsection @code{--enable-nmaxcpus=<number>}
  1527. @table @asis
  1528. @item @emph{Description}:
  1529. Defines the maximum number of CPU cores that StarPU will support, then
  1530. available as the @code{STARPU_NMAXCPUS} macro.
  1531. @end table
  1532. @node --disable-cpu
  1533. @subsubsection @code{--disable-cpu}
  1534. @table @asis
  1535. @item @emph{Description}:
  1536. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1537. @end table
  1538. @node --enable-maxcudadev
  1539. @subsubsection @code{--enable-maxcudadev=<number>}
  1540. @table @asis
  1541. @item @emph{Description}:
  1542. Defines the maximum number of CUDA devices that StarPU will support, then
  1543. available as the @code{STARPU_MAXCUDADEVS} macro.
  1544. @end table
  1545. @node --disable-cuda
  1546. @subsubsection @code{--disable-cuda}
  1547. @table @asis
  1548. @item @emph{Description}:
  1549. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1550. @end table
  1551. @node --with-cuda-dir
  1552. @subsubsection @code{--with-cuda-dir=<path>}
  1553. @table @asis
  1554. @item @emph{Description}:
  1555. Specify the directory where CUDA is installed. This directory should notably contain
  1556. @code{include/cuda.h}.
  1557. @end table
  1558. @node --with-cuda-include-dir
  1559. @subsubsection @code{--with-cuda-include-dir=<path>}
  1560. @table @asis
  1561. @item @emph{Description}:
  1562. Specify the directory where CUDA headers are installed. This directory should
  1563. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1564. value given to @code{--with-cuda-dir}.
  1565. @end table
  1566. @node --with-cuda-lib-dir
  1567. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1568. @table @asis
  1569. @item @emph{Description}:
  1570. Specify the directory where the CUDA library is installed. This directory should
  1571. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1572. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1573. @end table
  1574. @node --enable-maxopencldev
  1575. @subsubsection @code{--enable-maxopencldev=<number>}
  1576. @table @asis
  1577. @item @emph{Description}:
  1578. Defines the maximum number of OpenCL devices that StarPU will support, then
  1579. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1580. @end table
  1581. @node --disable-opencl
  1582. @subsubsection @code{--disable-opencl}
  1583. @table @asis
  1584. @item @emph{Description}:
  1585. Disable the use of OpenCL, even if the SDK is detected.
  1586. @end table
  1587. @node --with-opencl-dir
  1588. @subsubsection @code{--with-opencl-dir=<path>}
  1589. @table @asis
  1590. @item @emph{Description}:
  1591. Specify the location of the OpenCL SDK. This directory should notably contain
  1592. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1593. @end table
  1594. @node --with-opencl-include-dir
  1595. @subsubsection @code{--with-opencl-include-dir=<path>}
  1596. @table @asis
  1597. @item @emph{Description}:
  1598. Specify the location of OpenCL headers. This directory should notably contain
  1599. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1600. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1601. @end table
  1602. @node --with-opencl-lib-dir
  1603. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1604. @table @asis
  1605. @item @emph{Description}:
  1606. Specify the location of the OpenCL library. This directory should notably
  1607. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1608. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1609. @end table
  1610. @node --enable-gordon
  1611. @subsubsection @code{--enable-gordon}
  1612. @table @asis
  1613. @item @emph{Description}:
  1614. Enable the use of the Gordon runtime for Cell SPUs.
  1615. @c TODO: rather default to enabled when detected
  1616. @end table
  1617. @node --with-gordon-dir
  1618. @subsubsection @code{--with-gordon-dir=<path>}
  1619. @table @asis
  1620. @item @emph{Description}:
  1621. Specify the location of the Gordon SDK.
  1622. @end table
  1623. @node Advanced configuration
  1624. @subsection Advanced configuration
  1625. @menu
  1626. * --enable-perf-debug::
  1627. * --enable-model-debug::
  1628. * --enable-stats::
  1629. * --enable-maxbuffers::
  1630. * --enable-allocation-cache::
  1631. * --enable-opengl-render::
  1632. * --enable-blas-lib::
  1633. * --with-magma::
  1634. * --with-fxt::
  1635. * --with-perf-model-dir::
  1636. * --with-mpicc::
  1637. * --with-goto-dir::
  1638. * --with-atlas-dir::
  1639. * --with-mkl-cflags::
  1640. * --with-mkl-ldflags::
  1641. @end menu
  1642. @node --enable-perf-debug
  1643. @subsubsection @code{--enable-perf-debug}
  1644. @table @asis
  1645. @item @emph{Description}:
  1646. Enable performance debugging.
  1647. @end table
  1648. @node --enable-model-debug
  1649. @subsubsection @code{--enable-model-debug}
  1650. @table @asis
  1651. @item @emph{Description}:
  1652. Enable performance model debugging.
  1653. @end table
  1654. @node --enable-stats
  1655. @subsubsection @code{--enable-stats}
  1656. @table @asis
  1657. @item @emph{Description}:
  1658. Enable statistics.
  1659. @end table
  1660. @node --enable-maxbuffers
  1661. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1662. @table @asis
  1663. @item @emph{Description}:
  1664. Define the maximum number of buffers that tasks will be able to take
  1665. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1666. @end table
  1667. @node --enable-allocation-cache
  1668. @subsubsection @code{--enable-allocation-cache}
  1669. @table @asis
  1670. @item @emph{Description}:
  1671. Enable the use of a data allocation cache to avoid the cost of it with
  1672. CUDA. Still experimental.
  1673. @end table
  1674. @node --enable-opengl-render
  1675. @subsubsection @code{--enable-opengl-render}
  1676. @table @asis
  1677. @item @emph{Description}:
  1678. Enable the use of OpenGL for the rendering of some examples.
  1679. @c TODO: rather default to enabled when detected
  1680. @end table
  1681. @node --enable-blas-lib
  1682. @subsubsection @code{--enable-blas-lib=<name>}
  1683. @table @asis
  1684. @item @emph{Description}:
  1685. Specify the blas library to be used by some of the examples. The
  1686. library has to be 'atlas' or 'goto'.
  1687. @end table
  1688. @node --with-magma
  1689. @subsubsection @code{--with-magma=<path>}
  1690. @table @asis
  1691. @item @emph{Description}:
  1692. Specify where magma is installed. This directory should notably contain
  1693. @code{include/magmablas.h}.
  1694. @end table
  1695. @node --with-fxt
  1696. @subsubsection @code{--with-fxt=<path>}
  1697. @table @asis
  1698. @item @emph{Description}:
  1699. Specify the location of FxT (for generating traces and rendering them
  1700. using ViTE). This directory should notably contain
  1701. @code{include/fxt/fxt.h}.
  1702. @c TODO add ref to other section
  1703. @end table
  1704. @node --with-perf-model-dir
  1705. @subsubsection @code{--with-perf-model-dir=<dir>}
  1706. @table @asis
  1707. @item @emph{Description}:
  1708. Specify where performance models should be stored (instead of defaulting to the
  1709. current user's home).
  1710. @end table
  1711. @node --with-mpicc
  1712. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1713. @table @asis
  1714. @item @emph{Description}:
  1715. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1716. @end table
  1717. @node --with-goto-dir
  1718. @subsubsection @code{--with-goto-dir=<dir>}
  1719. @table @asis
  1720. @item @emph{Description}:
  1721. Specify the location of GotoBLAS.
  1722. @end table
  1723. @node --with-atlas-dir
  1724. @subsubsection @code{--with-atlas-dir=<dir>}
  1725. @table @asis
  1726. @item @emph{Description}:
  1727. Specify the location of ATLAS. This directory should notably contain
  1728. @code{include/cblas.h}.
  1729. @end table
  1730. @node --with-mkl-cflags
  1731. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1732. @table @asis
  1733. @item @emph{Description}:
  1734. Specify the compilation flags for the MKL Library.
  1735. @end table
  1736. @node --with-mkl-ldflags
  1737. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1738. @table @asis
  1739. @item @emph{Description}:
  1740. Specify the linking flags for the MKL Library. Note that the
  1741. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1742. website provides a script to determine the linking flags.
  1743. @end table
  1744. @c ---------------------------------------------------------------------
  1745. @c Environment variables
  1746. @c ---------------------------------------------------------------------
  1747. @node Execution configuration through environment variables
  1748. @section Execution configuration through environment variables
  1749. @menu
  1750. * Workers:: Configuring workers
  1751. * Scheduling:: Configuring the Scheduling engine
  1752. * Misc:: Miscellaneous and debug
  1753. @end menu
  1754. Note: the values given in @code{starpu_conf} structure passed when
  1755. calling @code{starpu_init} will override the values of the environment
  1756. variables.
  1757. @node Workers
  1758. @subsection Configuring workers
  1759. @menu
  1760. * STARPU_NCPUS:: Number of CPU workers
  1761. * STARPU_NCUDA:: Number of CUDA workers
  1762. * STARPU_NOPENCL:: Number of OpenCL workers
  1763. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1764. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1765. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1766. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1767. @end menu
  1768. @node STARPU_NCPUS
  1769. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1770. @table @asis
  1771. @item @emph{Description}:
  1772. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  1773. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  1774. the accelerators.
  1775. @end table
  1776. @node STARPU_NCUDA
  1777. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1778. @table @asis
  1779. @item @emph{Description}:
  1780. Specify the number of CUDA devices that StarPU can use. If
  1781. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1782. possible to select which CUDA devices should be used by the means of the
  1783. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1784. create as many CUDA workers as there are CUDA devices.
  1785. @end table
  1786. @node STARPU_NOPENCL
  1787. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1788. @table @asis
  1789. @item @emph{Description}:
  1790. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1791. @end table
  1792. @node STARPU_NGORDON
  1793. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1794. @table @asis
  1795. @item @emph{Description}:
  1796. Specify the number of SPUs that StarPU can use.
  1797. @end table
  1798. @node STARPU_WORKERS_CPUID
  1799. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1800. @table @asis
  1801. @item @emph{Description}:
  1802. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1803. specifies on which logical CPU the different workers should be
  1804. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1805. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1806. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1807. determined by the OS, or provided by the @code{hwloc} library in case it is
  1808. available.
  1809. Note that the first workers correspond to the CUDA workers, then come the
  1810. OpenCL and the SPU, and finally the CPU workers. For example if
  1811. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1812. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1813. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1814. the logical CPUs #1 and #3 will be used by the CPU workers.
