starpu.texi 159 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. The following step requires the availability of @code{autoconf} and
  195. @code{automake} to generate the @code{./configure} script. This is
  196. done by calling @code{./autogen.sh}. The required version for
  197. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * Insert Task Utility::
  338. * More examples:: More examples shipped with StarPU
  339. @end menu
  340. @node Compiling and linking options
  341. @section Compiling and linking options
  342. Let's suppose StarPU has been installed in the directory
  343. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  344. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  345. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  346. libraries at runtime.
  347. @example
  348. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  349. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  350. @end example
  351. The Makefile could for instance contain the following lines to define which
  352. options must be given to the compiler and to the linker:
  353. @cartouche
  354. @example
  355. CFLAGS += $$(pkg-config --cflags libstarpu)
  356. LDFLAGS += $$(pkg-config --libs libstarpu)
  357. @end example
  358. @end cartouche
  359. @node Hello World
  360. @section Hello World
  361. @menu
  362. * Required Headers::
  363. * Defining a Codelet::
  364. * Submitting a Task::
  365. * Execution of Hello World::
  366. @end menu
  367. In this section, we show how to implement a simple program that submits a task to StarPU.
  368. @node Required Headers
  369. @subsection Required Headers
  370. The @code{starpu.h} header should be included in any code using StarPU.
  371. @cartouche
  372. @smallexample
  373. #include <starpu.h>
  374. @end smallexample
  375. @end cartouche
  376. @node Defining a Codelet
  377. @subsection Defining a Codelet
  378. @cartouche
  379. @smallexample
  380. struct params @{
  381. int i;
  382. float f;
  383. @};
  384. void cpu_func(void *buffers[], void *cl_arg)
  385. @{
  386. struct params *params = cl_arg;
  387. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  388. @}
  389. starpu_codelet cl =
  390. @{
  391. .where = STARPU_CPU,
  392. .cpu_func = cpu_func,
  393. .nbuffers = 0
  394. @};
  395. @end smallexample
  396. @end cartouche
  397. A codelet is a structure that represents a computational kernel. Such a codelet
  398. may contain an implementation of the same kernel on different architectures
  399. (e.g. CUDA, Cell's SPU, x86, ...).
  400. The @code{nbuffers} field specifies the number of data buffers that are
  401. manipulated by the codelet: here the codelet does not access or modify any data
  402. that is controlled by our data management library. Note that the argument
  403. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  404. structure) does not count as a buffer since it is not managed by our data
  405. management library, but just contain trivial parameters.
  406. @c TODO need a crossref to the proper description of "where" see bla for more ...
  407. We create a codelet which may only be executed on the CPUs. The @code{where}
  408. field is a bitmask that defines where the codelet may be executed. Here, the
  409. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  410. (@pxref{Codelets and Tasks} for more details on this field).
  411. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  412. which @emph{must} have the following prototype:
  413. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  414. In this example, we can ignore the first argument of this function which gives a
  415. description of the input and output buffers (e.g. the size and the location of
  416. the matrices) since there is none.
  417. The second argument is a pointer to a buffer passed as an
  418. argument to the codelet by the means of the @code{cl_arg} field of the
  419. @code{starpu_task} structure.
  420. @c TODO rewrite so that it is a little clearer ?
  421. Be aware that this may be a pointer to a
  422. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  423. if the codelet modifies this buffer, there is no guarantee that the initial
  424. buffer will be modified as well: this for instance implies that the buffer
  425. cannot be used as a synchronization medium. If synchronization is needed, data
  426. has to be registered to StarPU, see @ref{Scaling a Vector}.
  427. @node Submitting a Task
  428. @subsection Submitting a Task
  429. @cartouche
  430. @smallexample
  431. void callback_func(void *callback_arg)
  432. @{
  433. printf("Callback function (arg %x)\n", callback_arg);
  434. @}
  435. int main(int argc, char **argv)
  436. @{
  437. /* @b{initialize StarPU} */
  438. starpu_init(NULL);
  439. struct starpu_task *task = starpu_task_create();
  440. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  441. struct params params = @{ 1, 2.0f @};
  442. task->cl_arg = &params;
  443. task->cl_arg_size = sizeof(params);
  444. task->callback_func = callback_func;
  445. task->callback_arg = 0x42;
  446. /* @b{starpu_task_submit will be a blocking call} */
  447. task->synchronous = 1;
  448. /* @b{submit the task to StarPU} */
  449. starpu_task_submit(task);
  450. /* @b{terminate StarPU} */
  451. starpu_shutdown();
  452. return 0;
  453. @}
  454. @end smallexample
  455. @end cartouche
  456. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  457. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  458. be submitted after the termination of StarPU by a call to
  459. @code{starpu_shutdown}.
  460. In the example above, a task structure is allocated by a call to
  461. @code{starpu_task_create}. This function only allocates and fills the
  462. corresponding structure with the default settings (@pxref{starpu_task_create}),
  463. but it does not submit the task to StarPU.
  464. @c not really clear ;)
  465. The @code{cl} field is a pointer to the codelet which the task will
  466. execute: in other words, the codelet structure describes which computational
  467. kernel should be offloaded on the different architectures, and the task
  468. structure is a wrapper containing a codelet and the piece of data on which the
  469. codelet should operate.
  470. The optional @code{cl_arg} field is a pointer to a buffer (of size
  471. @code{cl_arg_size}) with some parameters for the kernel
  472. described by the codelet. For instance, if a codelet implements a computational
  473. kernel that multiplies its input vector by a constant, the constant could be
  474. specified by the means of this buffer, instead of registering it as a StarPU
  475. data.
  476. Once a task has been executed, an optional callback function is be called.
  477. While the computational kernel could be offloaded on various architectures, the
  478. callback function is always executed on a CPU. The @code{callback_arg}
  479. pointer is passed as an argument of the callback. The prototype of a callback
  480. function must be:
  481. @code{void (*callback_function)(void *);}
  482. If the @code{synchronous} field is non-zero, task submission will be
  483. synchronous: the @code{starpu_task_submit} function will not return until the
  484. task was executed. Note that the @code{starpu_shutdown} method does not
  485. guarantee that asynchronous tasks have been executed before it returns,
  486. @code{starpu_task_wait_for_all} can be used to that effect..
  487. @node Execution of Hello World
  488. @subsection Execution of Hello World
  489. @smallexample
  490. % make hello_world
  491. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  492. % ./hello_world
  493. Hello world (params = @{1, 2.000000@} )
  494. Callback function (arg 42)
  495. @end smallexample
  496. @node Scaling a Vector
  497. @section Manipulating Data: Scaling a Vector
  498. The previous example has shown how to submit tasks. In this section,
  499. we show how StarPU tasks can manipulate data. The full source code for
  500. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  501. @menu
  502. * Source code of Vector Scaling::
  503. * Execution of Vector Scaling::
  504. @end menu
  505. @node Source code of Vector Scaling
  506. @subsection Source code of Vector Scaling
  507. Programmers can describe the data layout of their application so that StarPU is
  508. responsible for enforcing data coherency and availability across the machine.
  509. Instead of handling complex (and non-portable) mechanisms to perform data
  510. movements, programmers only declare which piece of data is accessed and/or
  511. modified by a task, and StarPU makes sure that when a computational kernel
  512. starts somewhere (e.g. on a GPU), its data are available locally.
  513. Before submitting those tasks, the programmer first needs to declare the
  514. different pieces of data to StarPU using the @code{starpu_*_data_register}
  515. functions. To ease the development of applications for StarPU, it is possible
  516. to describe multiple types of data layout. A type of data layout is called an
  517. @b{interface}. There are different predefined interfaces available in StarPU:
  518. here we will consider the @b{vector interface}.
  519. The following lines show how to declare an array of @code{NX} elements of type
  520. @code{float} using the vector interface:
  521. @cartouche
  522. @smallexample
  523. float vector[NX];
  524. starpu_data_handle vector_handle;
  525. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  526. sizeof(vector[0]));
  527. @end smallexample
  528. @end cartouche
  529. The first argument, called the @b{data handle}, is an opaque pointer which
  530. designates the array in StarPU. This is also the structure which is used to
  531. describe which data is used by a task. The second argument is the node number
  532. where the data originally resides. Here it is 0 since the @code{vector} array is in
  533. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  534. the number of elements in the vector and the size of each element.
  535. The following shows how to construct a StarPU task that will manipulate the
  536. vector and a constant factor.
  537. @cartouche
  538. @smallexample
  539. float factor = 3.14;
  540. struct starpu_task *task = starpu_task_create();
  541. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  542. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  543. task->buffers[0].mode = STARPU_RW;
  544. task->cl_arg = &factor;
  545. task->cl_arg_size = sizeof(factor);
  546. task->synchronous = 1;
  547. starpu_task_submit(task);
  548. @end smallexample
  549. @end cartouche
  550. Since the factor is a mere constant float value parameter,
  551. it does not need a preliminary registration, and
  552. can just be passed through the @code{cl_arg} pointer like in the previous
  553. example. The vector parameter is described by its handle.
  554. There are two fields in each element of the @code{buffers} array.
  555. @code{handle} is the handle of the data, and @code{mode} specifies how the
  556. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  557. write-only and @code{STARPU_RW} for read and write access).
  558. The definition of the codelet can be written as follows:
  559. @cartouche
  560. @smallexample
  561. void scal_cpu_func(void *buffers[], void *cl_arg)
  562. @{
  563. unsigned i;
  564. float *factor = cl_arg;
  565. /* length of the vector */
  566. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  567. /* local copy of the vector pointer */
  568. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  569. for (i = 0; i < n; i++)
  570. val[i] *= *factor;
  571. @}
  572. starpu_codelet cl = @{
  573. .where = STARPU_CPU,
  574. .cpu_func = scal_cpu_func,
  575. .nbuffers = 1
  576. @};
  577. @end smallexample
  578. @end cartouche
  579. The first argument is an array that gives
  580. a description of all the buffers passed in the @code{task->buffers}@ array. The
  581. size of this array is given by the @code{nbuffers} field of the codelet
  582. structure. For the sake of genericity, this array contains pointers to the
  583. different interfaces describing each buffer. In the case of the @b{vector
  584. interface}, the location of the vector (resp. its length) is accessible in the
  585. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  586. read-write fashion, any modification will automatically affect future accesses
  587. to this vector made by other tasks.
  588. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  589. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  590. constant factor from this pointer.
  591. @node Execution of Vector Scaling
  592. @subsection Execution of Vector Scaling
  593. @smallexample
  594. % make vector_scal
  595. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  596. % ./vector_scal
  597. 0.000000 3.000000 6.000000 9.000000 12.000000
  598. @end smallexample
  599. @node Vector Scaling on an Hybrid CPU/GPU Machine
  600. @section Vector Scaling on an Hybrid CPU/GPU Machine
  601. Contrary to the previous examples, the task submitted in this example may not
  602. only be executed by the CPUs, but also by a CUDA device.
  603. @menu
  604. * Definition of the CUDA Kernel::
  605. * Definition of the OpenCL Kernel::
  606. * Definition of the Main Code::
  607. * Execution of Hybrid Vector Scaling::
  608. @end menu
  609. @node Definition of the CUDA Kernel
  610. @subsection Definition of the CUDA Kernel
  611. The CUDA implementation can be written as follows. It needs to be
  612. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  613. driver.
  614. @cartouche
  615. @smallexample
  616. #include <starpu.h>
  617. static __global__ void vector_mult_cuda(float *val, unsigned n,
  618. float factor)
  619. @{
  620. unsigned i;
  621. if (i < n)
  622. val[i] *= factor;
  623. @}
  624. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  625. @{
  626. float *factor = (float *)_args;
  627. /* length of the vector */
  628. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  629. /* local copy of the vector pointer */
  630. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  631. unsigned threads_per_block = 64;
  632. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  633. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  634. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  635. @}
  636. @end smallexample
  637. @end cartouche
  638. @node Definition of the OpenCL Kernel
  639. @subsection Definition of the OpenCL Kernel
  640. The OpenCL implementation can be written as follows. StarPU provides
  641. tools to compile a OpenCL kernel stored in a file.
  642. @cartouche
  643. @smallexample
  644. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  645. @{
  646. const int i = get_global_id(0);
  647. if (i < nx) @{
  648. val[i] *= factor;
  649. @}
  650. @}
  651. @end smallexample
  652. @end cartouche
  653. @cartouche
  654. @smallexample
  655. #include <starpu.h>
  656. @i{#include <starpu_opencl.h>}
  657. @i{extern struct starpu_opencl_program programs;}
  658. void scal_opencl_func(void *buffers[], void *_args)
  659. @{
  660. float *factor = _args;
  661. @i{ int id, devid, err;}
  662. @i{ cl_kernel kernel;}
  663. @i{ cl_command_queue queue;}
  664. @i{ cl_event event;}
  665. /* length of the vector */
  666. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  667. /* local copy of the vector pointer */
  668. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  669. @i{ id = starpu_worker_get_id();}
  670. @i{ devid = starpu_worker_get_devid(id);}
  671. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  672. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  673. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  674. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  675. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  676. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  677. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  678. @i{ @{}
  679. @i{ size_t global=1;}
  680. @i{ size_t local=1;}
  681. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  682. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  683. @i{ @}}
  684. @i{ clFinish(queue);}
  685. @i{ starpu_opencl_collect_stats(event);}
  686. @i{ clReleaseEvent(event);}
  687. @i{ starpu_opencl_release_kernel(kernel);}
  688. @}
  689. @end smallexample
  690. @end cartouche
  691. @node Definition of the Main Code
  692. @subsection Definition of the Main Code
  693. The CPU implementation is the same as in the previous section.
  694. Here is the source of the main application. You can notice the value of the
  695. field @code{where} for the codelet. We specify
  696. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  697. can be executed either on a CPU or on a CUDA or an OpenCL device.
  698. @cartouche
  699. @smallexample
  700. #include <starpu.h>
  701. #define NX 2048
  702. extern void scal_cuda_func(void *buffers[], void *_args);
  703. extern void scal_cpu_func(void *buffers[], void *_args);
  704. extern void scal_opencl_func(void *buffers[], void *_args);
  705. /* @b{Definition of the codelet} */
  706. static starpu_codelet cl = @{
  707. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  708. /* @b{on a CUDA device, or on an OpenCL device} */
  709. .cuda_func = scal_cuda_func;
  710. .cpu_func = scal_cpu_func;
  711. .opencl_func = scal_opencl_func;
  712. .nbuffers = 1;
  713. @}
  714. #ifdef STARPU_USE_OPENCL
  715. /* @b{The compiled version of the OpenCL program} */
  716. struct starpu_opencl_program programs;
  717. #endif
  718. int main(int argc, char **argv)
  719. @{
  720. float *vector;
  721. int i, ret;
  722. float factor=3.0;
  723. struct starpu_task *task;
  724. starpu_data_handle vector_handle;
  725. starpu_init(NULL); /* @b{Initialising StarPU} */
  726. #ifdef STARPU_USE_OPENCL
  727. starpu_opencl_load_opencl_from_file(
  728. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  729. #endif
  730. vector = malloc(NX*sizeof(vector[0]));
  731. assert(vector);
  732. for(i=0 ; i<NX ; i++) vector[i] = i;
  733. @end smallexample
  734. @end cartouche
  735. @cartouche
  736. @smallexample
  737. /* @b{Registering data within StarPU} */
  738. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  739. NX, sizeof(vector[0]));
  740. /* @b{Definition of the task} */
  741. task = starpu_task_create();
  742. task->cl = &cl;
  743. task->buffers[0].handle = vector_handle;
  744. task->buffers[0].mode = STARPU_RW;
  745. task->cl_arg = &factor;
  746. task->cl_arg_size = sizeof(factor);
  747. @end smallexample
  748. @end cartouche
  749. @cartouche
  750. @smallexample
  751. /* @b{Submitting the task} */
  752. ret = starpu_task_submit(task);
  753. if (ret == -ENODEV) @{
  754. fprintf(stderr, "No worker may execute this task\n");
  755. return 1;
  756. @}
  757. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  758. /* @b{Waiting for its termination} */
  759. starpu_task_wait_for_all();
  760. /* @b{Update the vector in RAM} */
  761. starpu_data_acquire(vector_handle, STARPU_R);
  762. @end smallexample
  763. @end cartouche
  764. @cartouche
  765. @smallexample
  766. /* @b{Access the data} */
  767. for(i=0 ; i<NX; i++) @{
  768. fprintf(stderr, "%f ", vector[i]);
  769. @}
  770. fprintf(stderr, "\n");
  771. /* @b{Release the data and shutdown StarPU} */
  772. starpu_data_release(vector_handle);
  773. starpu_shutdown();
  774. return 0;
  775. @}
  776. @end smallexample
  777. @end cartouche
  778. @node Execution of Hybrid Vector Scaling
  779. @subsection Execution of Hybrid Vector Scaling
  780. The Makefile given at the beginning of the section must be extended to
  781. give the rules to compile the CUDA source code. Note that the source
  782. file of the OpenCL kernel does not need to be compiled now, it will
  783. be compiled at run-time when calling the function
  784. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  785. @cartouche
  786. @smallexample
  787. CFLAGS += $(shell pkg-config --cflags libstarpu)
  788. LDFLAGS += $(shell pkg-config --libs libstarpu)
  789. CC = gcc
  790. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  791. %.o: %.cu
  792. nvcc $(CFLAGS) $< -c $@
  793. clean:
  794. rm -f vector_scal *.o
  795. @end smallexample
  796. @end cartouche
  797. @smallexample
  798. % make
  799. @end smallexample
  800. and to execute it, with the default configuration:
  801. @smallexample
  802. % ./vector_scal
  803. 0.000000 3.000000 6.000000 9.000000 12.000000
  804. @end smallexample
  805. or for example, by disabling CPU devices:
  806. @smallexample
  807. % STARPU_NCPUS=0 ./vector_scal
  808. 0.000000 3.000000 6.000000 9.000000 12.000000
  809. @end smallexample
  810. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  811. see @ref{Using accelerators}):
  812. @smallexample
  813. % STARPU_NCUDA=0 ./vector_scal
  814. 0.000000 3.000000 6.000000 9.000000 12.000000
  815. @end smallexample
  816. @node Task and Worker Profiling
  817. @section Task and Worker Profiling
  818. A full example showing how to use the profiling API is available in
  819. the StarPU sources in the directory @code{examples/profiling/}.
  820. @cartouche
  821. @smallexample
  822. struct starpu_task *task = starpu_task_create();
  823. task->cl = &cl;
  824. task->synchronous = 1;
  825. /* We will destroy the task structure by hand so that we can
  826. * query the profiling info before the task is destroyed. */
  827. task->destroy = 0;
  828. /* Submit and wait for completion (since synchronous was set to 1) */
  829. starpu_task_submit(task);
  830. /* The task is finished, get profiling information */
  831. struct starpu_task_profiling_info *info = task->profiling_info;
  832. /* How much time did it take before the task started ? */
  833. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  834. /* How long was the task execution ? */
  835. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  836. /* We don't need the task structure anymore */
  837. starpu_task_destroy(task);
  838. @end smallexample
  839. @end cartouche
  840. @cartouche
  841. @smallexample
  842. /* Display the occupancy of all workers during the test */
  843. int worker;
  844. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  845. @{
  846. struct starpu_worker_profiling_info worker_info;
  847. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  848. STARPU_ASSERT(!ret);
  849. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  850. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  851. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  852. float executing_ratio = 100.0*executing_time/total_time;
  853. float sleeping_ratio = 100.0*sleeping_time/total_time;
  854. char workername[128];
  855. starpu_worker_get_name(worker, workername, 128);
  856. fprintf(stderr, "Worker %s:\n", workername);
  857. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  858. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  859. executing_ratio);
  860. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  861. sleeping_ratio);
  862. @}
  863. @end smallexample
  864. @end cartouche
  865. @node Partitioning Data
  866. @section Partitioning Data
  867. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  868. @cartouche
  869. @smallexample
  870. int vector[NX];
  871. starpu_data_handle handle;
  872. /* Declare data to StarPU */
  873. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  874. /* Partition the vector in PARTS sub-vectors */
  875. starpu_filter f =
  876. @{
  877. .filter_func = starpu_block_filter_func_vector,
  878. .nchildren = PARTS,
  879. .get_nchildren = NULL,
  880. .get_child_ops = NULL
  881. @};
  882. starpu_data_partition(handle, &f);
  883. @end smallexample
  884. @end cartouche
  885. @cartouche
  886. @smallexample
  887. /* Submit a task on each sub-vector */
  888. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  889. /* Get subdata number i (there is only 1 dimension) */
  890. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  891. struct starpu_task *task = starpu_task_create();
  892. task->buffers[0].handle = sub_handle;
  893. task->buffers[0].mode = STARPU_RW;
  894. task->cl = &cl;
  895. task->synchronous = 1;
  896. task->cl_arg = &factor;
  897. task->cl_arg_size = sizeof(factor);
  898. starpu_task_submit(task);
  899. @}
  900. @end smallexample
  901. @end cartouche
  902. Partitioning can be applied several times, see
  903. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  904. @node Performance model example
  905. @section Performance model example
  906. To achieve good scheduling, StarPU scheduling policies need to be able to
  907. estimate in advance the duration of a task. This is done by giving to codelets a
  908. performance model. There are several kinds of performance models.
  909. @itemize
  910. @item
  911. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  912. see for instance
  913. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  914. @item
  915. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  916. given set of data input/output sizes, the performance will always be about the
  917. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  918. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  919. few different sets of data input/output sizes. StarPU will then keep record of
  920. the average time of previous executions on the various processing units, and use
  921. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  922. for further executions. The following is a small code example.
  923. @cartouche
  924. @smallexample
  925. static struct starpu_perfmodel_t mult_perf_model = @{
  926. .type = STARPU_HISTORY_BASED,
  927. .symbol = "mult_perf_model"
  928. @};
  929. starpu_codelet cl = @{
  930. .where = STARPU_CPU,
  931. .cpu_func = cpu_mult,
  932. .nbuffers = 3,
  933. /* for the scheduling policy to be able to use performance models */
  934. .model = &mult_perf_model
  935. @};
  936. @end smallexample
  937. @end cartouche
  938. @item
  939. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  940. type). This still assumes performance regularity, but can work with various data
  941. input sizes, by applying a*n^b+c regression over observed execution times.
  942. @end itemize
  943. The same can be done for task power consumption estimation, by setting the
  944. @code{power_model} field the same way as the @code{model} field. Note: for
  945. now, the application has to give to the power consumption performance model
  946. a different name.
  947. @node Theoretical lower bound on execution time
  948. @section Theoretical lower bound on execution time
  949. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  950. bound for the execution time of a whole set of tasks. See for
  951. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  952. call @code{starpu_bound_start}, and after complete execution, call
  953. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  954. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  955. problem corresponding to the schedule of your tasks. Run it through
  956. @code{lp_solve} or any other linear programming solver, and that will give you a
  957. lower bound for the total execution time of your tasks. If StarPU was compiled
  958. with the glpk library installed, @code{starpu_bound_compute} can be used to
  959. solve it immediately and get the optimized minimum. Its @code{integer}
  960. parameter allows to decide whether integer resolution should be computed
  961. and returned.
  962. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  963. dependencies into account. It must be understood that the linear programming
  964. problem size is quadratic with the number of tasks and thus the time to solve it
  965. will be very long, it could be minutes for just a few dozen tasks. You should
  966. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  967. problem to MPS format and then use a better solver, @code{glpsol} might be
  968. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  969. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  970. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  971. of @code{lp_solve}. For instance, we often just use
  972. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  973. the @code{-gr} option can also be quite useful.
  974. Setting @code{deps} to 0 will only take into account the actual computations
  975. on processing units. It however still properly takes into account the varying
  976. performances of kernels and processing units, which is quite more accurate than
  977. just comparing StarPU performances with the fastest of the kernels being used.
  978. The @code{prio} parameter tells StarPU whether to simulate taking into account
  979. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  980. tasks before less prioritized tasks, to check to which extend this results
  981. to a less optimal solution. This increases even more computation time.
  982. Note that for simplicity, all this however doesn't take into account data
  983. transfers, which are assumed to be completely overlapped.
  984. @node Insert Task Utility
  985. @section Insert Task Utility
  986. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  987. the creation and submission of tasks.
  988. @emph{Prototype}:
  989. @code{int starpu_insert_task(starpu_codelet *cl, ...);}
  990. The arguments following the codelets can be of the following types:
  991. @itemize
  992. @item
  993. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  994. @item
  995. @code{STARPU_VALUE} followed by a pointer to a constant value and
  996. the size of the constant;
  997. @item
  998. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  999. @item
  1000. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1001. argument to the callback function;
  1002. @item
  1003. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1004. @end itemize
  1005. A call to @code{starpu_insert_task} will create and submit the task
  1006. based on the given arguments. The list of varying arguments has to be
  1007. ended by the value @code{0}.
  1008. Parameters to be passed to the codelet implementation are defined
  1009. through the type @code{STARPU_VALUE}. The function
  1010. @code{starpu_unpack_cl_args} must be called within the codelet
  1011. implementation to retrieve them.
  1012. Here the implementation of the codelet:
  1013. @smallexample
  1014. void func_cpu(void *descr[], void *_args)
  1015. @{
  1016. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1017. float *x1 = (int *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1018. int ifactor;
  1019. float ffactor;
  1020. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1021. *x0 = *x0 * ifactor;
  1022. *x1 = *x1 * ffactor;
  1023. @}
  1024. starpu_codelet mycodelet = @{
  1025. .where = STARPU_CPU,
  1026. .cpu_func = func_cpu,
  1027. .nbuffers = 2
  1028. @};
  1029. @end smallexample
  1030. And the call to the @code{starpu_insert_task} wrapper:
  1031. @smallexample
  1032. starpu_insert_task(&mycodelet,
  1033. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1034. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1035. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1036. 0);
  1037. @end smallexample
  1038. @node More examples
  1039. @section More examples
  1040. More examples are available in the StarPU sources in the @code{examples/}
  1041. directory. Simple examples include:
  1042. @table @asis
  1043. @item @code{incrementer/}:
  1044. Trivial incrementation test.
  1045. @item @code{basic_examples/}:
  1046. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1047. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1048. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1049. interface, and an example using the variable data interface.
  1050. @item @code{matvecmult/}:
  1051. OpenCL example from NVidia, adapted to StarPU.
  1052. @item @code{axpy/}:
  1053. AXPY CUBLAS operation adapted to StarPU.
  1054. @item @code{fortran/}:
  1055. Example of Fortran bindings.
  1056. @end table
  1057. More advanced examples include:
  1058. @table @asis
  1059. @item @code{filters/}:
  1060. Examples using filters, as shown in @ref{Partitioning Data}.
  1061. @item @code{lu/}:
  1062. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1063. @item @code{cholesky/}:
  1064. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1065. @end table
  1066. @c ---------------------------------------------------------------------
  1067. @c Performance options
  1068. @c ---------------------------------------------------------------------
  1069. @node Performance optimization
  1070. @chapter How to optimize performance with StarPU
  1071. TODO: improve!
  1072. @menu
  1073. * Data management::
  1074. * Task submission::
  1075. * Task scheduling policy::
  1076. * Task distribution vs Data transfer::
  1077. * Power-based scheduling::
  1078. * Profiling::
  1079. * CUDA-specific optimizations::
  1080. @end menu
  1081. Simply encapsulating application kernels into tasks already permits to
  1082. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1083. few additional changes are needed.
  1084. @node Data management
  1085. @section Data management
  1086. By default, StarPU does not enable data prefetching, because CUDA does
  1087. not announce when too many data transfers were scheduled and can thus block
  1088. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1089. .
  1090. By default, StarPU leaves replicates of data wherever they were used, in case they
  1091. will be re-used by other tasks, thus saving the data transfer time. When some
  1092. task modifies some data, all the other replicates are invalidated, and only the
  1093. processing unit will have a valid replicate of the data. If the application knows
  1094. that this data will not be re-used by further tasks, it should advise StarPU to
  1095. immediately replicate it to a desired list of memory nodes (given through a
  1096. bitmask). This can be understood like the write-through mode of CPU caches.
  1097. @example
  1098. starpu_data_set_wt_mask(img_handle, 1<<0);
  1099. @end example
  1100. will for instance request to always transfer a replicate into the main memory (node
  1101. 0), as bit 0 of the write-through bitmask is being set.
  1102. When the application allocates data, whenever possible it should use the
  1103. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1104. OpenCL to make the allocation itself and pin the corresponding allocated
  1105. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1106. transfer to overlap with computations.