  1815. If the number of workers is larger than the array given in
  1816. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1817. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1818. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1819. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1820. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1821. @end table
  1822. @node STARPU_WORKERS_CUDAID
  1823. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1824. @table @asis
  1825. @item @emph{Description}:
  1826. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1827. possible to select which CUDA devices should be used by StarPU. On a machine
  1828. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1829. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1830. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1831. the one reported by CUDA).
  1832. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1833. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1834. @end table
  1835. @node STARPU_WORKERS_OPENCLID
  1836. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1837. @table @asis
  1838. @item @emph{Description}:
  1839. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1840. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1841. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1842. @end table
  1843. @node Scheduling
  1844. @subsection Configuring the Scheduling engine
  1845. @menu
  1846. * STARPU_SCHED:: Scheduling policy
  1847. * STARPU_CALIBRATE:: Calibrate performance models
  1848. * STARPU_PREFETCH:: Use data prefetch
  1849. * STARPU_SCHED_ALPHA:: Computation factor
  1850. * STARPU_SCHED_BETA:: Communication factor
  1851. @end menu
  1852. @node STARPU_SCHED
  1853. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1854. @table @asis
  1855. @item @emph{Description}:
  1856. This chooses between the different scheduling policies proposed by StarPU: work
  1857. random, stealing, greedy, with performance models, etc.
  1858. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1859. @end table
  1860. @node STARPU_CALIBRATE
  1861. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1862. @table @asis
  1863. @item @emph{Description}:
  1864. If this variable is set to 1, the performance models are calibrated during
  1865. the execution. If it is set to 2, the previous values are dropped to restart
  1866. calibration from scratch. Setting this variable to 0 disable calibration, this
  1867. is the default behaviour.
  1868. Note: this currently only applies to dm and dmda scheduling policies.
  1869. @end table
  1870. @node STARPU_PREFETCH
  1871. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1872. @table @asis
  1873. @item @emph{Description}:
  1874. This variable indicates whether data prefetching should be enabled (0 means
  1875. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1876. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1877. advance, so that data is already present on the GPU when the task starts. As a
  1878. result, computation and data transfers are overlapped.
  1879. @end table
  1880. @node STARPU_SCHED_ALPHA
  1881. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1882. @table @asis
  1883. @item @emph{Description}:
  1884. To estimate the cost of a task StarPU takes into account the estimated
  1885. computation time (obtained thanks to performance models). The alpha factor is
  1886. the coefficient to be applied to it before adding it to the communication part.
  1887. @end table
  1888. @node STARPU_SCHED_BETA
  1889. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1890. @table @asis
  1891. @item @emph{Description}:
  1892. To estimate the cost of a task StarPU takes into account the estimated
  1893. data transfer time (obtained thanks to performance models). The beta factor is
  1894. the coefficient to be applied to it before adding it to the computation part.
  1895. @end table
  1896. @node Misc
  1897. @subsection Miscellaneous and debug
  1898. @menu
  1899. * STARPU_SILENT:: Disable verbose mode
  1900. * STARPU_LOGFILENAME:: Select debug file name
  1901. * STARPU_FXT_PREFIX:: FxT trace location
  1902. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1903. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  1904. @end menu
  1905. @node STARPU_SILENT
  1906. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1907. @table @asis
  1908. @item @emph{Description}:
  1909. This variable allows to disable verbose mode at runtime when StarPU
  1910. has been configured with the option @code{--enable-verbose}.
  1911. @end table
  1912. @node STARPU_LOGFILENAME
  1913. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1914. @table @asis
  1915. @item @emph{Description}:
  1916. This variable specifies in which file the debugging output should be saved to.
  1917. @end table
  1918. @node STARPU_FXT_PREFIX
  1919. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1920. @table @asis
  1921. @item @emph{Description}
  1922. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1923. @end table
  1924. @node STARPU_LIMIT_GPU_MEM
  1925. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1926. @table @asis
  1927. @item @emph{Description}
  1928. This variable specifies the maximum number of megabytes that should be
  1929. available to the application on each GPUs. In case this value is smaller than
  1930. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1931. on the device. This variable is intended to be used for experimental purposes
  1932. as it emulates devices that have a limited amount of memory.
  1933. @end table
  1934. @node STARPU_GENERATE_TRACE
  1935. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  1936. @table @asis
  1937. @item @emph{Description}
  1938. When set to 1, this variable indicates that StarPU should automatically
  1939. generate a Paje trace when starpu_shutdown is called.
  1940. @end table
  1941. @c ---------------------------------------------------------------------
  1942. @c StarPU API
  1943. @c ---------------------------------------------------------------------
  1944. @node StarPU API
  1945. @chapter StarPU API
  1946. @menu
  1947. * Initialization and Termination:: Initialization and Termination methods
  1948. * Workers' Properties:: Methods to enumerate workers' properties
  1949. * Data Library:: Methods to manipulate data
  1950. * Data Interfaces::
  1951. * Data Partition::
  1952. * Codelets and Tasks:: Methods to construct tasks
  1953. * Explicit Dependencies:: Explicit Dependencies
  1954. * Implicit Data Dependencies:: Implicit Data Dependencies
  1955. * Performance Model API::
  1956. * Profiling API:: Profiling API
  1957. * CUDA extensions:: CUDA extensions
  1958. * OpenCL extensions:: OpenCL extensions
  1959. * Cell extensions:: Cell extensions
  1960. * Miscellaneous helpers::
  1961. @end menu
  1962. @node Initialization and Termination
  1963. @section Initialization and Termination
  1964. @menu
  1965. * starpu_init:: Initialize StarPU
  1966. * struct starpu_conf:: StarPU runtime configuration
  1967. * starpu_conf_init:: Initialize starpu_conf structure
  1968. * starpu_shutdown:: Terminate StarPU
  1969. @end menu
  1970. @node starpu_init
  1971. @subsection @code{starpu_init} -- Initialize StarPU
  1972. @table @asis
  1973. @item @emph{Description}:
  1974. This is StarPU initialization method, which must be called prior to any other
  1975. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1976. policy, number of cores, ...) by passing a non-null argument. Default
  1977. configuration is used if the passed argument is @code{NULL}.
  1978. @item @emph{Return value}:
  1979. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1980. indicates that no worker was available (so that StarPU was not initialized).
  1981. @item @emph{Prototype}:
  1982. @code{int starpu_init(struct starpu_conf *conf);}
  1983. @end table
  1984. @node struct starpu_conf
  1985. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1986. @table @asis
  1987. @item @emph{Description}:
  1988. This structure is passed to the @code{starpu_init} function in order
  1989. to configure StarPU.
  1990. When the default value is used, StarPU automatically selects the number
  1991. of processing units and takes the default scheduling policy. This parameter
  1992. overwrites the equivalent environment variables.
  1993. @item @emph{Fields}:
  1994. @table @asis
  1995. @item @code{sched_policy_name} (default = NULL):
  1996. This is the name of the scheduling policy. This can also be specified with the
  1997. @code{STARPU_SCHED} environment variable.
  1998. @item @code{sched_policy} (default = NULL):
  1999. This is the definition of the scheduling policy. This field is ignored
  2000. if @code{sched_policy_name} is set.
  2001. @item @code{ncpus} (default = -1):
  2002. This is the number of CPU cores that StarPU can use. This can also be
  2003. specified with the @code{STARPU_NCPUS} environment variable.
  2004. @item @code{ncuda} (default = -1):
  2005. This is the number of CUDA devices that StarPU can use. This can also be
  2006. specified with the @code{STARPU_NCUDA} environment variable.
  2007. @item @code{nopencl} (default = -1):
  2008. This is the number of OpenCL devices that StarPU can use. This can also be
  2009. specified with the @code{STARPU_NOPENCL} environment variable.
  2010. @item @code{nspus} (default = -1):
  2011. This is the number of Cell SPUs that StarPU can use. This can also be
  2012. specified with the @code{STARPU_NGORDON} environment variable.
  2013. @item @code{use_explicit_workers_bindid} (default = 0)
  2014. If this flag is set, the @code{workers_bindid} array indicates where the
  2015. different workers are bound, otherwise StarPU automatically selects where to
  2016. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2017. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2018. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2019. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2020. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2021. where to bind the different workers. The i-th entry of the
  2022. @code{workers_bindid} indicates the logical identifier of the processor which
  2023. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2024. either determined by the OS, or provided by the @code{hwloc} library in case it
  2025. is available.
  2026. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2027. ignored.
  2028. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2029. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2030. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2031. CUDA devices in a round-robin fashion.
  2032. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2033. ignored.
  2034. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2035. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2036. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2037. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2038. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2039. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2040. OpenCL devices in a round-robin fashion.
  2041. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2042. @item @code{calibrate} (default = 0):
  2043. If this flag is set, StarPU will calibrate the performance models when
  2044. executing tasks. If this value is equal to -1, the default value is used. The
  2045. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2046. variable when it is set.
  2047. @end table
  2048. @end table
  2049. @node starpu_conf_init
  2050. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2051. @table @asis
  2052. This function initializes the @code{starpu_conf} structure passed as argument
  2053. with the default values. In case some configuration parameters are already
  2054. specified through environment variables, @code{starpu_conf_init} initializes
  2055. the fields of the structure according to the environment variables. For
  2056. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2057. @code{.ncuda} field of the structure passed as argument.
  2058. @item @emph{Return value}:
  2059. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2060. indicates that the argument was NULL.
  2061. @item @emph{Prototype}:
  2062. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2063. @end table
  2064. @node starpu_shutdown
  2065. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2066. @table @asis
  2067. @item @emph{Description}:
  2068. This is StarPU termination method. It must be called at the end of the
  2069. application: statistics and other post-mortem debugging information are not
  2070. guaranteed to be available until this method has been called.
  2071. @item @emph{Prototype}:
  2072. @code{void starpu_shutdown(void);}
  2073. @end table
  2074. @node Workers' Properties
  2075. @section Workers' Properties
  2076. @menu
  2077. * starpu_worker_get_count:: Get the number of processing units
  2078. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2079. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2080. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2081. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2082. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2083. * starpu_worker_get_id:: Get the identifier of the current worker
  2084. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2085. * starpu_worker_get_devid:: Get the device identifier of a worker
  2086. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2087. * starpu_worker_get_name:: Get the name of a worker
  2088. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2089. @end menu
  2090. @node starpu_worker_get_count
  2091. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2092. @table @asis
  2093. @item @emph{Description}:
  2094. This function returns the number of workers (i.e. processing units executing
  2095. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2096. @item @emph{Prototype}:
  2097. @code{unsigned starpu_worker_get_count(void);}
  2098. @end table
  2099. @node starpu_worker_get_count_by_type
  2100. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2101. @table @asis
  2102. @item @emph{Description}:
  2103. Returns the number of workers of the type indicated by the argument. A positive
  2104. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2105. the type is not valid otherwise.