  1107. @node Task submission
  1108. @section Task submission
  1109. To let StarPU make online optimizations, tasks should be submitted
  1110. asynchronously as much as possible. Ideally, all the tasks should be
  1111. submitted, and a mere @code{starpu_task_wait_for_all} call be done to wait for
  1112. termination. StarPU will then be able to rework the whole schedule, overlap
  1113. computation with communication, manage accelerator local memory usage, etc.
  1114. @node Task scheduling policy
  1115. @section Task scheduling policy
  1116. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1117. because it provides correct load balance even if the application codelets do not
  1118. have performance models. If your application codelets have performance models,
  1119. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1120. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1121. the list of available schedulers.
  1122. Most schedulers are based on an estimation of codelet duration on each kind
  1123. of processing unit. For this to be possible, the application programmer needs
  1124. to configure a performance model for the codelets of the application (see
  1125. @ref{Performance model example} for instance). History-based performance models
  1126. use on-line calibration. StarPU will automatically calibrate codelets
  1127. which have never been calibrated yet. To force continuing calibration, use
  1128. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1129. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1130. Note: due to CUDA limitations, to be able to measure kernel duration,
  1131. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1132. disables data transfer / computation overlapping, and should thus not be used
  1133. for eventual benchmarks.
  1134. @node Task distribution vs Data transfer
  1135. @section Task distribution vs Data transfer
  1136. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1137. thus needs to find a balance between both. The target function that the
  1138. @code{dmda} scheduler of StarPU
  1139. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1140. @code{T_execution} is the estimated execution time of the codelet (usually
  1141. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1142. latter is however estimated based on bus calibration before execution start,
  1143. i.e. with an idle machine. You can force bus re-calibration by running
  1144. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1145. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1146. This is of course imprecise, but in practice, a rough estimation already gives
  1147. the good results that a precise estimation would give.
  1148. @node Power-based scheduling
  1149. @section Power-based scheduling
  1150. If the application can provide some power performance model (through
  1151. the @code{power_model} field of the codelet structure), StarPU will
  1152. take it into account when distributing tasks. The target function that
  1153. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1154. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1155. is the estimated task consumption in Joules. To tune this parameter, use
  1156. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1157. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1158. alpha and beta to zero permits to only take into account power consumption.
  1159. This is however not sufficient to correctly optimize power: the scheduler would
  1160. simply tend to run all computations on the most energy-conservative processing
  1161. unit. To account for the consumption of the whole machine (including idle
  1162. processing units), the idle power of the machine should be given by setting
  1163. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1164. be obtained from the machine power supplier.
  1165. The power actually consumed by the total execution can be displayed by setting
  1166. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1167. @node Profiling
  1168. @section Profiling
  1169. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1170. calling @code{starpu_profiling_status_set} from the source code.
  1171. Statistics on the execution can then be obtained by using @code{export
  1172. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1173. stats will include an approximation of the number of executed tasks even if
  1174. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1175. execution did happen on accelerators without penalizing performance with
  1176. the profiling overhead. More details on performance feedback are provided by the
  1177. next chapter.
  1178. @node CUDA-specific optimizations
  1179. @section CUDA-specific optimizations
  1180. Due to CUDA limitations, StarPU will have a hard time overlapping
  1181. communications and computations if the application does not use a dedicated
  1182. CUDA stream for its computations. StarPU provides one by the use of
  1183. @code{starpu_cuda_get_local_stream()}. For instance:
  1184. @example
  1185. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1186. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1187. @end example
  1188. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1189. @c ---------------------------------------------------------------------
  1190. @c Performance feedback
  1191. @c ---------------------------------------------------------------------
  1192. @node Performance feedback
  1193. @chapter Performance feedback
  1194. @menu
  1195. * On-line:: On-line performance feedback
  1196. * Off-line:: Off-line performance feedback
  1197. * Codelet performance:: Performance of codelets
  1198. @end menu
  1199. @node On-line
  1200. @section On-line performance feedback
  1201. @menu
  1202. * Enabling monitoring:: Enabling on-line performance monitoring
  1203. * Task feedback:: Per-task feedback
  1204. * Codelet feedback:: Per-codelet feedback
  1205. * Worker feedback:: Per-worker feedback
  1206. * Bus feedback:: Bus-related feedback
  1207. @end menu
  1208. @node Enabling monitoring
  1209. @subsection Enabling on-line performance monitoring
  1210. In order to enable online performance monitoring, the application can call
  1211. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1212. detect whether monitoring is already enabled or not by calling
  1213. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1214. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1215. can also be set to 1 to achieve the same effect.
  1216. Likewise, performance monitoring is stopped by calling
  1217. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1218. does not reset the performance counters so that the application may consult
  1219. them later on.
  1220. More details about the performance monitoring API are available in section
  1221. @ref{Profiling API}.
  1222. @node Task feedback
  1223. @subsection Per-task feedback
  1224. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1225. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1226. structure when a task terminates.
  1227. This structure is automatically destroyed when the task structure is destroyed,
  1228. either automatically or by calling @code{starpu_task_destroy}.
  1229. The @code{starpu_task_profiling_info} structure indicates the date when the
  1230. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1231. terminated (@code{end_time}), relative to the initialization of
  1232. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1233. that has executed the task (@code{workerid}).
  1234. These date are stored as @code{timespec} structures which the user may convert
  1235. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1236. function.
  1237. It it worth noting that the application may directly access this structure from
  1238. the callback executed at the end of the task. The @code{starpu_task} structure
  1239. associated to the callback currently being executed is indeed accessible with
  1240. the @code{starpu_get_current_task()} function.
  1241. @node Codelet feedback
  1242. @subsection Per-codelet feedback
  1243. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1244. an array of counters. The i-th entry of the array is incremented every time a
  1245. task implementing the codelet is executed on the i-th worker.
  1246. This array is not reinitialized when profiling is enabled or disabled.
  1247. @node Worker feedback
  1248. @subsection Per-worker feedback
  1249. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1250. function is a @code{starpu_worker_profiling_info} structure that gives
  1251. statistics about the specified worker. This structure specifies when StarPU
  1252. started collecting profiling information for that worker (@code{start_time}),
  1253. the duration of the profiling measurement interval (@code{total_time}), the
  1254. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1255. because there is no task to execute at all (@code{sleeping_time}), and the
  1256. number of tasks that were executed while profiling was enabled.
  1257. These values give an estimation of the proportion of time spent do real work,
  1258. and the time spent either sleeping because there are not enough executable
  1259. tasks or simply wasted in pure StarPU overhead.
  1260. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1261. information associated to a worker.
  1262. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1263. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1264. generate a graphic showing the evolution of these values during the time, for
  1265. the different workers.
  1266. @node Bus feedback
  1267. @subsection Bus-related feedback
  1268. TODO
  1269. @c how to enable/disable performance monitoring
  1270. @c what kind of information do we get ?
  1271. @node Off-line
  1272. @section Off-line performance feedback
  1273. @menu
  1274. * Generating traces:: Generating traces with FxT
  1275. * Gantt diagram:: Creating a Gantt Diagram
  1276. * DAG:: Creating a DAG with graphviz
  1277. * starpu-top:: Monitoring activity
  1278. @end menu
  1279. @node Generating traces
  1280. @subsection Generating traces with FxT
  1281. StarPU can use the FxT library (see
  1282. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1283. with a limited runtime overhead.
  1284. You can either get the FxT library from CVS (autotools are required):
  1285. @example
  1286. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1287. % ./bootstrap
  1288. @end example
  1289. If autotools are not available on your machine, or if you prefer to do so,
  1290. FxT's code is also available as a tarball:
  1291. @example
  1292. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1293. @end example
  1294. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1295. done following the standard procedure:
  1296. @example
  1297. % ./configure --prefix=$FXTDIR
  1298. % make
  1299. % make install
  1300. @end example
  1301. In order to have StarPU to generate traces, StarPU should be configured with
  1302. the @code{--with-fxt} option:
  1303. @example
  1304. $ ./configure --with-fxt=$FXTDIR
  1305. @end example
  1306. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1307. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1308. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1309. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1310. @code{/tmp/} directory by default, or by the directory specified by
  1311. the @code{STARPU_FXT_PREFIX} environment variable.
  1312. @node Gantt diagram
  1313. @subsection Creating a Gantt Diagram
  1314. When the FxT trace file @code{filename} has been generated, it is possible to
  1315. generate a trace in the Paje format by calling:
  1316. @example
  1317. % starpu_fxt_tool -i filename
  1318. @end example
  1319. This will create a @code{paje.trace} file in the current directory that can be
  1320. inspected with the ViTE trace visualizing open-source tool. More information
  1321. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1322. possible to open the @code{paje.trace} file with ViTE by using the following
  1323. command:
  1324. @example
  1325. % vite paje.trace
  1326. @end example
  1327. @node DAG
  1328. @subsection Creating a DAG with graphviz
  1329. When the FxT trace file @code{filename} has been generated, it is possible to
  1330. generate a task graph in the DOT format by calling:
  1331. @example
  1332. $ starpu_fxt_tool -i filename
  1333. @end example
  1334. This will create a @code{dag.dot} file in the current directory. This file is a
  1335. task graph described using the DOT language. It is possible to get a
  1336. graphical output of the graph by using the graphviz library:
  1337. @example
  1338. $ dot -Tpdf dag.dot -o output.pdf
  1339. @end example
  1340. @node starpu-top
  1341. @subsection Monitoring activity
  1342. When the FxT trace file @code{filename} has been generated, it is possible to
  1343. generate a activity trace by calling:
  1344. @example
  1345. $ starpu_fxt_tool -i filename
  1346. @end example
  1347. This will create an @code{activity.data} file in the current
  1348. directory. A profile of the application showing the activity of StarPU
  1349. during the execution of the program can be generated:
  1350. @example
  1351. $ starpu_top.sh activity.data
  1352. @end example
  1353. This will create a file named @code{activity.eps} in the current directory.
  1354. This picture is composed of two parts.
  1355. The first part shows the activity of the different workers. The green sections
  1356. indicate which proportion of the time was spent executed kernels on the
  1357. processing unit. The red sections indicate the proportion of time spent in
  1358. StartPU: an important overhead may indicate that the granularity may be too
  1359. low, and that bigger tasks may be appropriate to use the processing unit more
  1360. efficiently. The black sections indicate that the processing unit was blocked
  1361. because there was no task to process: this may indicate a lack of parallelism
  1362. which may be alleviated by creating more tasks when it is possible.
  1363. The second part of the @code{activity.eps} picture is a graph showing the
  1364. evolution of the number of tasks available in the system during the execution.
  1365. Ready tasks are shown in black, and tasks that are submitted but not
  1366. schedulable yet are shown in grey.
  1367. @node Codelet performance
  1368. @section Performance of codelets
  1369. The performance model of codelets can be examined by using the
  1370. @code{starpu_perfmodel_display} tool:
  1371. @example
  1372. $ starpu_perfmodel_display -l
  1373. file: <malloc_pinned.hannibal>
  1374. file: <starpu_slu_lu_model_21.hannibal>
  1375. file: <starpu_slu_lu_model_11.hannibal>
  1376. file: <starpu_slu_lu_model_22.hannibal>
  1377. file: <starpu_slu_lu_model_12.hannibal>
  1378. @end example
  1379. Here, the codelets of the lu example are available. We can examine the
  1380. performance of the 22 kernel:
  1381. @example
  1382. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1383. performance model for cpu
  1384. # hash size mean dev n
  1385. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1386. performance model for cuda_0
  1387. # hash size mean dev n
  1388. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1389. performance model for cuda_1
  1390. # hash size mean dev n
  1391. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1392. performance model for cuda_2
  1393. # hash size mean dev n
  1394. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1395. @end example
  1396. We can see that for the given size, over a sample of a few hundreds of
  1397. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1398. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1399. CPUs.
  1400. @c ---------------------------------------------------------------------
  1401. @c MPI support
  1402. @c ---------------------------------------------------------------------
  1403. @node StarPU MPI support
  1404. @chapter StarPU MPI support
  1405. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1406. @c ---------------------------------------------------------------------
  1407. @c Configuration options
  1408. @c ---------------------------------------------------------------------
  1409. @node Configuring StarPU
  1410. @chapter Configuring StarPU
  1411. @menu
  1412. * Compilation configuration::
  1413. * Execution configuration through environment variables::
  1414. @end menu
  1415. @node Compilation configuration
  1416. @section Compilation configuration
  1417. The following arguments can be given to the @code{configure} script.
  1418. @menu
  1419. * Common configuration::
  1420. * Configuring workers::
  1421. * Advanced configuration::
  1422. @end menu
  1423. @node Common configuration
  1424. @subsection Common configuration
  1425. @menu
  1426. * --enable-debug::
  1427. * --enable-fast::
  1428. * --enable-verbose::
  1429. * --enable-coverage::
  1430. @end menu
  1431. @node --enable-debug
  1432. @subsubsection @code{--enable-debug}
  1433. @table @asis
  1434. @item @emph{Description}:
  1435. Enable debugging messages.
  1436. @end table
  1437. @node --enable-fast
  1438. @subsubsection @code{--enable-fast}
  1439. @table @asis
  1440. @item @emph{Description}:
  1441. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1442. @end table
  1443. @node --enable-verbose
  1444. @subsubsection @code{--enable-verbose}
  1445. @table @asis
  1446. @item @emph{Description}:
  1447. Augment the verbosity of the debugging messages. This can be disabled
  1448. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1449. any value.
  1450. @smallexample
  1451. % STARPU_SILENT=1 ./vector_scal
  1452. @end smallexample
  1453. @end table
  1454. @node --enable-coverage
  1455. @subsubsection @code{--enable-coverage}
  1456. @table @asis
  1457. @item @emph{Description}:
  1458. Enable flags for the @code{gcov} coverage tool.
  1459. @end table
  1460. @node Configuring workers
  1461. @subsection Configuring workers
  1462. @menu
  1463. * --enable-nmaxcpus::
  1464. * --disable-cpu::
  1465. * --enable-maxcudadev::
  1466. * --disable-cuda::
  1467. * --with-cuda-dir::
  1468. * --with-cuda-include-dir::
  1469. * --with-cuda-lib-dir::
  1470. * --enable-maxopencldev::
  1471. * --disable-opencl::
  1472. * --with-opencl-dir::
  1473. * --with-opencl-include-dir::
  1474. * --with-opencl-lib-dir::
  1475. * --enable-gordon::
  1476. * --with-gordon-dir::
  1477. @end menu
  1478. @node --enable-nmaxcpus
  1479. @subsubsection @code{--enable-nmaxcpus=<number>}
  1480. @table @asis
  1481. @item @emph{Description}:
  1482. Defines the maximum number of CPU cores that StarPU will support, then
  1483. available as the @code{STARPU_NMAXCPUS} macro.