  2106. @item @emph{Prototype}:
  2107. @code{int starpu_worker_get_count_by_type(enum starpu_archtype type);}
  2108. @end table
  2109. @node starpu_cpu_worker_get_count
  2110. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2111. @table @asis
  2112. @item @emph{Description}:
  2113. This function returns the number of CPUs controlled by StarPU. The returned
  2114. value should be at most @code{STARPU_NMAXCPUS}.
  2115. @item @emph{Prototype}:
  2116. @code{unsigned starpu_cpu_worker_get_count(void);}
  2117. @end table
  2118. @node starpu_cuda_worker_get_count
  2119. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2120. @table @asis
  2121. @item @emph{Description}:
  2122. This function returns the number of CUDA devices controlled by StarPU. The returned
  2123. value should be at most @code{STARPU_MAXCUDADEVS}.
  2124. @item @emph{Prototype}:
  2125. @code{unsigned starpu_cuda_worker_get_count(void);}
  2126. @end table
  2127. @node starpu_opencl_worker_get_count
  2128. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2129. @table @asis
  2130. @item @emph{Description}:
  2131. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2132. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2133. @item @emph{Prototype}:
  2134. @code{unsigned starpu_opencl_worker_get_count(void);}
  2135. @end table
  2136. @node starpu_spu_worker_get_count
  2137. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2138. @table @asis
  2139. @item @emph{Description}:
  2140. This function returns the number of Cell SPUs controlled by StarPU.
  2141. @item @emph{Prototype}:
  2142. @code{unsigned starpu_opencl_worker_get_count(void);}
  2143. @end table
  2144. @node starpu_worker_get_id
  2145. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2146. @table @asis
  2147. @item @emph{Description}:
  2148. This function returns the identifier of the worker associated to the calling
  2149. thread. The returned value is either -1 if the current context is not a StarPU
  2150. worker (i.e. when called from the application outside a task or a callback), or
  2151. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2152. @item @emph{Prototype}:
  2153. @code{int starpu_worker_get_id(void);}
  2154. @end table
  2155. @node starpu_worker_get_ids_by_type
  2156. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2157. @table @asis
  2158. @item @emph{Description}:
  2159. Fill the workerids array with the identifiers of the workers that have the type
  2160. indicated in the first argument. The maxsize argument indicates the size of the
  2161. workids array. The returned value gives the number of identifiers that were put
  2162. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2163. workers with the appropriate type: in that case, the array is filled with the
  2164. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2165. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2166. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2167. @item @emph{Prototype}:
  2168. @code{int starpu_worker_get_ids_by_type(enum starpu_archtype type, int *workerids, int maxsize);}
  2169. @end table
  2170. @node starpu_worker_get_devid
  2171. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2172. @table @asis
  2173. @item @emph{Description}:
  2174. This functions returns the device id of the worker associated to an identifier
  2175. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2176. CUDA worker, this device identifier is the logical device identifier exposed by
  2177. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2178. identifier of a CPU worker is the logical identifier of the core on which the
  2179. worker was bound; this identifier is either provided by the OS or by the
  2180. @code{hwloc} library in case it is available.
  2181. @item @emph{Prototype}:
  2182. @code{int starpu_worker_get_devid(int id);}
  2183. @end table
  2184. @node starpu_worker_get_type
  2185. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2186. @table @asis
  2187. @item @emph{Description}:
  2188. This function returns the type of worker associated to an identifier (as
  2189. returned by the @code{starpu_worker_get_id} function). The returned value
  2190. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2191. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2192. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2193. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2194. identifier is unspecified.
  2195. @item @emph{Prototype}:
  2196. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2197. @end table
  2198. @node starpu_worker_get_name
  2199. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2200. @table @asis
  2201. @item @emph{Description}:
  2202. StarPU associates a unique human readable string to each processing unit. This
  2203. function copies at most the @code{maxlen} first bytes of the unique string
  2204. associated to a worker identified by its identifier @code{id} into the
  2205. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2206. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2207. function on an invalid identifier results in an unspecified behaviour.
  2208. @item @emph{Prototype}:
  2209. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2210. @end table
  2211. @node starpu_worker_get_memory_node
  2212. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2213. @table @asis
  2214. @item @emph{Description}:
  2215. This function returns the identifier of the memory node associated to the
  2216. worker identified by @code{workerid}.
  2217. @item @emph{Prototype}:
  2218. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2219. @end table
  2220. @node Data Library
  2221. @section Data Library
  2222. This section describes the data management facilities provided by StarPU.
  2223. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2224. design their own data interfaces if required.
  2225. @menu
  2226. * starpu_malloc:: Allocate data and pin it
  2227. * starpu_access_mode:: Data access mode
  2228. * unsigned memory_node:: Memory node
  2229. * starpu_data_handle:: StarPU opaque data handle
  2230. * void *interface:: StarPU data interface
  2231. * starpu_data_register:: Register a piece of data to StarPU
  2232. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2233. * starpu_data_invalidate:: Invalidate all data replicates
  2234. * starpu_data_acquire:: Access registered data from the application
  2235. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2236. * starpu_data_release:: Release registered data from the application
  2237. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2238. @end menu
  2239. @node starpu_malloc
  2240. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2241. @table @asis
  2242. @item @emph{Description}:
  2243. This function allocates data of the given size. It will also try to pin it in
  2244. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2245. thus permit data transfer and computation overlapping. The allocated buffer must
  2246. be freed thanks to the @code{starpu_free} function.
  2247. @item @emph{Prototype}:
  2248. @code{int starpu_malloc(void **A, size_t dim);}
  2249. @end table
  2250. @node starpu_access_mode
  2251. @subsection @code{starpu_access_mode} -- Data access mode
  2252. This datatype describes a data access mode. The different available modes are:
  2253. @table @asis
  2254. @table @asis
  2255. @item @code{STARPU_R} read-only mode.
  2256. @item @code{STARPU_W} write-only mode.
  2257. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2258. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2259. @end table
  2260. @end table
  2261. @node unsigned memory_node
  2262. @subsection @code{unsigned memory_node} -- Memory node
  2263. @table @asis
  2264. @item @emph{Description}:
  2265. Every worker is associated to a memory node which is a logical abstraction of
  2266. the address space from which the processing unit gets its data. For instance,
  2267. the memory node associated to the different CPU workers represents main memory
  2268. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2269. Every memory node is identified by a logical index which is accessible from the
  2270. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2271. to StarPU, the specified memory node indicates where the piece of data
  2272. initially resides (we also call this memory node the home node of a piece of
  2273. data).
  2274. @end table
  2275. @node starpu_data_handle
  2276. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2277. @table @asis
  2278. @item @emph{Description}:
  2279. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2280. data. Once a piece of data has been registered to StarPU, it is associated to a
  2281. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2282. over the entire machine, so that we can maintain data consistency and locate
  2283. data replicates for instance.
  2284. @end table
  2285. @node void *interface
  2286. @subsection @code{void *interface} -- StarPU data interface
  2287. @table @asis
  2288. @item @emph{Description}:
  2289. Data management is done at a high-level in StarPU: rather than accessing a mere
  2290. list of contiguous buffers, the tasks may manipulate data that are described by
  2291. a high-level construct which we call data interface.
  2292. An example of data interface is the "vector" interface which describes a
  2293. contiguous data array on a spefic memory node. This interface is a simple
  2294. structure containing the number of elements in the array, the size of the
  2295. elements, and the address of the array in the appropriate address space (this
  2296. address may be invalid if there is no valid copy of the array in the memory
  2297. node). More informations on the data interfaces provided by StarPU are
  2298. given in @ref{Data Interfaces}.
  2299. When a piece of data managed by StarPU is used by a task, the task
  2300. implementation is given a pointer to an interface describing a valid copy of
  2301. the data that is accessible from the current processing unit.
  2302. @end table
  2303. @node starpu_data_register
  2304. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2305. @table @asis
  2306. @item @emph{Description}:
  2307. Register a piece of data into the handle located at the @code{handleptr}
  2308. address. The @code{interface} buffer contains the initial description of the
  2309. data in the home node. The @code{ops} argument is a pointer to a structure
  2310. describing the different methods used to manipulate this type of interface. See
  2311. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2312. If @code{home_node} is -1, StarPU will automatically
  2313. allocate the memory when it is used for the
  2314. first time in write-only mode. Once such data handle has been automatically
  2315. allocated, it is possible to access it using any access mode.
  2316. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2317. matrix) which can be registered by the means of helper functions (e.g.
  2318. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2319. @item @emph{Prototype}:
  2320. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2321. uint32_t home_node,
  2322. void *interface,
  2323. struct starpu_data_interface_ops_t *ops);}
  2324. @end table
  2325. @node starpu_data_unregister
  2326. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2327. @table @asis
  2328. @item @emph{Description}:
  2329. This function unregisters a data handle from StarPU. If the data was
  2330. automatically allocated by StarPU because the home node was -1, all
  2331. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2332. is put back into the home node in the buffer that was initially registered.
  2333. Using a data handle that has been unregistered from StarPU results in an
  2334. undefined behaviour.
  2335. @item @emph{Prototype}:
  2336. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2337. @end table
  2338. @node starpu_data_invalidate
  2339. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2340. @table @asis
  2341. @item @emph{Description}:
  2342. Destroy all replicates of the data handle. After data invalidation, the first
  2343. access to the handle must be performed in write-only mode. Accessing an
  2344. invalidated data in read-mode results in undefined behaviour.
  2345. @item @emph{Prototype}:
  2346. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2347. @end table
  2348. @c TODO create a specific sections about user interaction with the DSM ?
  2349. @node starpu_data_acquire
  2350. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2351. @table @asis
  2352. @item @emph{Description}:
  2353. The application must call this function prior to accessing registered data from
  2354. main memory outside tasks. StarPU ensures that the application will get an
  2355. up-to-date copy of the data in main memory located where the data was
  2356. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2357. be consistent with the access mode specified in the @code{mode} argument.
  2358. @code{starpu_data_release} must be called once the application does not need to
  2359. access the piece of data anymore. Note that implicit data
  2360. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2361. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2362. the data, unless that they have not been disabled explictly by calling
  2363. @code{starpu_data_set_default_sequential_consistency_flag} or
  2364. @code{starpu_data_set_sequential_consistency_flag}.
  2365. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2366. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2367. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2368. @item @emph{Prototype}:
  2369. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2370. @end table
  2371. @node starpu_data_acquire_cb
  2372. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2373. @table @asis
  2374. @item @emph{Description}:
  2375. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2376. @code{starpu_data_release}. When the data specified in the first argument is
  2377. available in the appropriate access mode, the callback function is executed.
  2378. The application may access the requested data during the execution of this
  2379. callback. The callback function must call @code{starpu_data_release} once the
  2380. application does not need to access the piece of data anymore.
  2381. Note that implicit data dependencies are also enforced by
  2382. @code{starpu_data_acquire_cb} in case they are enabled.
  2383. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2384. be called from task callbacks. Upon successful completion, this function
  2385. returns 0.
  2386. @item @emph{Prototype}:
  2387. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2388. @end table
  2389. @node starpu_data_release
  2390. @subsection @code{starpu_data_release} -- Release registered data from the application
  2391. @table @asis
  2392. @item @emph{Description}:
  2393. This function releases the piece of data acquired by the application either by
  2394. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2395. @item @emph{Prototype}:
  2396. @code{void starpu_data_release(starpu_data_handle handle);}
  2397. @end table
  2398. @node starpu_data_set_wt_mask
  2399. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2400. @table @asis
  2401. @item @emph{Description}:
  2402. This function sets the write-through mask of a given data, i.e. a bitmask of
  2403. nodes where the data should be always replicated after modification.
  2404. @item @emph{Prototype}:
  2405. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2406. @end table
  2407. @node Data Interfaces
  2408. @section Data Interfaces
  2409. @menu
  2410. * Variable Interface::
  2411. * Vector Interface::
  2412. * Matrix Interface::
  2413. * 3D Matrix Interface::
  2414. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2415. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2416. @end menu
  2417. @node Variable Interface
  2418. @subsection Variable Interface
  2419. @table @asis
  2420. @item @emph{Description}:
  2421. This variant of @code{starpu_data_register} uses the variable interface,
  2422. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2423. and @code{elemsize} is the size of the variable.
  2424. @item @emph{Prototype}:
  2425. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2426. uint32_t home_node,
  2427. uintptr_t ptr, size_t elemsize);}
  2428. @item @emph{Example}:
  2429. @cartouche
  2430. @smallexample
  2431. float var;
  2432. starpu_data_handle var_handle;
  2433. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2434. @end smallexample
  2435. @end cartouche
  2436. @end table
  2437. @node Vector Interface
  2438. @subsection Vector Interface
  2439. @table @asis
  2440. @item @emph{Description}:
  2441. This variant of @code{starpu_data_register} uses the vector interface,
  2442. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2443. element in the home node. @code{nx} is the number of elements in the vector.
  2444. @code{elemsize} is the size of each element.
  2445. @item @emph{Prototype}:
  2446. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2447. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2448. @item @emph{Example}:
  2449. @cartouche
  2450. @smallexample
  2451. float vector[NX];
  2452. starpu_data_handle vector_handle;
  2453. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2454. sizeof(vector[0]));
  2455. @end smallexample
  2456. @end cartouche
  2457. @end table
  2458. @node Matrix Interface
  2459. @subsection Matrix Interface
  2460. @table @asis
  2461. @item @emph{Description}:
  2462. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2463. matrices of elements. @code{ptr} is the address of the first element in the home
  2464. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2465. of elements in a row (this can be different from @code{ld} if there are extra
  2466. elements for alignment for instance). @code{ny} is the number of rows.
  2467. @code{elemsize} is the size of each element.
  2468. @item @emph{Prototype}:
  2469. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2470. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2471. uint32_t ny, size_t elemsize);}
  2472. @item @emph{Example}:
  2473. @cartouche
  2474. @smallexample
  2475. float *matrix;
  2476. starpu_data_handle matrix_handle;
  2477. matrix = (float*)malloc(width * height * sizeof(float));
  2478. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2479. width, width, height, sizeof(float));
  2480. @end smallexample
  2481. @end cartouche
  2482. @end table
  2483. @node 3D Matrix Interface
  2484. @subsection 3D Matrix Interface
  2485. @table @asis
  2486. @item @emph{Description}:
  2487. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2488. @code{ptr} is the address of the array of first element in the home node.
  2489. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2490. of rows between z planes. @code{nx} is the number of elements in a row (this
  2491. can be different from @code{ldy} if there are extra elements for alignment
  2492. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2493. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2494. each element.
  2495. @item @emph{Prototype}:
  2496. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2497. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2498. uint32_t ny, uint32_t nz, size_t elemsize);}
  2499. @item @emph{Example}:
  2500. @cartouche
  2501. @smallexample
  2502. float *block;
  2503. starpu_data_handle block_handle;
  2504. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2505. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2506. nx, nx*ny, nx, ny, nz, sizeof(float));
  2507. @end smallexample
  2508. @end cartouche
  2509. @end table
  2510. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2511. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2512. @table @asis
  2513. @item @emph{Description}:
  2514. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2515. TODO
  2516. @item @emph{Prototype}:
  2517. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2518. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2519. @item @emph{Example}:
  2520. @cartouche
  2521. @smallexample
  2522. @end smallexample
  2523. @end cartouche
  2524. @end table
  2525. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2526. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2527. @table @asis
  2528. @item @emph{Description}:
  2529. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2530. TODO
  2531. @item @emph{Prototype}:
  2532. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2533. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2534. @item @emph{Example}:
  2535. @cartouche
  2536. @smallexample
  2537. @end smallexample
  2538. @end cartouche
  2539. @end table
  2540. @node Data Partition
  2541. @section Data Partition
  2542. @menu
  2543. * struct starpu_data_filter:: StarPU filter structure
  2544. * starpu_data_partition:: Partition Data
  2545. * starpu_data_unpartition:: Unpartition Data
  2546. * starpu_data_get_nb_children::
  2547. * starpu_data_get_sub_data::
  2548. * Predefined filter functions::
  2549. @end menu
  2550. @node struct starpu_data_filter
  2551. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2552. @table @asis
  2553. @item @emph{Description}:
  2554. The filter structure describes a data partitioning operation, to be given to the
  2555. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2556. @item @emph{Fields}:
  2557. @table @asis
  2558. @item @code{filter_func}:
  2559. This function fills the @code{child_interface} structure with interface
  2560. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2561. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2562. @item @code{nchildren}:
  2563. This is the number of parts to partition the data into.
  2564. @item @code{get_nchildren}:
  2565. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2566. children depends on the actual data (e.g. the number of blocks in a sparse
  2567. matrix).
  2568. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2569. @item @code{get_child_ops}:
  2570. In case the resulting children use a different data interface, this function
  2571. returns which interface is used by child number @code{id}.
  2572. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2573. @item @code{filter_arg}:
  2574. Some filters take an addition parameter, but this is usually unused.
  2575. @item @code{filter_arg_ptr}:
  2576. Some filters take an additional array parameter like the sizes of the parts, but
  2577. this is usually unused.
  2578. @end table
  2579. @end table
  2580. @node starpu_data_partition
  2581. @subsection starpu_data_partition -- Partition Data
  2582. @table @asis
  2583. @item @emph{Description}:
  2584. This requests partitioning one StarPU data @code{initial_handle} into several
  2585. subdata according to the filter @code{f}
  2586. @item @emph{Prototype}:
  2587. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2588. @item @emph{Example}:
  2589. @cartouche
  2590. @smallexample
  2591. struct starpu_data_filter f = @{
  2592. .filter_func = starpu_vertical_block_filter_func,
  2593. .nchildren = nslicesx,
  2594. .get_nchildren = NULL,
  2595. .get_child_ops = NULL
  2596. @};
  2597. starpu_data_partition(A_handle, &f);
  2598. @end smallexample
  2599. @end cartouche
  2600. @end table
  2601. @node starpu_data_unpartition
  2602. @subsection starpu_data_unpartition -- Unpartition data
  2603. @table @asis
  2604. @item @emph{Description}:
  2605. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2606. collected back into one big piece in the @code{gathering_node} (usually 0).
  2607. @item @emph{Prototype}:
  2608. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2609. @item @emph{Example}:
  2610. @cartouche
  2611. @smallexample
  2612. starpu_data_unpartition(A_handle, 0);
  2613. @end smallexample
  2614. @end cartouche
  2615. @end table
  2616. @node starpu_data_get_nb_children
  2617. @subsection starpu_data_get_nb_children
  2618. @table @asis
  2619. @item @emph{Description}:
  2620. This function returns the number of children.
  2621. @item @emph{Return value}:
  2622. The number of children.
  2623. @item @emph{Prototype}:
  2624. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2625. @end table
  2626. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2627. @node starpu_data_get_sub_data
  2628. @subsection starpu_data_get_sub_data
  2629. @table @asis
  2630. @item @emph{Description}:
  2631. After partitioning a StarPU data by applying a filter,
  2632. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2633. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2634. is the number of filters to traverse (in case several filters have been applied,
  2635. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2636. parameters are the indexes.
  2637. @item @emph{Return value}:
  2638. A handle to the subdata.
  2639. @item @emph{Prototype}:
  2640. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2641. @item @emph{Example}:
  2642. @cartouche
  2643. @smallexample
  2644. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2645. @end smallexample
  2646. @end cartouche
  2647. @end table
  2648. @node Predefined filter functions
  2649. @subsection Predefined filter functions
  2650. @menu
  2651. * Partitioning BCSR Data::
  2652. * Partitioning BLAS interface::
  2653. * Partitioning Vector Data::
  2654. * Partitioning Block Data::
  2655. @end menu
  2656. This section gives a partial list of the predefined partitioning functions.
  2657. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2658. list can be found in @code{starpu_data_filters.h} .