  1484. @end table
  1485. @node --disable-cpu
  1486. @subsubsection @code{--disable-cpu}
  1487. @table @asis
  1488. @item @emph{Description}:
  1489. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1490. @end table
  1491. @node --enable-maxcudadev
  1492. @subsubsection @code{--enable-maxcudadev=<number>}
  1493. @table @asis
  1494. @item @emph{Description}:
  1495. Defines the maximum number of CUDA devices that StarPU will support, then
  1496. available as the @code{STARPU_MAXCUDADEVS} macro.
  1497. @end table
  1498. @node --disable-cuda
  1499. @subsubsection @code{--disable-cuda}
  1500. @table @asis
  1501. @item @emph{Description}:
  1502. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1503. @end table
  1504. @node --with-cuda-dir
  1505. @subsubsection @code{--with-cuda-dir=<path>}
  1506. @table @asis
  1507. @item @emph{Description}:
  1508. Specify the directory where CUDA is installed. This directory should notably contain
  1509. @code{include/cuda.h}.
  1510. @end table
  1511. @node --with-cuda-include-dir
  1512. @subsubsection @code{--with-cuda-include-dir=<path>}
  1513. @table @asis
  1514. @item @emph{Description}:
  1515. Specify the directory where CUDA headers are installed. This directory should
  1516. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1517. value given to @code{--with-cuda-dir}.
  1518. @end table
  1519. @node --with-cuda-lib-dir
  1520. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1521. @table @asis
  1522. @item @emph{Description}:
  1523. Specify the directory where the CUDA library is installed. This directory should
  1524. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1525. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1526. @end table
  1527. @node --enable-maxopencldev
  1528. @subsubsection @code{--enable-maxopencldev=<number>}
  1529. @table @asis
  1530. @item @emph{Description}:
  1531. Defines the maximum number of OpenCL devices that StarPU will support, then
  1532. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1533. @end table
  1534. @node --disable-opencl
  1535. @subsubsection @code{--disable-opencl}
  1536. @table @asis
  1537. @item @emph{Description}:
  1538. Disable the use of OpenCL, even if the SDK is detected.
  1539. @end table
  1540. @node --with-opencl-dir
  1541. @subsubsection @code{--with-opencl-dir=<path>}
  1542. @table @asis
  1543. @item @emph{Description}:
  1544. Specify the location of the OpenCL SDK. This directory should notably contain
  1545. @code{include/CL/cl.h}.
  1546. @end table
  1547. @node --with-opencl-include-dir
  1548. @subsubsection @code{--with-opencl-include-dir=<path>}
  1549. @table @asis
  1550. @item @emph{Description}:
  1551. Specify the location of OpenCL headers. This directory should notably contain
  1552. @code{CL/cl.h}. This defaults to
  1553. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1554. @end table
  1555. @node --with-opencl-lib-dir
  1556. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1557. @table @asis
  1558. @item @emph{Description}:
  1559. Specify the location of the OpenCL library. This directory should notably
  1560. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1561. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1562. @end table
  1563. @node --enable-gordon
  1564. @subsubsection @code{--enable-gordon}
  1565. @table @asis
  1566. @item @emph{Description}:
  1567. Enable the use of the Gordon runtime for Cell SPUs.
  1568. @c TODO: rather default to enabled when detected
  1569. @end table
  1570. @node --with-gordon-dir
  1571. @subsubsection @code{--with-gordon-dir=<path>}
  1572. @table @asis
  1573. @item @emph{Description}:
  1574. Specify the location of the Gordon SDK.
  1575. @end table
  1576. @node Advanced configuration
  1577. @subsection Advanced configuration
  1578. @menu
  1579. * --enable-perf-debug::
  1580. * --enable-model-debug::
  1581. * --enable-stats::
  1582. * --enable-maxbuffers::
  1583. * --enable-allocation-cache::
  1584. * --enable-opengl-render::
  1585. * --enable-blas-lib::
  1586. * --with-magma::
  1587. * --with-fxt::
  1588. * --with-perf-model-dir::
  1589. * --with-mpicc::
  1590. * --with-goto-dir::
  1591. * --with-atlas-dir::
  1592. * --with-mkl-cflags::
  1593. * --with-mkl-ldflags::
  1594. @end menu
  1595. @node --enable-perf-debug
  1596. @subsubsection @code{--enable-perf-debug}
  1597. @table @asis
  1598. @item @emph{Description}:
  1599. Enable performance debugging.
  1600. @end table
  1601. @node --enable-model-debug
  1602. @subsubsection @code{--enable-model-debug}
  1603. @table @asis
  1604. @item @emph{Description}:
  1605. Enable performance model debugging.
  1606. @end table
  1607. @node --enable-stats
  1608. @subsubsection @code{--enable-stats}
  1609. @table @asis
  1610. @item @emph{Description}:
  1611. Enable statistics.
  1612. @end table
  1613. @node --enable-maxbuffers
  1614. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1615. @table @asis
  1616. @item @emph{Description}:
  1617. Define the maximum number of buffers that tasks will be able to take
  1618. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1619. @end table
  1620. @node --enable-allocation-cache
  1621. @subsubsection @code{--enable-allocation-cache}
  1622. @table @asis
  1623. @item @emph{Description}:
  1624. Enable the use of a data allocation cache to avoid the cost of it with
  1625. CUDA. Still experimental.
  1626. @end table
  1627. @node --enable-opengl-render
  1628. @subsubsection @code{--enable-opengl-render}
  1629. @table @asis
  1630. @item @emph{Description}:
  1631. Enable the use of OpenGL for the rendering of some examples.
  1632. @c TODO: rather default to enabled when detected
  1633. @end table
  1634. @node --enable-blas-lib
  1635. @subsubsection @code{--enable-blas-lib=<name>}
  1636. @table @asis
  1637. @item @emph{Description}:
  1638. Specify the blas library to be used by some of the examples. The
  1639. library has to be 'atlas' or 'goto'.
  1640. @end table
  1641. @node --with-magma
  1642. @subsubsection @code{--with-magma=<path>}
  1643. @table @asis
  1644. @item @emph{Description}:
  1645. Specify where magma is installed. This directory should notably contain
  1646. @code{include/magmablas.h}.
  1647. @end table
  1648. @node --with-fxt
  1649. @subsubsection @code{--with-fxt=<path>}
  1650. @table @asis
  1651. @item @emph{Description}:
  1652. Specify the location of FxT (for generating traces and rendering them
  1653. using ViTE). This directory should notably contain
  1654. @code{include/fxt/fxt.h}.
  1655. @c TODO add ref to other section
  1656. @end table
  1657. @node --with-perf-model-dir
  1658. @subsubsection @code{--with-perf-model-dir=<dir>}
  1659. @table @asis
  1660. @item @emph{Description}:
  1661. Specify where performance models should be stored (instead of defaulting to the
  1662. current user's home).
  1663. @end table
  1664. @node --with-mpicc
  1665. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1666. @table @asis
  1667. @item @emph{Description}:
  1668. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1669. @end table
  1670. @node --with-goto-dir
  1671. @subsubsection @code{--with-goto-dir=<dir>}
  1672. @table @asis
  1673. @item @emph{Description}:
  1674. Specify the location of GotoBLAS.
  1675. @end table
  1676. @node --with-atlas-dir
  1677. @subsubsection @code{--with-atlas-dir=<dir>}
  1678. @table @asis
  1679. @item @emph{Description}:
  1680. Specify the location of ATLAS. This directory should notably contain
  1681. @code{include/cblas.h}.
  1682. @end table
  1683. @node --with-mkl-cflags
  1684. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1685. @table @asis
  1686. @item @emph{Description}:
  1687. Specify the compilation flags for the MKL Library.
  1688. @end table
  1689. @node --with-mkl-ldflags
  1690. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1691. @table @asis
  1692. @item @emph{Description}:
  1693. Specify the linking flags for the MKL Library. Note that the
  1694. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1695. website provides a script to determine the linking flags.
  1696. @end table
  1697. @c ---------------------------------------------------------------------
  1698. @c Environment variables
  1699. @c ---------------------------------------------------------------------
  1700. @node Execution configuration through environment variables
  1701. @section Execution configuration through environment variables
  1702. @menu
  1703. * Workers:: Configuring workers
  1704. * Scheduling:: Configuring the Scheduling engine
  1705. * Misc:: Miscellaneous and debug
  1706. @end menu
  1707. Note: the values given in @code{starpu_conf} structure passed when
  1708. calling @code{starpu_init} will override the values of the environment
  1709. variables.
  1710. @node Workers
  1711. @subsection Configuring workers
  1712. @menu
  1713. * STARPU_NCPUS:: Number of CPU workers
  1714. * STARPU_NCUDA:: Number of CUDA workers
  1715. * STARPU_NOPENCL:: Number of OpenCL workers
  1716. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1717. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1718. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1719. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1720. @end menu
  1721. @node STARPU_NCPUS
  1722. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1723. @table @asis
  1724. @item @emph{Description}:
  1725. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1726. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1727. the accelerators.
  1728. @end table
  1729. @node STARPU_NCUDA
  1730. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1731. @table @asis
  1732. @item @emph{Description}:
  1733. Specify the number of CUDA devices that StarPU can use. If
  1734. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1735. possible to select which CUDA devices should be used by the means of the
  1736. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1737. create as many CUDA workers as there are CUDA devices.
  1738. @end table
  1739. @node STARPU_NOPENCL
  1740. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1741. @table @asis
  1742. @item @emph{Description}:
  1743. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1744. @end table
  1745. @node STARPU_NGORDON
  1746. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1747. @table @asis
  1748. @item @emph{Description}:
  1749. Specify the number of SPUs that StarPU can use.
  1750. @end table
  1751. @node STARPU_WORKERS_CPUID
  1752. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1753. @table @asis
  1754. @item @emph{Description}:
  1755. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1756. specifies on which logical CPU the different workers should be
  1757. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1758. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1759. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1760. determined by the OS, or provided by the @code{hwloc} library in case it is
  1761. available.
  1762. Note that the first workers correspond to the CUDA workers, then come the
  1763. OpenCL and the SPU, and finally the CPU workers. For example if
  1764. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1765. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1766. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1767. the logical CPUs #1 and #3 will be used by the CPU workers.
  1768. If the number of workers is larger than the array given in
  1769. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1770. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1771. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1772. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1773. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1774. @end table
  1775. @node STARPU_WORKERS_CUDAID
  1776. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1777. @table @asis
  1778. @item @emph{Description}:
  1779. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1780. possible to select which CUDA devices should be used by StarPU. On a machine
  1781. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1782. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1783. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1784. the one reported by CUDA).
  1785. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1786. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1787. @end table
  1788. @node STARPU_WORKERS_OPENCLID
  1789. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1790. @table @asis
  1791. @item @emph{Description}:
  1792. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1793. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1794. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1795. @end table
  1796. @node Scheduling
  1797. @subsection Configuring the Scheduling engine
  1798. @menu
  1799. * STARPU_SCHED:: Scheduling policy
  1800. * STARPU_CALIBRATE:: Calibrate performance models
  1801. * STARPU_PREFETCH:: Use data prefetch
  1802. * STARPU_SCHED_ALPHA:: Computation factor
  1803. * STARPU_SCHED_BETA:: Communication factor
  1804. @end menu
  1805. @node STARPU_SCHED
  1806. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1807. @table @asis
  1808. @item @emph{Description}:
  1809. This chooses between the different scheduling policies proposed by StarPU: work
  1810. random, stealing, greedy, with performance models, etc.
  1811. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1812. @end table
  1813. @node STARPU_CALIBRATE
  1814. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1815. @table @asis
  1816. @item @emph{Description}:
  1817. If this variable is set to 1, the performance models are calibrated during
  1818. the execution. If it is set to 2, the previous values are dropped to restart
  1819. calibration from scratch. Setting this variable to 0 disable calibration, this
  1820. is the default behaviour.
  1821. Note: this currently only applies to dm and dmda scheduling policies.
  1822. @end table
  1823. @node STARPU_PREFETCH
  1824. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1825. @table @asis
  1826. @item @emph{Description}:
  1827. This variable indicates whether data prefetching should be enabled (0 means
  1828. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1829. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1830. advance, so that data is already present on the GPU when the task starts. As a
  1831. result, computation and data transfers are overlapped.
  1832. @end table
  1833. @node STARPU_SCHED_ALPHA
  1834. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1835. @table @asis
  1836. @item @emph{Description}:
  1837. To estimate the cost of a task StarPU takes into account the estimated
  1838. computation time (obtained thanks to performance models). The alpha factor is
  1839. the coefficient to be applied to it before adding it to the communication part.
  1840. @end table
  1841. @node STARPU_SCHED_BETA
  1842. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1843. @table @asis
  1844. @item @emph{Description}:
  1845. To estimate the cost of a task StarPU takes into account the estimated
  1846. data transfer time (obtained thanks to performance models). The beta factor is
  1847. the coefficient to be applied to it before adding it to the computation part.
  1848. @end table
  1849. @node Misc
  1850. @subsection Miscellaneous and debug
  1851. @menu
  1852. * STARPU_SILENT:: Disable verbose mode
  1853. * STARPU_LOGFILENAME:: Select debug file name
  1854. * STARPU_FXT_PREFIX:: FxT trace location
  1855. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1856. @end menu
  1857. @node STARPU_SILENT
  1858. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1859. @table @asis
  1860. @item @emph{Description}:
  1861. This variable allows to disable verbose mode at runtime when StarPU
  1862. has been configured with the option @code{--enable-verbose}.
  1863. @end table
  1864. @node STARPU_LOGFILENAME
  1865. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1866. @table @asis
  1867. @item @emph{Description}:
  1868. This variable specifies in which file the debugging output should be saved to.
  1869. @end table
  1870. @node STARPU_FXT_PREFIX
  1871. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1872. @table @asis
  1873. @item @emph{Description}
  1874. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1875. @end table
  1876. @node STARPU_LIMIT_GPU_MEM
  1877. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1878. @table @asis
  1879. @item @emph{Description}
  1880. This variable specifies the maximum number of megabytes that should be
  1881. available to the application on each GPUs. In case this value is smaller than
  1882. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1883. on the device. This variable is intended to be used for experimental purposes
  1884. as it emulates devices that have a limited amount of memory.