  2659. @node Partitioning BCSR Data
  2660. @subsubsection Partitioning BCSR Data
  2661. @table @asis
  2662. @item @emph{Description}:
  2663. TODO
  2664. @item @emph{Prototype}:
  2665. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2666. @end table
  2667. @table @asis
  2668. @item @emph{Description}:
  2669. TODO
  2670. @item @emph{Prototype}:
  2671. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2672. @end table
  2673. @node Partitioning BLAS interface
  2674. @subsubsection Partitioning BLAS interface
  2675. @table @asis
  2676. @item @emph{Description}:
  2677. This partitions a dense Matrix into horizontal blocks.
  2678. @item @emph{Prototype}:
  2679. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2680. @end table
  2681. @table @asis
  2682. @item @emph{Description}:
  2683. This partitions a dense Matrix into vertical blocks.
  2684. @item @emph{Prototype}:
  2685. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2686. @end table
  2687. @node Partitioning Vector Data
  2688. @subsubsection Partitioning Vector Data
  2689. @table @asis
  2690. @item @emph{Description}:
  2691. This partitions a vector into blocks of the same size.
  2692. @item @emph{Prototype}:
  2693. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2694. @end table
  2695. @table @asis
  2696. @item @emph{Description}:
  2697. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2698. @item @emph{Prototype}:
  2699. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2700. @end table
  2701. @table @asis
  2702. @item @emph{Description}:
  2703. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2704. @item @emph{Prototype}:
  2705. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2706. @end table
  2707. @node Partitioning Block Data
  2708. @subsubsection Partitioning Block Data
  2709. @table @asis
  2710. @item @emph{Description}:
  2711. This partitions a 3D matrix along the X axis.
  2712. @item @emph{Prototype}:
  2713. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2714. @end table
  2715. @node Codelets and Tasks
  2716. @section Codelets and Tasks
  2717. @menu
  2718. * struct starpu_codelet:: StarPU codelet structure
  2719. * struct starpu_task:: StarPU task structure
  2720. * starpu_task_init:: Initialize a Task
  2721. * starpu_task_create:: Allocate and Initialize a Task
  2722. * starpu_task_deinit:: Release all the resources used by a Task
  2723. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2724. * starpu_task_wait:: Wait for the termination of a Task
  2725. * starpu_task_submit:: Submit a Task
  2726. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2727. * starpu_get_current_task:: Return the task currently executed by the worker
  2728. * starpu_display_codelet_stats:: Display statistics
  2729. @end menu
  2730. @node struct starpu_codelet
  2731. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2732. @table @asis
  2733. @item @emph{Description}:
  2734. The codelet structure describes a kernel that is possibly implemented on various
  2735. targets. For compatibility, make sure to initialize the whole structure to zero.
  2736. @item @emph{Fields}:
  2737. @table @asis
  2738. @item @code{where}:
  2739. Indicates which types of processing units are able to execute the codelet.
  2740. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2741. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2742. indicates that it is only available on Cell SPUs.
  2743. @item @code{cpu_func} (optional):
  2744. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2745. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2746. argument being the array of data managed by the data management library, and
  2747. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2748. field of the @code{starpu_task} structure.
  2749. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2750. the @code{where} field, it must be non-null otherwise.
  2751. @item @code{cuda_func} (optional):
  2752. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2753. must be a host-function written in the CUDA runtime API}. Its prototype must
  2754. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2755. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2756. field, it must be non-null otherwise.
  2757. @item @code{opencl_func} (optional):
  2758. Is a function pointer to the OpenCL implementation of the codelet. Its
  2759. prototype must be:
  2760. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2761. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2762. @code{where} field, it must be non-null otherwise.
  2763. @item @code{gordon_func} (optional):
  2764. This is the index of the Cell SPU implementation within the Gordon library.
  2765. See Gordon documentation for more details on how to register a kernel and
  2766. retrieve its index.
  2767. @item @code{nbuffers}:
  2768. Specifies the number of arguments taken by the codelet. These arguments are
  2769. managed by the DSM and are accessed from the @code{void *buffers[]}
  2770. array. The constant argument passed with the @code{cl_arg} field of the
  2771. @code{starpu_task} structure is not counted in this number. This value should
  2772. not be above @code{STARPU_NMAXBUFS}.
  2773. @item @code{model} (optional):
  2774. This is a pointer to the task duration performance model associated to this
  2775. codelet. This optional field is ignored when set to @code{NULL}.
  2776. TODO
  2777. @item @code{power_model} (optional):
  2778. This is a pointer to the task power consumption performance model associated
  2779. to this codelet. This optional field is ignored when set to @code{NULL}.
  2780. In the case of parallel codelets, this has to account for all processing units
  2781. involved in the parallel execution.
  2782. TODO
  2783. @end table
  2784. @end table
  2785. @node struct starpu_task
  2786. @subsection @code{struct starpu_task} -- StarPU task structure
  2787. @table @asis
  2788. @item @emph{Description}:
  2789. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2790. processing units managed by StarPU. It instantiates a codelet. It can either be
  2791. allocated dynamically with the @code{starpu_task_create} method, or declared
  2792. statically. In the latter case, the programmer has to zero the
  2793. @code{starpu_task} structure and to fill the different fields properly. The
  2794. indicated default values correspond to the configuration of a task allocated
  2795. with @code{starpu_task_create}.
  2796. @item @emph{Fields}:
  2797. @table @asis
  2798. @item @code{cl}:
  2799. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2800. describes where the kernel should be executed, and supplies the appropriate
  2801. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2802. such empty tasks can be useful for synchronization purposes.
  2803. @item @code{buffers}:
  2804. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2805. different pieces of data accessed by the task, and how they should be accessed.
  2806. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2807. @code{handle} field specifies the handle of the piece of data, and the
  2808. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2809. of entries in this array must be specified in the @code{nbuffers} field of the
  2810. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2811. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2812. option when configuring StarPU.
  2813. @item @code{cl_arg} (optional) (default = NULL):
  2814. This pointer is passed to the codelet through the second argument
  2815. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2816. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2817. argument.
  2818. @item @code{cl_arg_size} (optional, Cell specific):
  2819. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2820. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2821. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2822. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2823. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2824. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2825. codelets.
  2826. @item @code{callback_func} (optional) (default = @code{NULL}):
  2827. This is a function pointer of prototype @code{void (*f)(void *)} which
  2828. specifies a possible callback. If this pointer is non-null, the callback
  2829. function is executed @emph{on the host} after the execution of the task. The
  2830. callback is passed the value contained in the @code{callback_arg} field. No
  2831. callback is executed if the field is set to @code{NULL}.
  2832. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2833. This is the pointer passed to the callback function. This field is ignored if
  2834. the @code{callback_func} is set to @code{NULL}.
  2835. @item @code{use_tag} (optional) (default = 0):
  2836. If set, this flag indicates that the task should be associated with the tag
  2837. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2838. with the task and to express task dependencies easily.
  2839. @item @code{tag_id}:
  2840. This fields contains the tag associated to the task if the @code{use_tag} field
  2841. was set, it is ignored otherwise.
  2842. @item @code{synchronous}:
  2843. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2844. returns only when the task has been executed (or if no worker is able to
  2845. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2846. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2847. This field indicates a level of priority for the task. This is an integer value
  2848. that must be set between the return values of the
  2849. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2850. and that of the @code{starpu_sched_get_max_priority} for the most important
  2851. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2852. are provided for convenience and respectively returns value of
  2853. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2854. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2855. order to allow static task initialization. Scheduling strategies that take
  2856. priorities into account can use this parameter to take better scheduling
  2857. decisions, but the scheduling policy may also ignore it.
  2858. @item @code{execute_on_a_specific_worker} (default = 0):
  2859. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2860. task to the worker specified by the @code{workerid} field.
  2861. @item @code{workerid} (optional):
  2862. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2863. which is the identifier of the worker that should process this task (as
  2864. returned by @code{starpu_worker_get_id}). This field is ignored if
  2865. @code{execute_on_a_specific_worker} field is set to 0.
  2866. @item @code{detach} (optional) (default = 1):
  2867. If this flag is set, it is not possible to synchronize with the task
  2868. by the means of @code{starpu_task_wait} later on. Internal data structures
  2869. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2870. flag is not set.
  2871. @item @code{destroy} (optional) (default = 1):
  2872. If this flag is set, the task structure will automatically be freed, either
  2873. after the execution of the callback if the task is detached, or during
  2874. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2875. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2876. called explicitly. Setting this flag for a statically allocated task structure
  2877. will result in undefined behaviour.
  2878. @item @code{predicted} (output field):
  2879. Predicted duration of the task. This field is only set if the scheduling
  2880. strategy used performance models.
  2881. @end table
  2882. @end table
  2883. @node starpu_task_init
  2884. @subsection @code{starpu_task_init} -- Initialize a Task
  2885. @table @asis
  2886. @item @emph{Description}:
  2887. Initialize a task structure with default values. This function is implicitly
  2888. called by @code{starpu_task_create}. By default, tasks initialized with
  2889. @code{starpu_task_init} must be deinitialized explicitly with
  2890. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2891. constant @code{STARPU_TASK_INITIALIZER}.
  2892. @item @emph{Prototype}:
  2893. @code{void starpu_task_init(struct starpu_task *task);}
  2894. @end table
  2895. @node starpu_task_create
  2896. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2897. @table @asis
  2898. @item @emph{Description}:
  2899. Allocate a task structure and initialize it with default values. Tasks
  2900. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2901. task is terminated. If the destroy flag is explicitly unset, the resources used
  2902. by the task are freed by calling
  2903. @code{starpu_task_destroy}.
  2904. @item @emph{Prototype}:
  2905. @code{struct starpu_task *starpu_task_create(void);}
  2906. @end table
  2907. @node starpu_task_deinit
  2908. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2909. @table @asis
  2910. @item @emph{Description}:
  2911. Release all the structures automatically allocated to execute the task. This is
  2912. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2913. freed. This should be used for statically allocated tasks for instance.
  2914. @item @emph{Prototype}:
  2915. @code{void starpu_task_deinit(struct starpu_task *task);}
  2916. @end table
  2917. @node starpu_task_destroy
  2918. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2919. @table @asis
  2920. @item @emph{Description}:
  2921. Free the resource allocated during @code{starpu_task_create}. This function can be
  2922. called automatically after the execution of a task by setting the
  2923. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2924. Calling this function on a statically allocated task results in an undefined
  2925. behaviour.
  2926. @item @emph{Prototype}:
  2927. @code{void starpu_task_destroy(struct starpu_task *task);}
  2928. @end table
  2929. @node starpu_task_wait
  2930. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2931. @table @asis
  2932. @item @emph{Description}:
  2933. This function blocks until the task has been executed. It is not possible to
  2934. synchronize with a task more than once. It is not possible to wait for
  2935. synchronous or detached tasks.
  2936. @item @emph{Return value}:
  2937. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2938. indicates that the specified task was either synchronous or detached.
  2939. @item @emph{Prototype}:
  2940. @code{int starpu_task_wait(struct starpu_task *task);}
  2941. @end table
  2942. @node starpu_task_submit
  2943. @subsection @code{starpu_task_submit} -- Submit a Task
  2944. @table @asis
  2945. @item @emph{Description}:
  2946. This function submits a task to StarPU. Calling this function does
  2947. not mean that the task will be executed immediately as there can be data or task
  2948. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2949. scheduling this task with respect to such dependencies.
  2950. This function returns immediately if the @code{synchronous} field of the
  2951. @code{starpu_task} structure was set to 0, and block until the termination of
  2952. the task otherwise. It is also possible to synchronize the application with
  2953. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2954. function for instance.
  2955. @item @emph{Return value}:
  2956. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2957. means that there is no worker able to process this task (e.g. there is no GPU
  2958. available and this task is only implemented for CUDA devices).
  2959. @item @emph{Prototype}:
  2960. @code{int starpu_task_submit(struct starpu_task *task);}
  2961. @end table
  2962. @node starpu_task_wait_for_all
  2963. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2964. @table @asis
  2965. @item @emph{Description}:
  2966. This function blocks until all the tasks that were submitted are terminated.
  2967. @item @emph{Prototype}:
  2968. @code{void starpu_task_wait_for_all(void);}
  2969. @end table
  2970. @node starpu_get_current_task
  2971. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2972. @table @asis
  2973. @item @emph{Description}:
  2974. This function returns the task currently executed by the worker, or
  2975. NULL if it is called either from a thread that is not a task or simply
  2976. because there is no task being executed at the moment.
  2977. @item @emph{Prototype}:
  2978. @code{struct starpu_task *starpu_get_current_task(void);}
  2979. @end table
  2980. @node starpu_display_codelet_stats
  2981. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2982. @table @asis
  2983. @item @emph{Description}:
  2984. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2985. @item @emph{Prototype}:
  2986. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2987. @end table
  2988. @c Callbacks : what can we put in callbacks ?
  2989. @node Explicit Dependencies
  2990. @section Explicit Dependencies
  2991. @menu
  2992. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2993. * starpu_tag_t:: Task logical identifier
  2994. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2995. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2996. * starpu_tag_wait:: Block until a Tag is terminated
  2997. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2998. * starpu_tag_remove:: Destroy a Tag
  2999. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3000. @end menu
  3001. @node starpu_task_declare_deps_array
  3002. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3003. @table @asis
  3004. @item @emph{Description}:
  3005. Declare task dependencies between a @code{task} and an array of tasks of length
  3006. @code{ndeps}. This function must be called prior to the submission of the task,
  3007. but it may called after the submission or the execution of the tasks in the
  3008. array provided the tasks are still valid (ie. they were not automatically
  3009. destroyed). Calling this function on a task that was already submitted or with
  3010. an entry of @code{task_array} that is not a valid task anymore results in an
  3011. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  3012. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3013. same task, in this case, the dependencies are added. It is possible to have
  3014. redundancy in the task dependencies.
  3015. @item @emph{Prototype}:
  3016. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  3017. @end table
  3018. @node starpu_tag_t
  3019. @subsection @code{starpu_tag_t} -- Task logical identifier
  3020. @table @asis
  3021. @item @emph{Description}:
  3022. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3023. dependencies between tasks by the means of those tags. To do so, fill the
  3024. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3025. be arbitrary) and set the @code{use_tag} field to 1.
  3026. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3027. not be started until the tasks which holds the declared dependency tags are
  3028. completed.
  3029. @end table
  3030. @node starpu_tag_declare_deps
  3031. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3032. @table @asis
  3033. @item @emph{Description}:
  3034. Specify the dependencies of the task identified by tag @code{id}. The first
  3035. argument specifies the tag which is configured, the second argument gives the
  3036. number of tag(s) on which @code{id} depends. The following arguments are the
  3037. tags which have to be terminated to unlock the task.
  3038. This function must be called before the associated task is submitted to StarPU
  3039. with @code{starpu_task_submit}.
  3040. @item @emph{Remark}
  3041. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3042. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3043. typically need to be explicitly casted. Using the
  3044. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3045. @item @emph{Prototype}:
  3046. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3047. @item @emph{Example}:
  3048. @cartouche
  3049. @example
  3050. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3051. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3052. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3053. @end example
  3054. @end cartouche
  3055. @end table
  3056. @node starpu_tag_declare_deps_array
  3057. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3058. @table @asis
  3059. @item @emph{Description}:
  3060. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3061. does not take a variable number of arguments but an array of tags of size
  3062. @code{ndeps}.
  3063. @item @emph{Prototype}:
  3064. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3065. @item @emph{Example}:
  3066. @cartouche
  3067. @example
  3068. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3069. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3070. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3071. @end example
  3072. @end cartouche
  3073. @end table
  3074. @node starpu_tag_wait
  3075. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3076. @table @asis
  3077. @item @emph{Description}:
  3078. This function blocks until the task associated to tag @code{id} has been
  3079. executed. This is a blocking call which must therefore not be called within
  3080. tasks or callbacks, but only from the application directly. It is possible to
  3081. synchronize with the same tag multiple times, as long as the
  3082. @code{starpu_tag_remove} function is not called. Note that it is still
  3083. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3084. data structure was freed (e.g. if the @code{destroy} flag of the
  3085. @code{starpu_task} was enabled).
  3086. @item @emph{Prototype}:
  3087. @code{void starpu_tag_wait(starpu_tag_t id);}
  3088. @end table
  3089. @node starpu_tag_wait_array
  3090. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3091. @table @asis
  3092. @item @emph{Description}:
  3093. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3094. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3095. terminated.
  3096. @item @emph{Prototype}:
  3097. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3098. @end table
  3099. @node starpu_tag_remove
  3100. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3101. @table @asis
  3102. @item @emph{Description}:
  3103. This function releases the resources associated to tag @code{id}. It can be
  3104. called once the corresponding task has been executed and when there is
  3105. no other tag that depend on this tag anymore.
  3106. @item @emph{Prototype}:
  3107. @code{void starpu_tag_remove(starpu_tag_t id);}
  3108. @end table
  3109. @node starpu_tag_notify_from_apps
  3110. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3111. @table @asis
  3112. @item @emph{Description}:
  3113. This function explicitly unlocks tag @code{id}. It may be useful in the
  3114. case of applications which execute part of their computation outside StarPU
  3115. tasks (e.g. third-party libraries). It is also provided as a
  3116. convenient tool for the programmer, for instance to entirely construct the task
  3117. DAG before actually giving StarPU the opportunity to execute the tasks.
  3118. @item @emph{Prototype}:
  3119. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3120. @end table
  3121. @node Implicit Data Dependencies
  3122. @section Implicit Data Dependencies
  3123. @menu
  3124. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3125. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3126. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3127. @end menu
  3128. In this section, we describe how StarPU makes it possible to insert implicit
  3129. task dependencies in order to enforce sequential data consistency. When this
  3130. data consistency is enabled on a specific data handle, any data access will
  3131. appear as sequentially consistent from the application. For instance, if the
  3132. application submits two tasks that access the same piece of data in read-only
  3133. mode, and then a third task that access it in write mode, dependencies will be
  3134. added between the two first tasks and the third one. Implicit data dependencies
  3135. are also inserted in the case of data accesses from the application.
  3136. @node starpu_data_set_default_sequential_consistency_flag
  3137. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3138. @table @asis
  3139. @item @emph{Description}:
  3140. Set the default sequential consistency flag. If a non-zero value is passed, a
  3141. sequential data consistency will be enforced for all handles registered after
  3142. this function call, otherwise it is disabled. By default, StarPU enables
  3143. sequential data consistency. It is also possible to select the data consistency
  3144. mode of a specific data handle with the
  3145. @code{starpu_data_set_sequential_consistency_flag} function.
  3146. @item @emph{Prototype}:
  3147. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3148. @end table
  3149. @node starpu_data_get_default_sequential_consistency_flag
  3150. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3151. @table @asis
  3152. @item @emph{Description}:
  3153. This function returns the current default sequential consistency flag.
  3154. @item @emph{Prototype}:
  3155. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3156. @end table
  3157. @node starpu_data_set_sequential_consistency_flag
  3158. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3159. @table @asis
  3160. @item @emph{Description}:
  3161. Select the data consistency mode associated to a data handle. The consistency
  3162. mode set using this function has the priority over the default mode which can
  3163. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3164. @item @emph{Prototype}:
  3165. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3166. @end table
  3167. @node Performance Model API
  3168. @section Performance Model API
  3169. @menu
  3170. * starpu_load_history_debug::
  3171. * starpu_perfmodel_debugfilepath::
  3172. * starpu_perfmodel_get_arch_name::
  3173. * starpu_force_bus_sampling::
  3174. @end menu
  3175. @node starpu_load_history_debug
  3176. @subsection @code{starpu_load_history_debug}
  3177. @table @asis
  3178. @item @emph{Description}:
  3179. TODO
  3180. @item @emph{Prototype}:
  3181. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3182. @end table
  3183. @node starpu_perfmodel_debugfilepath
  3184. @subsection @code{starpu_perfmodel_debugfilepath}
  3185. @table @asis
  3186. @item @emph{Description}:
  3187. TODO
  3188. @item @emph{Prototype}:
  3189. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3190. @end table
  3191. @node starpu_perfmodel_get_arch_name
  3192. @subsection @code{starpu_perfmodel_get_arch_name}
  3193. @table @asis
  3194. @item @emph{Description}:
  3195. TODO
  3196. @item @emph{Prototype}:
  3197. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3198. @end table
  3199. @node starpu_force_bus_sampling
  3200. @subsection @code{starpu_force_bus_sampling}
  3201. @table @asis
  3202. @item @emph{Description}:
  3203. This forces sampling the bus performance model again.
  3204. @item @emph{Prototype}:
  3205. @code{void starpu_force_bus_sampling(void);}
  3206. @end table
  3207. @node Profiling API
  3208. @section Profiling API
  3209. @menu
  3210. * starpu_profiling_status_set:: starpu_profiling_status_set
  3211. * starpu_profiling_status_get:: starpu_profiling_status_get
  3212. * struct starpu_task_profiling_info:: task profiling information
  3213. * struct starpu_worker_profiling_info:: worker profiling information
  3214. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3215. * struct starpu_bus_profiling_info:: bus profiling information
  3216. * starpu_bus_get_count::
  3217. * starpu_bus_get_id::
  3218. * starpu_bus_get_src::
  3219. * starpu_bus_get_dst::
  3220. * starpu_timing_timespec_delay_us::
  3221. * starpu_timing_timespec_to_us::
  3222. * starpu_bus_profiling_helper_display_summary::
  3223. * starpu_worker_profiling_helper_display_summary::
  3224. @end menu
  3225. @node starpu_profiling_status_set
  3226. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3227. @table @asis
  3228. @item @emph{Description}:
  3229. Thie function sets the profiling status. Profiling is activated by passing
  3230. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3231. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3232. resets all profiling measurements. When profiling is enabled, the
  3233. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3234. to a valid @code{struct starpu_task_profiling_info} structure containing
  3235. information about the execution of the task.