  1885. @end table
  1886. @c ---------------------------------------------------------------------
  1887. @c StarPU API
  1888. @c ---------------------------------------------------------------------
  1889. @node StarPU API
  1890. @chapter StarPU API
  1891. @menu
  1892. * Initialization and Termination:: Initialization and Termination methods
  1893. * Workers' Properties:: Methods to enumerate workers' properties
  1894. * Data Library:: Methods to manipulate data
  1895. * Data Interfaces::
  1896. * Data Partition::
  1897. * Codelets and Tasks:: Methods to construct tasks
  1898. * Explicit Dependencies:: Explicit Dependencies
  1899. * Implicit Data Dependencies:: Implicit Data Dependencies
  1900. * Performance Model API::
  1901. * Profiling API:: Profiling API
  1902. * CUDA extensions:: CUDA extensions
  1903. * OpenCL extensions:: OpenCL extensions
  1904. * Cell extensions:: Cell extensions
  1905. * Miscellaneous helpers::
  1906. @end menu
  1907. @node Initialization and Termination
  1908. @section Initialization and Termination
  1909. @menu
  1910. * starpu_init:: Initialize StarPU
  1911. * struct starpu_conf:: StarPU runtime configuration
  1912. * starpu_conf_init:: Initialize starpu_conf structure
  1913. * starpu_shutdown:: Terminate StarPU
  1914. @end menu
  1915. @node starpu_init
  1916. @subsection @code{starpu_init} -- Initialize StarPU
  1917. @table @asis
  1918. @item @emph{Description}:
  1919. This is StarPU initialization method, which must be called prior to any other
  1920. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1921. policy, number of cores, ...) by passing a non-null argument. Default
  1922. configuration is used if the passed argument is @code{NULL}.
  1923. @item @emph{Return value}:
  1924. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1925. indicates that no worker was available (so that StarPU was not initialized).
  1926. @item @emph{Prototype}:
  1927. @code{int starpu_init(struct starpu_conf *conf);}
  1928. @end table
  1929. @node struct starpu_conf
  1930. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1931. @table @asis
  1932. @item @emph{Description}:
  1933. This structure is passed to the @code{starpu_init} function in order
  1934. to configure StarPU.
  1935. When the default value is used, StarPU automatically selects the number
  1936. of processing units and takes the default scheduling policy. This parameter
  1937. overwrites the equivalent environment variables.
  1938. @item @emph{Fields}:
  1939. @table @asis
  1940. @item @code{sched_policy_name} (default = NULL):
  1941. This is the name of the scheduling policy. This can also be specified with the
  1942. @code{STARPU_SCHED} environment variable.
  1943. @item @code{sched_policy} (default = NULL):
  1944. This is the definition of the scheduling policy. This field is ignored
  1945. if @code{sched_policy_name} is set.
  1946. @item @code{ncpus} (default = -1):
  1947. This is the number of CPU cores that StarPU can use. This can also be
  1948. specified with the @code{STARPU_NCPUS} environment variable.
  1949. @item @code{ncuda} (default = -1):
  1950. This is the number of CUDA devices that StarPU can use. This can also be
  1951. specified with the @code{STARPU_NCUDA} environment variable.
  1952. @item @code{nopencl} (default = -1):
  1953. This is the number of OpenCL devices that StarPU can use. This can also be
  1954. specified with the @code{STARPU_NOPENCL} environment variable.
  1955. @item @code{nspus} (default = -1):
  1956. This is the number of Cell SPUs that StarPU can use. This can also be
  1957. specified with the @code{STARPU_NGORDON} environment variable.
  1958. @item @code{use_explicit_workers_bindid} (default = 0)
  1959. If this flag is set, the @code{workers_bindid} array indicates where the
  1960. different workers are bound, otherwise StarPU automatically selects where to
  1961. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1962. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1963. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1964. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1965. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1966. where to bind the different workers. The i-th entry of the
  1967. @code{workers_bindid} indicates the logical identifier of the processor which
  1968. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1969. either determined by the OS, or provided by the @code{hwloc} library in case it
  1970. is available.
  1971. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1972. ignored.
  1973. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1974. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1975. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1976. CUDA devices in a round-robin fashion.
  1977. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1978. ignored.
  1979. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1980. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1981. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1982. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1983. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1984. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1985. OpenCL devices in a round-robin fashion.
  1986. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1987. @item @code{calibrate} (default = 0):
  1988. If this flag is set, StarPU will calibrate the performance models when
  1989. executing tasks. If this value is equal to -1, the default value is used. The
  1990. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1991. variable when it is set.
  1992. @end table
  1993. @end table
  1994. @node starpu_conf_init
  1995. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1996. @table @asis
  1997. This function initializes the @code{starpu_conf} structure passed as argument
  1998. with the default values. In case some configuration parameters are already
  1999. specified through environment variables, @code{starpu_conf_init} initializes
  2000. the fields of the structure according to the environment variables. For
  2001. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2002. @code{.ncuda} field of the structure passed as argument.
  2003. @item @emph{Return value}:
  2004. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2005. indicates that the argument was NULL.
  2006. @item @emph{Prototype}:
  2007. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2008. @end table
  2009. @node starpu_shutdown
  2010. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2011. @table @asis
  2012. @item @emph{Description}:
  2013. This is StarPU termination method. It must be called at the end of the
  2014. application: statistics and other post-mortem debugging information are not
  2015. guaranteed to be available until this method has been called.
  2016. @item @emph{Prototype}:
  2017. @code{void starpu_shutdown(void);}
  2018. @end table
  2019. @node Workers' Properties
  2020. @section Workers' Properties
  2021. @menu
  2022. * starpu_worker_get_count:: Get the number of processing units
  2023. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2024. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2025. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2026. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2027. * starpu_worker_get_id:: Get the identifier of the current worker
  2028. * starpu_worker_get_devid:: Get the device identifier of a worker
  2029. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2030. * starpu_worker_get_name:: Get the name of a worker
  2031. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2032. @end menu
  2033. @node starpu_worker_get_count
  2034. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2035. @table @asis
  2036. @item @emph{Description}:
  2037. This function returns the number of workers (i.e. processing units executing
  2038. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2039. @item @emph{Prototype}:
  2040. @code{unsigned starpu_worker_get_count(void);}
  2041. @end table
  2042. @node starpu_cpu_worker_get_count
  2043. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2044. @table @asis
  2045. @item @emph{Description}:
  2046. This function returns the number of CPUs controlled by StarPU. The returned
  2047. value should be at most @code{STARPU_NMAXCPUS}.
  2048. @item @emph{Prototype}:
  2049. @code{unsigned starpu_cpu_worker_get_count(void);}
  2050. @end table
  2051. @node starpu_cuda_worker_get_count
  2052. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2053. @table @asis
  2054. @item @emph{Description}:
  2055. This function returns the number of CUDA devices controlled by StarPU. The returned
  2056. value should be at most @code{STARPU_MAXCUDADEVS}.
  2057. @item @emph{Prototype}:
  2058. @code{unsigned starpu_cuda_worker_get_count(void);}
  2059. @end table
  2060. @node starpu_opencl_worker_get_count
  2061. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2062. @table @asis
  2063. @item @emph{Description}:
  2064. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2065. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2066. @item @emph{Prototype}:
  2067. @code{unsigned starpu_opencl_worker_get_count(void);}
  2068. @end table
  2069. @node starpu_spu_worker_get_count
  2070. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2071. @table @asis
  2072. @item @emph{Description}:
  2073. This function returns the number of Cell SPUs controlled by StarPU.
  2074. @item @emph{Prototype}:
  2075. @code{unsigned starpu_opencl_worker_get_count(void);}
  2076. @end table
  2077. @node starpu_worker_get_id
  2078. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2079. @table @asis
  2080. @item @emph{Description}:
  2081. This function returns the identifier of the worker associated to the calling
  2082. thread. The returned value is either -1 if the current context is not a StarPU
  2083. worker (i.e. when called from the application outside a task or a callback), or
  2084. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2085. @item @emph{Prototype}:
  2086. @code{int starpu_worker_get_id(void);}
  2087. @end table
  2088. @node starpu_worker_get_devid
  2089. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2090. @table @asis
  2091. @item @emph{Description}:
  2092. This functions returns the device id of the worker associated to an identifier
  2093. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2094. CUDA worker, this device identifier is the logical device identifier exposed by
  2095. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2096. identifier of a CPU worker is the logical identifier of the core on which the
  2097. worker was bound; this identifier is either provided by the OS or by the
  2098. @code{hwloc} library in case it is available.
  2099. @item @emph{Prototype}:
  2100. @code{int starpu_worker_get_devid(int id);}
  2101. @end table
  2102. @node starpu_worker_get_type
  2103. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2104. @table @asis
  2105. @item @emph{Description}:
  2106. This function returns the type of worker associated to an identifier (as
  2107. returned by the @code{starpu_worker_get_id} function). The returned value
  2108. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2109. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2110. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2111. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2112. identifier is unspecified.
  2113. @item @emph{Prototype}:
  2114. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2115. @end table
  2116. @node starpu_worker_get_name
  2117. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2118. @table @asis
  2119. @item @emph{Description}:
  2120. StarPU associates a unique human readable string to each processing unit. This
  2121. function copies at most the @code{maxlen} first bytes of the unique string
  2122. associated to a worker identified by its identifier @code{id} into the
  2123. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2124. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2125. function on an invalid identifier results in an unspecified behaviour.
  2126. @item @emph{Prototype}:
  2127. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2128. @end table
  2129. @node starpu_worker_get_memory_node
  2130. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2131. @table @asis
  2132. @item @emph{Description}:
  2133. This function returns the identifier of the memory node associated to the
  2134. worker identified by @code{workerid}.
  2135. @item @emph{Prototype}:
  2136. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2137. @end table
  2138. @node Data Library
  2139. @section Data Library
  2140. This section describes the data management facilities provided by StarPU.
  2141. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2142. design their own data interfaces if required.
  2143. @menu
  2144. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2145. * starpu_access_mode:: Data access mode
  2146. * unsigned memory_node:: Memory node
  2147. * starpu_data_handle:: StarPU opaque data handle
  2148. * void *interface:: StarPU data interface
  2149. * starpu_data_register:: Register a piece of data to StarPU
  2150. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2151. * starpu_data_invalidate:: Invalidate all data replicates
  2152. * starpu_data_acquire:: Access registered data from the application
  2153. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2154. * starpu_data_release:: Release registered data from the application
  2155. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2156. @end menu
  2157. @node starpu_data_malloc_pinned_if_possible
  2158. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2159. @table @asis
  2160. @item @emph{Description}:
  2161. This function allocates data of the given size. It will also try to pin it in
  2162. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2163. thus permit data transfer and computation overlapping.
  2164. @item @emph{Prototype}:
  2165. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2166. @end table
  2167. @node starpu_access_mode
  2168. @subsection @code{starpu_access_mode} -- Data access mode
  2169. This datatype describes a data access mode. The different available modes are:
  2170. @table @asis
  2171. @table @asis
  2172. @item @code{STARPU_R} read-only mode.
  2173. @item @code{STARPU_W} write-only mode.
  2174. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2175. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2176. @end table
  2177. @end table
  2178. @node unsigned memory_node
  2179. @subsection @code{unsigned memory_node} -- Memory node
  2180. @table @asis
  2181. @item @emph{Description}:
  2182. Every worker is associated to a memory node which is a logical abstraction of
  2183. the address space from which the processing unit gets its data. For instance,
  2184. the memory node associated to the different CPU workers represents main memory
  2185. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2186. Every memory node is identified by a logical index which is accessible from the
  2187. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2188. to StarPU, the specified memory node indicates where the piece of data
  2189. initially resides (we also call this memory node the home node of a piece of
  2190. data).
  2191. @end table
  2192. @node starpu_data_handle
  2193. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2194. @table @asis
  2195. @item @emph{Description}:
  2196. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2197. data. Once a piece of data has been registered to StarPU, it is associated to a
  2198. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2199. over the entire machine, so that we can maintain data consistency and locate
  2200. data replicates for instance.
  2201. @end table
  2202. @node void *interface
  2203. @subsection @code{void *interface} -- StarPU data interface
  2204. @table @asis
  2205. @item @emph{Description}:
  2206. Data management is done at a high-level in StarPU: rather than accessing a mere
  2207. list of contiguous buffers, the tasks may manipulate data that are described by
  2208. a high-level construct which we call data interface.
  2209. An example of data interface is the "vector" interface which describes a
  2210. contiguous data array on a spefic memory node. This interface is a simple
  2211. structure containing the number of elements in the array, the size of the
  2212. elements, and the address of the array in the appropriate address space (this
  2213. address may be invalid if there is no valid copy of the array in the memory
  2214. node). More informations on the data interfaces provided by StarPU are
  2215. given in @ref{Data Interfaces}.
  2216. When a piece of data managed by StarPU is used by a task, the task
  2217. implementation is given a pointer to an interface describing a valid copy of
  2218. the data that is accessible from the current processing unit.
  2219. @end table
  2220. @node starpu_data_register
  2221. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2222. @table @asis
  2223. @item @emph{Description}:
  2224. Register a piece of data into the handle located at the @code{handleptr}
  2225. address. The @code{interface} buffer contains the initial description of the
  2226. data in the home node. The @code{ops} argument is a pointer to a structure
  2227. describing the different methods used to manipulate this type of interface. See
  2228. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2229. If @code{home_node} is -1, StarPU will automatically
  2230. allocate the memory when it is used for the
  2231. first time in write-only mode. Once such data handle has been automatically
  2232. allocated, it is possible to access it using any access mode.
  2233. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2234. matrix) which can be registered by the means of helper functions (e.g.
  2235. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2236. @item @emph{Prototype}:
  2237. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2238. uint32_t home_node,
  2239. void *interface,
  2240. struct starpu_data_interface_ops_t *ops);}
  2241. @end table
  2242. @node starpu_data_unregister
  2243. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2244. @table @asis
  2245. @item @emph{Description}:
  2246. This function unregisters a data handle from StarPU. If the data was
  2247. automatically allocated by StarPU because the home node was -1, all
  2248. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2249. is put back into the home node in the buffer that was initially registered.
  2250. Using a data handle that has been unregistered from StarPU results in an
  2251. undefined behaviour.