  3236. @item @emph{Return value}:
  3237. Negative return values indicate an error, otherwise the previous status is
  3238. returned.
  3239. @item @emph{Prototype}:
  3240. @code{int starpu_profiling_status_set(int status);}
  3241. @end table
  3242. @node starpu_profiling_status_get
  3243. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3244. @table @asis
  3245. @item @emph{Description}:
  3246. Return the current profiling status or a negative value in case there was an error.
  3247. @item @emph{Prototype}:
  3248. @code{int starpu_profiling_status_get(void);}
  3249. @end table
  3250. @node struct starpu_task_profiling_info
  3251. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3252. @table @asis
  3253. @item @emph{Description}:
  3254. This structure contains information about the execution of a task. It is
  3255. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3256. structure if profiling was enabled.
  3257. @item @emph{Fields}:
  3258. @table @asis
  3259. @item @code{submit_time}:
  3260. Date of task submission (relative to the initialization of StarPU).
  3261. @item @code{start_time}:
  3262. Date of task execution beginning (relative to the initialization of StarPU).
  3263. @item @code{end_time}:
  3264. Date of task execution termination (relative to the initialization of StarPU).
  3265. @item @code{workerid}:
  3266. Identifier of the worker which has executed the task.
  3267. @end table
  3268. @end table
  3269. @node struct starpu_worker_profiling_info
  3270. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3271. @table @asis
  3272. @item @emph{Description}:
  3273. This structure contains the profiling information associated to a worker.
  3274. @item @emph{Fields}:
  3275. @table @asis
  3276. @item @code{start_time}:
  3277. Starting date for the reported profiling measurements.
  3278. @item @code{total_time}:
  3279. Duration of the profiling measurement interval.
  3280. @item @code{executing_time}:
  3281. Time spent by the worker to execute tasks during the profiling measurement interval.
  3282. @item @code{sleeping_time}:
  3283. Time spent idling by the worker during the profiling measurement interval.
  3284. @item @code{executed_tasks}:
  3285. Number of tasks executed by the worker during the profiling measurement interval.
  3286. @end table
  3287. @end table
  3288. @node starpu_worker_get_profiling_info
  3289. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3290. @table @asis
  3291. @item @emph{Description}:
  3292. Get the profiling info associated to the worker identified by @code{workerid},
  3293. and reset the profiling measurements. If the @code{worker_info} argument is
  3294. NULL, only reset the counters associated to worker @code{workerid}.
  3295. @item @emph{Return value}:
  3296. Upon successful completion, this function returns 0. Otherwise, a negative
  3297. value is returned.
  3298. @item @emph{Prototype}:
  3299. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3300. @end table
  3301. @node struct starpu_bus_profiling_info
  3302. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3303. @table @asis
  3304. @item @emph{Description}:
  3305. TODO
  3306. @item @emph{Fields}:
  3307. @table @asis
  3308. @item @code{start_time}:
  3309. TODO
  3310. @item @code{total_time}:
  3311. TODO
  3312. @item @code{transferred_bytes}:
  3313. TODO
  3314. @item @code{transfer_count}:
  3315. TODO
  3316. @end table
  3317. @end table
  3318. @node starpu_bus_get_count
  3319. @subsection @code{starpu_bus_get_count}
  3320. @table @asis
  3321. @item @emph{Description}:
  3322. TODO
  3323. @item @emph{Prototype}:
  3324. @code{int starpu_bus_get_count(void);}
  3325. @end table
  3326. @node starpu_bus_get_id
  3327. @subsection @code{starpu_bus_get_id}
  3328. @table @asis
  3329. @item @emph{Description}:
  3330. TODO
  3331. @item @emph{Prototype}:
  3332. @code{int starpu_bus_get_id(int src, int dst);}
  3333. @end table
  3334. @node starpu_bus_get_src
  3335. @subsection @code{starpu_bus_get_src}
  3336. @table @asis
  3337. @item @emph{Description}:
  3338. TODO
  3339. @item @emph{Prototype}:
  3340. @code{int starpu_bus_get_src(int busid);}
  3341. @end table
  3342. @node starpu_bus_get_dst
  3343. @subsection @code{starpu_bus_get_dst}
  3344. @table @asis
  3345. @item @emph{Description}:
  3346. TODO
  3347. @item @emph{Prototype}:
  3348. @code{int starpu_bus_get_dst(int busid);}
  3349. @end table
  3350. @node starpu_timing_timespec_delay_us
  3351. @subsection @code{starpu_timing_timespec_delay_us}
  3352. @table @asis
  3353. @item @emph{Description}:
  3354. TODO
  3355. @item @emph{Prototype}:
  3356. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3357. @end table
  3358. @node starpu_timing_timespec_to_us
  3359. @subsection @code{starpu_timing_timespec_to_us}
  3360. @table @asis
  3361. @item @emph{Description}:
  3362. TODO
  3363. @item @emph{Prototype}:
  3364. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3365. @end table
  3366. @node starpu_bus_profiling_helper_display_summary
  3367. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3368. @table @asis
  3369. @item @emph{Description}:
  3370. TODO
  3371. @item @emph{Prototype}:
  3372. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3373. @end table
  3374. @node starpu_worker_profiling_helper_display_summary
  3375. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3376. @table @asis
  3377. @item @emph{Description}:
  3378. TODO
  3379. @item @emph{Prototype}:
  3380. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3381. @end table
  3382. @node CUDA extensions
  3383. @section CUDA extensions
  3384. @c void starpu_malloc(float **A, size_t dim);
  3385. @menu
  3386. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3387. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3388. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3389. @end menu
  3390. @node starpu_cuda_get_local_stream
  3391. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3392. @table @asis
  3393. @item @emph{Description}:
  3394. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3395. function is only provided for convenience so that programmers can easily use
  3396. asynchronous operations within codelets without having to create a stream by
  3397. hand. Note that the application is not forced to use the stream provided by
  3398. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3399. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3400. the likelihood of having all transfers overlapped.
  3401. @item @emph{Prototype}:
  3402. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3403. @end table
  3404. @node starpu_helper_cublas_init
  3405. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3406. @table @asis
  3407. @item @emph{Description}:
  3408. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3409. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3410. controlled by StarPU. This call blocks until CUBLAS has been properly
  3411. initialized on every device.
  3412. @item @emph{Prototype}:
  3413. @code{void starpu_helper_cublas_init(void);}
  3414. @end table
  3415. @node starpu_helper_cublas_shutdown
  3416. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3417. @table @asis
  3418. @item @emph{Description}:
  3419. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3420. @item @emph{Prototype}:
  3421. @code{void starpu_helper_cublas_shutdown(void);}
  3422. @end table
  3423. @node OpenCL extensions
  3424. @section OpenCL extensions
  3425. @menu
  3426. * Enabling OpenCL:: Enabling OpenCL
  3427. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3428. * Loading OpenCL kernels:: Loading OpenCL kernels
  3429. * OpenCL statistics:: Collecting statistics from OpenCL
  3430. @end menu
  3431. @node Enabling OpenCL
  3432. @subsection Enabling OpenCL
  3433. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3434. enabled by default. To enable OpenCL, you need either to disable CUDA
  3435. when configuring StarPU:
  3436. @example
  3437. % ./configure --disable-cuda
  3438. @end example
  3439. or when running applications:
  3440. @example
  3441. % STARPU_NCUDA=0 ./application
  3442. @end example
  3443. OpenCL will automatically be started on any device not yet used by
  3444. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3445. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3446. so:
  3447. @example
  3448. % STARPU_NCUDA=2 ./application
  3449. @end example
  3450. @node Compiling OpenCL kernels
  3451. @subsection Compiling OpenCL kernels
  3452. Source codes for OpenCL kernels can be stored in a file or in a
  3453. string. StarPU provides functions to build the program executable for
  3454. each available OpenCL device as a @code{cl_program} object. This
  3455. program executable can then be loaded within a specific queue as
  3456. explained in the next section. These are only helpers, Applications
  3457. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3458. use (e.g. different programs on the different OpenCL devices, for
  3459. relocation purpose for instance).
  3460. @menu
  3461. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3462. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3463. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3464. @end menu
  3465. @node starpu_opencl_load_opencl_from_file
  3466. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3467. @table @asis
  3468. @item @emph{Description}:
  3469. TODO
  3470. @item @emph{Prototype}:
  3471. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3472. @end table
  3473. @node starpu_opencl_load_opencl_from_string
  3474. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3475. @table @asis
  3476. @item @emph{Description}:
  3477. TODO
  3478. @item @emph{Prototype}:
  3479. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3480. @end table
  3481. @node starpu_opencl_unload_opencl
  3482. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3483. @table @asis
  3484. @item @emph{Description}:
  3485. TODO
  3486. @item @emph{Prototype}:
  3487. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3488. @end table
  3489. @node Loading OpenCL kernels
  3490. @subsection Loading OpenCL kernels
  3491. @menu
  3492. * starpu_opencl_load_kernel:: Loading a kernel
  3493. * starpu_opencl_relase_kernel:: Releasing a kernel
  3494. @end menu
  3495. @node starpu_opencl_load_kernel
  3496. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3497. @table @asis
  3498. @item @emph{Description}:
  3499. TODO
  3500. @item @emph{Prototype}:
  3501. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3502. }
  3503. @end table
  3504. @node starpu_opencl_relase_kernel
  3505. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3506. @table @asis
  3507. @item @emph{Description}:
  3508. TODO
  3509. @item @emph{Prototype}:
  3510. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3511. @end table
  3512. @node OpenCL statistics
  3513. @subsection OpenCL statistics
  3514. @menu
  3515. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3516. @end menu
  3517. @node starpu_opencl_collect_stats
  3518. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3519. @table @asis
  3520. @item @emph{Description}:
  3521. After termination of the kernels, the OpenCL codelet should call this function
  3522. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3523. collect statistics about the kernel execution (used cycles, consumed power).