  2252. @item @emph{Prototype}:
  2253. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2254. @end table
  2255. @node starpu_data_invalidate
  2256. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2257. @table @asis
  2258. @item @emph{Description}:
  2259. Destroy all replicates of the data handle. After data invalidation, the first
  2260. access to the handle must be performed in write-only mode. Accessing an
  2261. invalidated data in read-mode results in undefined behaviour.
  2262. @item @emph{Prototype}:
  2263. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2264. @end table
  2265. @c TODO create a specific sections about user interaction with the DSM ?
  2266. @node starpu_data_acquire
  2267. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2268. @table @asis
  2269. @item @emph{Description}:
  2270. The application must call this function prior to accessing registered data from
  2271. main memory outside tasks. StarPU ensures that the application will get an
  2272. up-to-date copy of the data in main memory located where the data was
  2273. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2274. be consistent with the access mode specified in the @code{mode} argument.
  2275. @code{starpu_data_release} must be called once the application does not need to
  2276. access the piece of data anymore.
  2277. Note that implicit data dependencies are also enforced by
  2278. @code{starpu_data_acquire} in case they are enabled.
  2279. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2280. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2281. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2282. @item @emph{Prototype}:
  2283. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2284. @end table
  2285. @node starpu_data_acquire_cb
  2286. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2287. @table @asis
  2288. @item @emph{Description}:
  2289. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2290. @code{starpu_data_release}. When the data specified in the first argument is
  2291. available in the appropriate access mode, the callback function is executed.
  2292. The application may access the requested data during the execution of this
  2293. callback. The callback function must call @code{starpu_data_release} once the
  2294. application does not need to access the piece of data anymore.
  2295. Note that implicit data dependencies are also enforced by
  2296. @code{starpu_data_acquire_cb} in case they are enabled.
  2297. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2298. be called from task callbacks. Upon successful completion, this function
  2299. returns 0.
  2300. @item @emph{Prototype}:
  2301. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2302. @end table
  2303. @node starpu_data_release
  2304. @subsection @code{starpu_data_release} -- Release registered data from the application
  2305. @table @asis
  2306. @item @emph{Description}:
  2307. This function releases the piece of data acquired by the application either by
  2308. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2309. @item @emph{Prototype}:
  2310. @code{void starpu_data_release(starpu_data_handle handle);}
  2311. @end table
  2312. @node starpu_data_set_wt_mask
  2313. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2314. @table @asis
  2315. @item @emph{Description}:
  2316. This function sets the write-through mask of a given data, i.e. a bitmask of
  2317. nodes where the data should be always replicated after modification.
  2318. @item @emph{Prototype}:
  2319. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2320. @end table
  2321. @node Data Interfaces
  2322. @section Data Interfaces
  2323. @menu
  2324. * Variable Interface::
  2325. * Vector Interface::
  2326. * Matrix Interface::
  2327. * 3D Matrix Interface::
  2328. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2329. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2330. @end menu
  2331. @node Variable Interface
  2332. @subsection Variable Interface
  2333. @table @asis
  2334. @item @emph{Description}:
  2335. This variant of @code{starpu_data_register} uses the variable interface,
  2336. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2337. and @code{elemsize} is the size of the variable.
  2338. @item @emph{Prototype}:
  2339. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2340. uint32_t home_node,
  2341. uintptr_t ptr, size_t elemsize);}
  2342. @item @emph{Example}:
  2343. @cartouche
  2344. @smallexample
  2345. float var;
  2346. starpu_data_handle var_handle;
  2347. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2348. @end smallexample
  2349. @end cartouche
  2350. @end table
  2351. @node Vector Interface
  2352. @subsection Vector Interface
  2353. @table @asis
  2354. @item @emph{Description}:
  2355. This variant of @code{starpu_data_register} uses the vector interface,
  2356. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2357. element in the home node. @code{nx} is the number of elements in the vector.
  2358. @code{elemsize} is the size of each element.
  2359. @item @emph{Prototype}:
  2360. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2361. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2362. @item @emph{Example}:
  2363. @cartouche
  2364. @smallexample
  2365. float vector[NX];
  2366. starpu_data_handle vector_handle;
  2367. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2368. sizeof(vector[0]));
  2369. @end smallexample
  2370. @end cartouche
  2371. @end table
  2372. @node Matrix Interface
  2373. @subsection Matrix Interface
  2374. @table @asis
  2375. @item @emph{Description}:
  2376. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2377. matrices of elements. @code{ptr} is the address of the first element in the home
  2378. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2379. of elements in a row (this can be different from @code{ld} if there are extra
  2380. elements for alignment for instance). @code{ny} is the number of rows.
  2381. @code{elemsize} is the size of each element.
  2382. @item @emph{Prototype}:
  2383. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2384. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2385. uint32_t ny, size_t elemsize);}
  2386. @item @emph{Example}:
  2387. @cartouche
  2388. @smallexample
  2389. float *matrix;
  2390. starpu_data_handle matrix_handle;
  2391. matrix = (float*)malloc(width * height * sizeof(float));
  2392. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2393. width, width, height, sizeof(float));
  2394. @end smallexample
  2395. @end cartouche
  2396. @end table
  2397. @node 3D Matrix Interface
  2398. @subsection 3D Matrix Interface
  2399. @table @asis
  2400. @item @emph{Description}:
  2401. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2402. @code{ptr} is the address of the array of first element in the home node.
  2403. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2404. of rows between z planes. @code{nx} is the number of elements in a row (this
  2405. can be different from @code{ldy} if there are extra elements for alignment
  2406. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2407. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2408. each element.
  2409. @item @emph{Prototype}:
  2410. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2411. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2412. uint32_t ny, uint32_t nz, size_t elemsize);}
  2413. @item @emph{Example}:
  2414. @cartouche
  2415. @smallexample
  2416. float *block;
  2417. starpu_data_handle block_handle;
  2418. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2419. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2420. nx, nx*ny, nx, ny, nz, sizeof(float));
  2421. @end smallexample
  2422. @end cartouche
  2423. @end table
  2424. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2425. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2426. @table @asis
  2427. @item @emph{Description}:
  2428. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2429. TODO
  2430. @item @emph{Prototype}:
  2431. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2432. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2433. @item @emph{Example}:
  2434. @cartouche
  2435. @smallexample
  2436. @end smallexample
  2437. @end cartouche
  2438. @end table
  2439. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2440. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2441. @table @asis
  2442. @item @emph{Description}:
  2443. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2444. TODO
  2445. @item @emph{Prototype}:
  2446. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2447. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2448. @item @emph{Example}:
  2449. @cartouche
  2450. @smallexample
  2451. @end smallexample
  2452. @end cartouche
  2453. @end table
  2454. @node Data Partition
  2455. @section Data Partition
  2456. @menu
  2457. * struct starpu_data_filter:: StarPU filter structure
  2458. * starpu_data_partition:: Partition Data
  2459. * starpu_data_unpartition:: Unpartition Data
  2460. * starpu_data_get_nb_children::
  2461. * starpu_data_get_sub_data::
  2462. * Predefined filter functions::
  2463. @end menu
  2464. @node struct starpu_data_filter
  2465. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2466. @table @asis
  2467. @item @emph{Description}:
  2468. The filter structure describes a data partitioning operation, to be given to the
  2469. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2470. @item @emph{Fields}:
  2471. @table @asis
  2472. @item @code{filter_func}:
  2473. This function fills the @code{child_interface} structure with interface
  2474. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2475. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2476. @item @code{nchildren}:
  2477. This is the number of parts to partition the data into.
  2478. @item @code{get_nchildren}:
  2479. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2480. children depends on the actual data (e.g. the number of blocks in a sparse
  2481. matrix).
  2482. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2483. @item @code{get_child_ops}:
  2484. In case the resulting children use a different data interface, this function
  2485. returns which interface is used by child number @code{id}.
  2486. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2487. @item @code{filter_arg}:
  2488. Some filters take an addition parameter, but this is usually unused.
  2489. @item @code{filter_arg_ptr}:
  2490. Some filters take an additional array parameter like the sizes of the parts, but
  2491. this is usually unused.
  2492. @end table
  2493. @end table
  2494. @node starpu_data_partition
  2495. @subsection starpu_data_partition -- Partition Data
  2496. @table @asis
  2497. @item @emph{Description}:
  2498. This requests partitioning one StarPU data @code{initial_handle} into several
  2499. subdata according to the filter @code{f}
  2500. @item @emph{Prototype}:
  2501. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2502. @item @emph{Example}:
  2503. @cartouche
  2504. @smallexample
  2505. struct starpu_data_filter f = @{
  2506. .filter_func = starpu_vertical_block_filter_func,
  2507. .nchildren = nslicesx,
  2508. .get_nchildren = NULL,
  2509. .get_child_ops = NULL
  2510. @};
  2511. starpu_data_partition(A_handle, &f);
  2512. @end smallexample
  2513. @end cartouche
  2514. @end table
  2515. @node starpu_data_unpartition
  2516. @subsection starpu_data_unpartition -- Unpartition data
  2517. @table @asis
  2518. @item @emph{Description}:
  2519. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2520. collected back into one big piece in the @code{gathering_node} (usually 0).
  2521. @item @emph{Prototype}:
  2522. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2523. @item @emph{Example}:
  2524. @cartouche
  2525. @smallexample
  2526. starpu_data_unpartition(A_handle, 0);
  2527. @end smallexample
  2528. @end cartouche
  2529. @end table
  2530. @node starpu_data_get_nb_children
  2531. @subsection starpu_data_get_nb_children
  2532. @table @asis
  2533. @item @emph{Description}:
  2534. This function returns the number of children.
  2535. @item @emph{Return value}:
  2536. The number of children.
  2537. @item @emph{Prototype}:
  2538. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2539. @end table
  2540. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2541. @node starpu_data_get_sub_data
  2542. @subsection starpu_data_get_sub_data
  2543. @table @asis
  2544. @item @emph{Description}:
  2545. After partitioning a StarPU data by applying a filter,
  2546. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2547. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2548. is the number of filters to traverse (in case several filters have been applied,
  2549. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2550. parameters are the indexes.
  2551. @item @emph{Return value}:
  2552. A handle to the subdata.
  2553. @item @emph{Prototype}:
  2554. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2555. @item @emph{Example}:
  2556. @cartouche
  2557. @smallexample
  2558. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2559. @end smallexample
  2560. @end cartouche
  2561. @end table
  2562. @node Predefined filter functions
  2563. @subsection Predefined filter functions
  2564. @menu
  2565. * Partitioning BCSR Data::
  2566. * Partitioning BLAS interface::
  2567. * Partitioning Vector Data::
  2568. * Partitioning Block Data::
  2569. @end menu
  2570. This section gives a partial list of the predefined partitioning functions.
  2571. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2572. list can be found in @code{starpu_data_filters.h} .
  2573. @node Partitioning BCSR Data
  2574. @subsubsection Partitioning BCSR Data
  2575. @table @asis
  2576. @item @emph{Description}:
  2577. TODO
  2578. @item @emph{Prototype}:
  2579. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2580. @end table
  2581. @table @asis
  2582. @item @emph{Description}:
  2583. TODO
  2584. @item @emph{Prototype}:
  2585. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2586. @end table
  2587. @node Partitioning BLAS interface
  2588. @subsubsection Partitioning BLAS interface
  2589. @table @asis
  2590. @item @emph{Description}:
  2591. This partitions a dense Matrix into horizontal blocks.
  2592. @item @emph{Prototype}:
  2593. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2594. @end table
  2595. @table @asis
  2596. @item @emph{Description}:
  2597. This partitions a dense Matrix into vertical blocks.
  2598. @item @emph{Prototype}:
  2599. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2600. @end table
  2601. @node Partitioning Vector Data
  2602. @subsubsection Partitioning Vector Data
  2603. @table @asis
  2604. @item @emph{Description}:
  2605. This partitions a vector into blocks of the same size.
  2606. @item @emph{Prototype}:
  2607. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2608. @end table
  2609. @table @asis
  2610. @item @emph{Description}:
  2611. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2612. @item @emph{Prototype}:
  2613. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2614. @end table
  2615. @table @asis
  2616. @item @emph{Description}:
  2617. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2618. @item @emph{Prototype}:
  2619. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2620. @end table
  2621. @node Partitioning Block Data
  2622. @subsubsection Partitioning Block Data
  2623. @table @asis
  2624. @item @emph{Description}:
  2625. This partitions a 3D matrix along the X axis.
  2626. @item @emph{Prototype}:
  2627. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2628. @end table
  2629. @node Codelets and Tasks
  2630. @section Codelets and Tasks
  2631. @menu
  2632. * struct starpu_codelet:: StarPU codelet structure
  2633. * struct starpu_task:: StarPU task structure
  2634. * starpu_task_init:: Initialize a Task
  2635. * starpu_task_create:: Allocate and Initialize a Task
  2636. * starpu_task_deinit:: Release all the resources used by a Task
  2637. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2638. * starpu_task_wait:: Wait for the termination of a Task
  2639. * starpu_task_submit:: Submit a Task
  2640. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2641. * starpu_get_current_task:: Return the task currently executed by the worker
  2642. * starpu_display_codelet_stats:: Display statistics
  2643. @end menu
  2644. @node struct starpu_codelet
  2645. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2646. @table @asis
  2647. @item @emph{Description}:
  2648. The codelet structure describes a kernel that is possibly implemented on various
  2649. targets. For compatibility, make sure to initialize the whole structure to zero.
  2650. @item @emph{Fields}:
  2651. @table @asis
  2652. @item @code{where}:
  2653. Indicates which types of processing units are able to execute the codelet.
  2654. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2655. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2656. indicates that it is only available on Cell SPUs.
  2657. @item @code{cpu_func} (optional):
  2658. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2659. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2660. argument being the array of data managed by the data management library, and
  2661. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2662. field of the @code{starpu_task} structure.
  2663. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2664. the @code{where} field, it must be non-null otherwise.
  2665. @item @code{cuda_func} (optional):
  2666. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2667. must be a host-function written in the CUDA runtime API}. Its prototype must
  2668. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2669. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2670. field, it must be non-null otherwise.
  2671. @item @code{opencl_func} (optional):
  2672. Is a function pointer to the OpenCL implementation of the codelet. Its
  2673. prototype must be:
  2674. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2675. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2676. @code{where} field, it must be non-null otherwise.
  2677. @item @code{gordon_func} (optional):
  2678. This is the index of the Cell SPU implementation within the Gordon library.
  2679. See Gordon documentation for more details on how to register a kernel and
  2680. retrieve its index.
  2681. @item @code{nbuffers}:
  2682. Specifies the number of arguments taken by the codelet. These arguments are
  2683. managed by the DSM and are accessed from the @code{void *buffers[]}
  2684. array. The constant argument passed with the @code{cl_arg} field of the
  2685. @code{starpu_task} structure is not counted in this number. This value should
  2686. not be above @code{STARPU_NMAXBUFS}.
  2687. @item @code{model} (optional):
  2688. This is a pointer to the task duration performance model associated to this
  2689. codelet. This optional field is ignored when set to @code{NULL}.
  2690. TODO
  2691. @item @code{power_model} (optional):
  2692. This is a pointer to the task power consumption performance model associated
  2693. to this codelet. This optional field is ignored when set to @code{NULL}.
  2694. In the case of parallel codelets, this has to account for all processing units
  2695. involved in the parallel execution.
  2696. TODO
  2697. @end table
  2698. @end table
  2699. @node struct starpu_task
  2700. @subsection @code{struct starpu_task} -- StarPU task structure
  2701. @table @asis
  2702. @item @emph{Description}:
  2703. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2704. processing units managed by StarPU. It instantiates a codelet. It can either be
  2705. allocated dynamically with the @code{starpu_task_create} method, or declared
  2706. statically. In the latter case, the programmer has to zero the
  2707. @code{starpu_task} structure and to fill the different fields properly. The
  2708. indicated default values correspond to the configuration of a task allocated
  2709. with @code{starpu_task_create}.
  2710. @item @emph{Fields}:
  2711. @table @asis
  2712. @item @code{cl}:
  2713. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2714. describes where the kernel should be executed, and supplies the appropriate
  2715. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2716. such empty tasks can be useful for synchronization purposes.
  2717. @item @code{buffers}:
  2718. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2719. different pieces of data accessed by the task, and how they should be accessed.
  2720. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2721. @code{handle} field specifies the handle of the piece of data, and the
  2722. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2723. of entries in this array must be specified in the @code{nbuffers} field of the
  2724. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2725. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2726. option when configuring StarPU.
  2727. @item @code{cl_arg} (optional) (default = NULL):
  2728. This pointer is passed to the codelet through the second argument
  2729. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2730. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2731. argument.
  2732. @item @code{cl_arg_size} (optional, Cell specific):
  2733. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2734. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2735. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2736. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2737. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2738. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2739. codelets.
  2740. @item @code{callback_func} (optional) (default = @code{NULL}):
  2741. This is a function pointer of prototype @code{void (*f)(void *)} which
  2742. specifies a possible callback. If this pointer is non-null, the callback
  2743. function is executed @emph{on the host} after the execution of the task. The
  2744. callback is passed the value contained in the @code{callback_arg} field. No
  2745. callback is executed if the field is set to @code{NULL}.
  2746. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2747. This is the pointer passed to the callback function. This field is ignored if
  2748. the @code{callback_func} is set to @code{NULL}.
  2749. @item @code{use_tag} (optional) (default = 0):
  2750. If set, this flag indicates that the task should be associated with the tag
  2751. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2752. with the task and to express task dependencies easily.
  2753. @item @code{tag_id}:
  2754. This fields contains the tag associated to the task if the @code{use_tag} field
  2755. was set, it is ignored otherwise.
  2756. @item @code{synchronous}:
  2757. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2758. returns only when the task has been executed (or if no worker is able to
  2759. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2760. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2761. This field indicates a level of priority for the task. This is an integer value
  2762. that must be set between the return values of the
  2763. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2764. and that of the @code{starpu_sched_get_max_priority} for the most important
  2765. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2766. are provided for convenience and respectively returns value of
  2767. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2768. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2769. order to allow static task initialization. Scheduling strategies that take
  2770. priorities into account can use this parameter to take better scheduling
  2771. decisions, but the scheduling policy may also ignore it.
  2772. @item @code{execute_on_a_specific_worker} (default = 0):
  2773. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2774. task to the worker specified by the @code{workerid} field.
  2775. @item @code{workerid} (optional):
  2776. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2777. which is the identifier of the worker that should process this task (as
  2778. returned by @code{starpu_worker_get_id}). This field is ignored if
  2779. @code{execute_on_a_specific_worker} field is set to 0.
  2780. @item @code{detach} (optional) (default = 1):
  2781. If this flag is set, it is not possible to synchronize with the task
  2782. by the means of @code{starpu_task_wait} later on. Internal data structures
  2783. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2784. flag is not set.
  2785. @item @code{destroy} (optional) (default = 1):
  2786. If this flag is set, the task structure will automatically be freed, either
  2787. after the execution of the callback if the task is detached, or during
  2788. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2789. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2790. called explicitly. Setting this flag for a statically allocated task structure
  2791. will result in undefined behaviour.
  2792. @item @code{predicted} (output field):
  2793. Predicted duration of the task. This field is only set if the scheduling
  2794. strategy used performance models.
  2795. @end table
  2796. @end table
  2797. @node starpu_task_init
  2798. @subsection @code{starpu_task_init} -- Initialize a Task
  2799. @table @asis
  2800. @item @emph{Description}:
  2801. Initialize a task structure with default values. This function is implicitly
  2802. called by @code{starpu_task_create}. By default, tasks initialized with
  2803. @code{starpu_task_init} must be deinitialized explicitly with
  2804. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2805. constant @code{STARPU_TASK_INITIALIZER}.
  2806. @item @emph{Prototype}:
  2807. @code{void starpu_task_init(struct starpu_task *task);}
  2808. @end table
  2809. @node starpu_task_create
  2810. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2811. @table @asis
  2812. @item @emph{Description}:
  2813. Allocate a task structure and initialize it with default values. Tasks
  2814. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2815. task is terminated. If the destroy flag is explicitly unset, the resources used
  2816. by the task are freed by calling
  2817. @code{starpu_task_destroy}.
  2818. @item @emph{Prototype}:
  2819. @code{struct starpu_task *starpu_task_create(void);}
  2820. @end table
  2821. @node starpu_task_deinit
  2822. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2823. @table @asis
  2824. @item @emph{Description}:
  2825. Release all the structures automatically allocated to execute the task. This is
  2826. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2827. freed. This should be used for statically allocated tasks for instance.
  2828. @item @emph{Prototype}:
  2829. @code{void starpu_task_deinit(struct starpu_task *task);}
  2830. @end table
  2831. @node starpu_task_destroy
  2832. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2833. @table @asis
  2834. @item @emph{Description}:
  2835. Free the resource allocated during @code{starpu_task_create}. This function can be
  2836. called automatically after the execution of a task by setting the
  2837. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2838. Calling this function on a statically allocated task results in an undefined
  2839. behaviour.
  2840. @item @emph{Prototype}:
  2841. @code{void starpu_task_destroy(struct starpu_task *task);}
  2842. @end table
  2843. @node starpu_task_wait
  2844. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2845. @table @asis
  2846. @item @emph{Description}:
  2847. This function blocks until the task has been executed. It is not possible to
  2848. synchronize with a task more than once. It is not possible to wait for
  2849. synchronous or detached tasks.
  2850. @item @emph{Return value}:
  2851. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2852. indicates that the specified task was either synchronous or detached.
  2853. @item @emph{Prototype}:
  2854. @code{int starpu_task_wait(struct starpu_task *task);}
  2855. @end table
  2856. @node starpu_task_submit
  2857. @subsection @code{starpu_task_submit} -- Submit a Task
  2858. @table @asis
  2859. @item @emph{Description}:
  2860. This function submits a task to StarPU. Calling this function does
  2861. not mean that the task will be executed immediately as there can be data or task
  2862. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2863. scheduling this task with respect to such dependencies.
  2864. This function returns immediately if the @code{synchronous} field of the
  2865. @code{starpu_task} structure was set to 0, and block until the termination of
  2866. the task otherwise. It is also possible to synchronize the application with
  2867. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2868. function for instance.
  2869. @item @emph{Return value}:
  2870. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2871. means that there is no worker able to process this task (e.g. there is no GPU
  2872. available and this task is only implemented for CUDA devices).
  2873. @item @emph{Prototype}:
  2874. @code{int starpu_task_submit(struct starpu_task *task);}
  2875. @end table
  2876. @node starpu_task_wait_for_all
  2877. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2878. @table @asis
  2879. @item @emph{Description}:
  2880. This function blocks until all the tasks that were submitted are terminated.
  2881. @item @emph{Prototype}:
  2882. @code{void starpu_task_wait_for_all(void);}
  2883. @end table
  2884. @node starpu_get_current_task
  2885. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2886. @table @asis
  2887. @item @emph{Description}:
  2888. This function returns the task currently executed by the worker, or
  2889. NULL if it is called either from a thread that is not a task or simply
  2890. because there is no task being executed at the moment.
  2891. @item @emph{Prototype}:
  2892. @code{struct starpu_task *starpu_get_current_task(void);}
  2893. @end table
  2894. @node starpu_display_codelet_stats
  2895. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2896. @table @asis
  2897. @item @emph{Description}:
  2898. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2899. @item @emph{Prototype}:
  2900. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2901. @end table
  2902. @c Callbacks : what can we put in callbacks ?
  2903. @node Explicit Dependencies
  2904. @section Explicit Dependencies
  2905. @menu
  2906. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2907. * starpu_tag_t:: Task logical identifier
  2908. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2909. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2910. * starpu_tag_wait:: Block until a Tag is terminated
  2911. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2912. * starpu_tag_remove:: Destroy a Tag
  2913. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2914. @end menu
  2915. @node starpu_task_declare_deps_array
  2916. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2917. @table @asis
  2918. @item @emph{Description}:
  2919. Declare task dependencies between a @code{task} and an array of tasks of length
  2920. @code{ndeps}. This function must be called prior to the submission of the task,
  2921. but it may called after the submission or the execution of the tasks in the
  2922. array provided the tasks are still valid (ie. they were not automatically
  2923. destroyed). Calling this function on a task that was already submitted or with
  2924. an entry of @code{task_array} that is not a valid task anymore results in an
  2925. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2926. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2927. same task, in this case, the dependencies are added. It is possible to have
  2928. redundancy in the task dependencies.
  2929. @item @emph{Prototype}:
  2930. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2931. @end table
  2932. @node starpu_tag_t
  2933. @subsection @code{starpu_tag_t} -- Task logical identifier
  2934. @table @asis
  2935. @item @emph{Description}:
  2936. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2937. dependencies between tasks by the means of those tags. To do so, fill the
  2938. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2939. be arbitrary) and set the @code{use_tag} field to 1.
  2940. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2941. not be started until the tasks which holds the declared dependency tags are
  2942. completed.
  2943. @end table
  2944. @node starpu_tag_declare_deps
  2945. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2946. @table @asis
  2947. @item @emph{Description}:
  2948. Specify the dependencies of the task identified by tag @code{id}. The first
  2949. argument specifies the tag which is configured, the second argument gives the
  2950. number of tag(s) on which @code{id} depends. The following arguments are the
  2951. tags which have to be terminated to unlock the task.
  2952. This function must be called before the associated task is submitted to StarPU
  2953. with @code{starpu_task_submit}.
  2954. @item @emph{Remark}
  2955. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2956. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2957. typically need to be explicitly casted. Using the
  2958. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2959. @item @emph{Prototype}:
  2960. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2961. @item @emph{Example}:
  2962. @cartouche
  2963. @example
  2964. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2965. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2966. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2967. @end example
  2968. @end cartouche
  2969. @end table
  2970. @node starpu_tag_declare_deps_array
  2971. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2972. @table @asis
  2973. @item @emph{Description}:
  2974. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2975. does not take a variable number of arguments but an array of tags of size
  2976. @code{ndeps}.
  2977. @item @emph{Prototype}:
  2978. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2979. @item @emph{Example}:
  2980. @cartouche
  2981. @example
  2982. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2983. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2984. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2985. @end example
  2986. @end cartouche
  2987. @end table
  2988. @node starpu_tag_wait
  2989. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2990. @table @asis
  2991. @item @emph{Description}:
  2992. This function blocks until the task associated to tag @code{id} has been
  2993. executed. This is a blocking call which must therefore not be called within
  2994. tasks or callbacks, but only from the application directly. It is possible to
  2995. synchronize with the same tag multiple times, as long as the
  2996. @code{starpu_tag_remove} function is not called. Note that it is still
  2997. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2998. data structure was freed (e.g. if the @code{destroy} flag of the
  2999. @code{starpu_task} was enabled).
  3000. @item @emph{Prototype}:
  3001. @code{void starpu_tag_wait(starpu_tag_t id);}
  3002. @end table
  3003. @node starpu_tag_wait_array
  3004. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3005. @table @asis
  3006. @item @emph{Description}:
  3007. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3008. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3009. terminated.
  3010. @item @emph{Prototype}:
  3011. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3012. @end table
  3013. @node starpu_tag_remove
  3014. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3015. @table @asis
  3016. @item @emph{Description}:
  3017. This function releases the resources associated to tag @code{id}. It can be
  3018. called once the corresponding task has been executed and when there is
  3019. no other tag that depend on this tag anymore.
  3020. @item @emph{Prototype}:
  3021. @code{void starpu_tag_remove(starpu_tag_t id);}
  3022. @end table
  3023. @node starpu_tag_notify_from_apps
  3024. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3025. @table @asis
  3026. @item @emph{Description}:
  3027. This function explicitly unlocks tag @code{id}. It may be useful in the
  3028. case of applications which execute part of their computation outside StarPU
  3029. tasks (e.g. third-party libraries). It is also provided as a
  3030. convenient tool for the programmer, for instance to entirely construct the task
  3031. DAG before actually giving StarPU the opportunity to execute the tasks.
  3032. @item @emph{Prototype}:
  3033. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3034. @end table
  3035. @node Implicit Data Dependencies
  3036. @section Implicit Data Dependencies
  3037. @menu
  3038. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3039. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3040. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3041. @end menu
  3042. In this section, we describe how StarPU makes it possible to insert implicit
  3043. task dependencies in order to enforce sequential data consistency. When this
  3044. data consistency is enabled on a specific data handle, any data access will
  3045. appear as sequentially consistent from the application. For instance, if the
  3046. application submits two tasks that access the same piece of data in read-only
  3047. mode, and then a third task that access it in write mode, dependencies will be
  3048. added between the two first tasks and the third one. Implicit data dependencies
  3049. are also inserted in the case of data accesses from the application.