  3524. @item @emph{Prototype}:
  3525. @code{int starpu_opencl_collect_stats(cl_event event);}
  3526. @end table
  3527. @node Cell extensions
  3528. @section Cell extensions
  3529. nothing yet.
  3530. @node Miscellaneous helpers
  3531. @section Miscellaneous helpers
  3532. @menu
  3533. * starpu_data_cpy:: Copy a data handle into another data handle
  3534. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3535. @end menu
  3536. @node starpu_data_cpy
  3537. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3538. @table @asis
  3539. @item @emph{Description}:
  3540. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3541. The @code{asynchronous} parameter indicates whether the function should
  3542. block or not. In the case of an asynchronous call, it is possible to
  3543. synchronize with the termination of this operation either by the means of
  3544. implicit dependencies (if enabled) or by calling
  3545. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3546. this callback function is executed after the handle has been copied, and it is
  3547. given the @code{callback_arg} pointer as argument.
  3548. @item @emph{Prototype}:
  3549. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3550. @end table
  3551. @node starpu_execute_on_each_worker
  3552. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3553. @table @asis
  3554. @item @emph{Description}:
  3555. When calling this method, the offloaded function specified by the first argument is
  3556. executed by every StarPU worker that may execute the function.
  3557. The second argument is passed to the offloaded function.
  3558. The last argument specifies on which types of processing units the function
  3559. should be executed. Similarly to the @code{where} field of the
  3560. @code{starpu_codelet} structure, it is possible to specify that the function
  3561. should be executed on every CUDA device and every CPU by passing
  3562. @code{STARPU_CPU|STARPU_CUDA}.
  3563. This function blocks until the function has been executed on every appropriate
  3564. processing units, so that it may not be called from a callback function for
  3565. instance.
  3566. @item @emph{Prototype}:
  3567. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3568. @end table
  3569. @c ---------------------------------------------------------------------
  3570. @c Advanced Topics
  3571. @c ---------------------------------------------------------------------
  3572. @node Advanced Topics
  3573. @chapter Advanced Topics
  3574. @menu
  3575. * Defining a new data interface::
  3576. * Defining a new scheduling policy::
  3577. @end menu
  3578. @node Defining a new data interface
  3579. @section Defining a new data interface
  3580. @menu
  3581. * struct starpu_data_interface_ops_t:: Per-interface methods
  3582. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3583. * An example of data interface:: An example of data interface
  3584. @end menu
  3585. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3586. @node struct starpu_data_interface_ops_t
  3587. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3588. @table @asis
  3589. @item @emph{Description}:
  3590. TODO describe all the different fields
  3591. @end table
  3592. @node struct starpu_data_copy_methods
  3593. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3594. @table @asis
  3595. @item @emph{Description}:
  3596. TODO describe all the different fields
  3597. @end table
  3598. @node An example of data interface
  3599. @subsection An example of data interface
  3600. @table @asis
  3601. TODO
  3602. @end table
  3603. @node Defining a new scheduling policy
  3604. @section Defining a new scheduling policy
  3605. TODO
  3606. A full example showing how to define a new scheduling policy is available in
  3607. the StarPU sources in the directory @code{examples/scheduler/}.
  3608. @menu
  3609. * struct starpu_sched_policy_s::
  3610. * starpu_worker_set_sched_condition::
  3611. * starpu_sched_set_min_priority:: Set the minimum priority level
  3612. * starpu_sched_set_max_priority:: Set the maximum priority level
  3613. * starpu_push_local_task:: Assign a task to a worker
  3614. * Source code::
  3615. @end menu
  3616. @node struct starpu_sched_policy_s
  3617. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3618. @table @asis
  3619. @item @emph{Description}:
  3620. This structure contains all the methods that implement a scheduling policy. An
  3621. application may specify which scheduling strategy in the @code{sched_policy}
  3622. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3623. function.
  3624. @item @emph{Fields}:
  3625. @table @asis
  3626. @item @code{init_sched}:
  3627. Initialize the scheduling policy.
  3628. @item @code{deinit_sched}:
  3629. Cleanup the scheduling policy.
  3630. @item @code{push_task}:
  3631. Insert a task into the scheduler.
  3632. @item @code{push_prio_task}:
  3633. Insert a priority task into the scheduler.
  3634. @item @code{push_prio_notify}:
  3635. Notify the scheduler that a task was pushed on the worker. This method is
  3636. called when a task that was explicitely assigned to a worker is scheduled. This
  3637. method therefore permits to keep the state of of the scheduler coherent even
  3638. when StarPU bypasses the scheduling strategy.
  3639. @item @code{pop_task}:
  3640. Get a task from the scheduler. The mutex associated to the worker is already
  3641. taken when this method is called. If this method is defined as @code{NULL}, the
  3642. worker will only execute tasks from its local queue. In this case, the
  3643. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3644. assign tasks to the different workers.
  3645. @item @code{pop_every_task}:
  3646. Remove all available tasks from the scheduler (tasks are chained by the means
  3647. of the prev and next fields of the starpu_task structure). The mutex associated
  3648. to the worker is already taken when this method is called.
  3649. @item @code{post_exec_hook} (optionnal):
  3650. This method is called every time a task has been executed.
  3651. @item @code{policy_name}:
  3652. Name of the policy (optionnal).
  3653. @item @code{policy_description}:
  3654. Description of the policy (optionnal).
  3655. @end table
  3656. @end table
  3657. @node starpu_worker_set_sched_condition
  3658. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3659. @table @asis
  3660. @item @emph{Description}:
  3661. When there is no available task for a worker, StarPU blocks this worker on a
  3662. condition variable. This function specifies which condition variable (and the
  3663. associated mutex) should be used to block (and to wake up) a worker. Note that
  3664. multiple workers may use the same condition variable. For instance, in the case
  3665. of a scheduling strategy with a single task queue, the same condition variable
  3666. would be used to block and wake up all workers.
  3667. The initialization method of a scheduling strategy (@code{init_sched}) must
  3668. call this function once per worker.
  3669. @item @emph{Prototype}:
  3670. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3671. @end table
  3672. @node starpu_sched_set_min_priority
  3673. @subsection @code{starpu_sched_set_min_priority}
  3674. @table @asis
  3675. @item @emph{Description}:
  3676. Defines the minimum priority level supported by the scheduling policy. The
  3677. default minimum priority level is the same as the default priority level which
  3678. is 0 by convention. The application may access that value by calling the
  3679. @code{starpu_sched_get_min_priority} function. This function should only be
  3680. called from the initialization method of the scheduling policy, and should not
  3681. be used directly from the application.
  3682. @item @emph{Prototype}:
  3683. @code{void starpu_sched_set_min_priority(int min_prio);}
  3684. @end table
  3685. @node starpu_sched_set_max_priority
  3686. @subsection @code{starpu_sched_set_max_priority}
  3687. @table @asis
  3688. @item @emph{Description}:
  3689. Defines the maximum priority level supported by the scheduling policy. The
  3690. default maximum priority level is 1. The application may access that value by
  3691. calling the @code{starpu_sched_get_max_priority} function. This function should
  3692. only be called from the initialization method of the scheduling policy, and
  3693. should not be used directly from the application.
  3694. @item @emph{Prototype}:
  3695. @code{void starpu_sched_set_min_priority(int max_prio);}
  3696. @end table
  3697. @node starpu_push_local_task
  3698. @subsection @code{starpu_push_local_task}
  3699. @table @asis
  3700. @item @emph{Description}:
  3701. The scheduling policy may put tasks directly into a worker's local queue so
  3702. that it is not always necessary to create its own queue when the local queue
  3703. is sufficient. If "back" not null, the task is put at the back of the queue
  3704. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3705. a FIFO ordering.
  3706. @item @emph{Prototype}:
  3707. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3708. @end table
  3709. @node Source code
  3710. @subsection Source code
  3711. @cartouche
  3712. @smallexample
  3713. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3714. .init_sched = init_dummy_sched,
  3715. .deinit_sched = deinit_dummy_sched,
  3716. .push_task = push_task_dummy,
  3717. .push_prio_task = NULL,
  3718. .pop_task = pop_task_dummy,
  3719. .post_exec_hook = NULL,
  3720. .pop_every_task = NULL,
  3721. .policy_name = "dummy",
  3722. .policy_description = "dummy scheduling strategy"
  3723. @};
  3724. @end smallexample
  3725. @end cartouche
  3726. @c ---------------------------------------------------------------------
  3727. @c Appendices
  3728. @c ---------------------------------------------------------------------
  3729. @c ---------------------------------------------------------------------
  3730. @c Full source code for the 'Scaling a Vector' example
  3731. @c ---------------------------------------------------------------------
  3732. @node Full source code for the 'Scaling a Vector' example
  3733. @appendix Full source code for the 'Scaling a Vector' example
  3734. @menu
  3735. * Main application::
  3736. * CPU Kernel::
  3737. * CUDA Kernel::
  3738. * OpenCL Kernel::
  3739. @end menu
  3740. @node Main application
  3741. @section Main application
  3742. @smallexample
  3743. @include vector_scal_c.texi
  3744. @end smallexample
  3745. @node CPU Kernel
  3746. @section CPU Kernel
  3747. @smallexample
  3748. @include vector_scal_cpu.texi
  3749. @end smallexample
  3750. @node CUDA Kernel
  3751. @section CUDA Kernel
  3752. @smallexample
  3753. @include vector_scal_cuda.texi
  3754. @end smallexample
  3755. @node OpenCL Kernel
  3756. @section OpenCL Kernel
  3757. @menu
  3758. * Invoking the kernel::
  3759. * Source of the kernel::
  3760. @end menu
  3761. @node Invoking the kernel
  3762. @subsection Invoking the kernel
  3763. @smallexample
  3764. @include vector_scal_opencl.texi
  3765. @end smallexample
  3766. @node Source of the kernel
  3767. @subsection Source of the kernel
  3768. @smallexample
  3769. @include vector_scal_opencl_codelet.texi
  3770. @end smallexample
  3771. @c
  3772. @c Indices.
  3773. @c
  3774. @node Function Index
  3775. @unnumbered Function Index
  3776. @printindex fn
  3777. @bye