  3050. @node starpu_data_set_default_sequential_consistency_flag
  3051. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3052. @table @asis
  3053. @item @emph{Description}:
  3054. Set the default sequential consistency flag. If a non-zero value is passed, a
  3055. sequential data consistency will be enforced for all handles registered after
  3056. this function call, otherwise it is disabled. By default, StarPU enables
  3057. sequential data consistency. It is also possible to select the data consistency
  3058. mode of a specific data handle with the
  3059. @code{starpu_data_set_sequential_consistency_flag} function.
  3060. @item @emph{Prototype}:
  3061. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3062. @end table
  3063. @node starpu_data_get_default_sequential_consistency_flag
  3064. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3065. @table @asis
  3066. @item @emph{Description}:
  3067. This function returns the current default sequential consistency flag.
  3068. @item @emph{Prototype}:
  3069. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3070. @end table
  3071. @node starpu_data_set_sequential_consistency_flag
  3072. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3073. @table @asis
  3074. @item @emph{Description}:
  3075. Select the data consistency mode associated to a data handle. The consistency
  3076. mode set using this function has the priority over the default mode which can
  3077. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3078. @item @emph{Prototype}:
  3079. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3080. @end table
  3081. @node Performance Model API
  3082. @section Performance Model API
  3083. @menu
  3084. * starpu_load_history_debug::
  3085. * starpu_perfmodel_debugfilepath::
  3086. * starpu_perfmodel_get_arch_name::
  3087. * starpu_force_bus_sampling::
  3088. @end menu
  3089. @node starpu_load_history_debug
  3090. @subsection @code{starpu_load_history_debug}
  3091. @table @asis
  3092. @item @emph{Description}:
  3093. TODO
  3094. @item @emph{Prototype}:
  3095. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3096. @end table
  3097. @node starpu_perfmodel_debugfilepath
  3098. @subsection @code{starpu_perfmodel_debugfilepath}
  3099. @table @asis
  3100. @item @emph{Description}:
  3101. TODO
  3102. @item @emph{Prototype}:
  3103. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3104. @end table
  3105. @node starpu_perfmodel_get_arch_name
  3106. @subsection @code{starpu_perfmodel_get_arch_name}
  3107. @table @asis
  3108. @item @emph{Description}:
  3109. TODO
  3110. @item @emph{Prototype}:
  3111. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3112. @end table
  3113. @node starpu_force_bus_sampling
  3114. @subsection @code{starpu_force_bus_sampling}
  3115. @table @asis
  3116. @item @emph{Description}:
  3117. This forces sampling the bus performance model again.
  3118. @item @emph{Prototype}:
  3119. @code{void starpu_force_bus_sampling(void);}
  3120. @end table
  3121. @node Profiling API
  3122. @section Profiling API
  3123. @menu
  3124. * starpu_profiling_status_set:: starpu_profiling_status_set
  3125. * starpu_profiling_status_get:: starpu_profiling_status_get
  3126. * struct starpu_task_profiling_info:: task profiling information
  3127. * struct starpu_worker_profiling_info:: worker profiling information
  3128. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3129. * struct starpu_bus_profiling_info:: bus profiling information
  3130. * starpu_bus_get_count::
  3131. * starpu_bus_get_id::
  3132. * starpu_bus_get_src::
  3133. * starpu_bus_get_dst::
  3134. * starpu_timing_timespec_delay_us::
  3135. * starpu_timing_timespec_to_us::
  3136. * starpu_bus_profiling_helper_display_summary::
  3137. * starpu_worker_profiling_helper_display_summary::
  3138. @end menu
  3139. @node starpu_profiling_status_set
  3140. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3141. @table @asis
  3142. @item @emph{Description}:
  3143. Thie function sets the profiling status. Profiling is activated by passing
  3144. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3145. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3146. resets all profiling measurements. When profiling is enabled, the
  3147. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3148. to a valid @code{struct starpu_task_profiling_info} structure containing
  3149. information about the execution of the task.
  3150. @item @emph{Return value}:
  3151. Negative return values indicate an error, otherwise the previous status is
  3152. returned.
  3153. @item @emph{Prototype}:
  3154. @code{int starpu_profiling_status_set(int status);}
  3155. @end table
  3156. @node starpu_profiling_status_get
  3157. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3158. @table @asis
  3159. @item @emph{Description}:
  3160. Return the current profiling status or a negative value in case there was an error.
  3161. @item @emph{Prototype}:
  3162. @code{int starpu_profiling_status_get(void);}
  3163. @end table
  3164. @node struct starpu_task_profiling_info
  3165. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3166. @table @asis
  3167. @item @emph{Description}:
  3168. This structure contains information about the execution of a task. It is
  3169. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3170. structure if profiling was enabled.
  3171. @item @emph{Fields}:
  3172. @table @asis
  3173. @item @code{submit_time}:
  3174. Date of task submission (relative to the initialization of StarPU).
  3175. @item @code{start_time}:
  3176. Date of task execution beginning (relative to the initialization of StarPU).
  3177. @item @code{end_time}:
  3178. Date of task execution termination (relative to the initialization of StarPU).
  3179. @item @code{workerid}:
  3180. Identifier of the worker which has executed the task.
  3181. @end table
  3182. @end table
  3183. @node struct starpu_worker_profiling_info
  3184. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3185. @table @asis
  3186. @item @emph{Description}:
  3187. This structure contains the profiling information associated to a worker.
  3188. @item @emph{Fields}:
  3189. @table @asis
  3190. @item @code{start_time}:
  3191. Starting date for the reported profiling measurements.
  3192. @item @code{total_time}:
  3193. Duration of the profiling measurement interval.
  3194. @item @code{executing_time}:
  3195. Time spent by the worker to execute tasks during the profiling measurement interval.
  3196. @item @code{sleeping_time}:
  3197. Time spent idling by the worker during the profiling measurement interval.
  3198. @item @code{executed_tasks}:
  3199. Number of tasks executed by the worker during the profiling measurement interval.
  3200. @end table
  3201. @end table
  3202. @node starpu_worker_get_profiling_info
  3203. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3204. @table @asis
  3205. @item @emph{Description}:
  3206. Get the profiling info associated to the worker identified by @code{workerid},
  3207. and reset the profiling measurements. If the @code{worker_info} argument is
  3208. NULL, only reset the counters associated to worker @code{workerid}.
  3209. @item @emph{Return value}:
  3210. Upon successful completion, this function returns 0. Otherwise, a negative
  3211. value is returned.
  3212. @item @emph{Prototype}:
  3213. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3214. @end table
  3215. @node struct starpu_bus_profiling_info
  3216. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3217. @table @asis
  3218. @item @emph{Description}:
  3219. TODO
  3220. @item @emph{Fields}:
  3221. @table @asis
  3222. @item @code{start_time}:
  3223. TODO
  3224. @item @code{total_time}:
  3225. TODO
  3226. @item @code{transferred_bytes}:
  3227. TODO
  3228. @item @code{transfer_count}:
  3229. TODO
  3230. @end table
  3231. @end table
  3232. @node starpu_bus_get_count
  3233. @subsection @code{starpu_bus_get_count}
  3234. @table @asis
  3235. @item @emph{Description}:
  3236. TODO
  3237. @item @emph{Prototype}:
  3238. @code{int starpu_bus_get_count(void);}
  3239. @end table
  3240. @node starpu_bus_get_id
  3241. @subsection @code{starpu_bus_get_id}
  3242. @table @asis
  3243. @item @emph{Description}:
  3244. TODO
  3245. @item @emph{Prototype}:
  3246. @code{int starpu_bus_get_id(int src, int dst);}
  3247. @end table
  3248. @node starpu_bus_get_src
  3249. @subsection @code{starpu_bus_get_src}
  3250. @table @asis
  3251. @item @emph{Description}:
  3252. TODO
  3253. @item @emph{Prototype}:
  3254. @code{int starpu_bus_get_src(int busid);}
  3255. @end table
  3256. @node starpu_bus_get_dst
  3257. @subsection @code{starpu_bus_get_dst}
  3258. @table @asis
  3259. @item @emph{Description}:
  3260. TODO
  3261. @item @emph{Prototype}:
  3262. @code{int starpu_bus_get_dst(int busid);}
  3263. @end table
  3264. @node starpu_timing_timespec_delay_us
  3265. @subsection @code{starpu_timing_timespec_delay_us}
  3266. @table @asis
  3267. @item @emph{Description}:
  3268. TODO
  3269. @item @emph{Prototype}:
  3270. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3271. @end table
  3272. @node starpu_timing_timespec_to_us
  3273. @subsection @code{starpu_timing_timespec_to_us}
  3274. @table @asis
  3275. @item @emph{Description}:
  3276. TODO
  3277. @item @emph{Prototype}:
  3278. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3279. @end table
  3280. @node starpu_bus_profiling_helper_display_summary
  3281. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3282. @table @asis
  3283. @item @emph{Description}:
  3284. TODO
  3285. @item @emph{Prototype}:
  3286. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3287. @end table
  3288. @node starpu_worker_profiling_helper_display_summary
  3289. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3290. @table @asis
  3291. @item @emph{Description}:
  3292. TODO
  3293. @item @emph{Prototype}:
  3294. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3295. @end table
  3296. @node CUDA extensions
  3297. @section CUDA extensions
  3298. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3299. @menu
  3300. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3301. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3302. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3303. @end menu
  3304. @node starpu_cuda_get_local_stream
  3305. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3306. @table @asis
  3307. @item @emph{Description}:
  3308. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3309. function is only provided for convenience so that programmers can easily use
  3310. asynchronous operations within codelets without having to create a stream by
  3311. hand. Note that the application is not forced to use the stream provided by
  3312. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3313. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3314. the likelihood of having all transfers overlapped.
  3315. @item @emph{Prototype}:
  3316. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3317. @end table
  3318. @node starpu_helper_cublas_init
  3319. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3320. @table @asis
  3321. @item @emph{Description}:
  3322. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3323. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3324. controlled by StarPU. This call blocks until CUBLAS has been properly
  3325. initialized on every device.
  3326. @item @emph{Prototype}:
  3327. @code{void starpu_helper_cublas_init(void);}
  3328. @end table
  3329. @node starpu_helper_cublas_shutdown
  3330. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3331. @table @asis
  3332. @item @emph{Description}:
  3333. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3334. @item @emph{Prototype}:
  3335. @code{void starpu_helper_cublas_shutdown(void);}
  3336. @end table
  3337. @node OpenCL extensions
  3338. @section OpenCL extensions
  3339. @menu
  3340. * Enabling OpenCL:: Enabling OpenCL
  3341. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3342. * Loading OpenCL kernels:: Loading OpenCL kernels
  3343. * OpenCL statistics:: Collecting statistics from OpenCL
  3344. @end menu
  3345. @node Enabling OpenCL
  3346. @subsection Enabling OpenCL
  3347. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3348. enabled by default. To enable OpenCL, you need either to disable CUDA
  3349. when configuring StarPU:
  3350. @example
  3351. % ./configure --disable-cuda
  3352. @end example
  3353. or when running applications:
  3354. @example
  3355. % STARPU_NCUDA=0 ./application
  3356. @end example
  3357. OpenCL will automatically be started on any device not yet used by
  3358. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3359. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3360. so:
  3361. @example
  3362. % STARPU_NCUDA=2 ./application
  3363. @end example
  3364. @node Compiling OpenCL kernels
  3365. @subsection Compiling OpenCL kernels
  3366. Source codes for OpenCL kernels can be stored in a file or in a
  3367. string. StarPU provides functions to build the program executable for
  3368. each available OpenCL device as a @code{cl_program} object. This
  3369. program executable can then be loaded within a specific queue as
  3370. explained in the next section. These are only helpers, Applications
  3371. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3372. use (e.g. different programs on the different OpenCL devices, for
  3373. relocation purpose for instance).
  3374. @menu
  3375. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3376. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3377. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3378. @end menu
  3379. @node starpu_opencl_load_opencl_from_file
  3380. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3381. @table @asis
  3382. @item @emph{Description}:
  3383. TODO
  3384. @item @emph{Prototype}:
  3385. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3386. @end table
  3387. @node starpu_opencl_load_opencl_from_string
  3388. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3389. @table @asis
  3390. @item @emph{Description}:
  3391. TODO
  3392. @item @emph{Prototype}:
  3393. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3394. @end table
  3395. @node starpu_opencl_unload_opencl
  3396. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3397. @table @asis
  3398. @item @emph{Description}:
  3399. TODO
  3400. @item @emph{Prototype}:
  3401. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3402. @end table
  3403. @node Loading OpenCL kernels
  3404. @subsection Loading OpenCL kernels
  3405. @menu
  3406. * starpu_opencl_load_kernel:: Loading a kernel
  3407. * starpu_opencl_relase_kernel:: Releasing a kernel
  3408. @end menu
  3409. @node starpu_opencl_load_kernel
  3410. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3411. @table @asis
  3412. @item @emph{Description}:
  3413. TODO
  3414. @item @emph{Prototype}:
  3415. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3416. }
  3417. @end table
  3418. @node starpu_opencl_relase_kernel
  3419. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3420. @table @asis
  3421. @item @emph{Description}:
  3422. TODO
  3423. @item @emph{Prototype}:
  3424. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3425. @end table
  3426. @node OpenCL statistics
  3427. @subsection OpenCL statistics
  3428. @menu
  3429. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3430. @end menu
  3431. @node starpu_opencl_collect_stats
  3432. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3433. @table @asis
  3434. @item @emph{Description}:
  3435. After termination of the kernels, the OpenCL codelet should call this function
  3436. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3437. collect statistics about the kernel execution (used cycles, consumed power).
  3438. @item @emph{Prototype}:
  3439. @code{int starpu_opencl_collect_stats(cl_event event);}
  3440. @end table
  3441. @node Cell extensions
  3442. @section Cell extensions
  3443. nothing yet.
  3444. @node Miscellaneous helpers
  3445. @section Miscellaneous helpers
  3446. @menu
  3447. * starpu_data_cpy:: Copy a data handle into another data handle
  3448. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3449. @end menu
  3450. @node starpu_data_cpy
  3451. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3452. @table @asis
  3453. @item @emph{Description}:
  3454. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3455. The @code{asynchronous} parameter indicates whether the function should
  3456. block or not. In the case of an asynchronous call, it is possible to
  3457. synchronize with the termination of this operation either by the means of
  3458. implicit dependencies (if enabled) or by calling
  3459. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3460. this callback function is executed after the handle has been copied, and it is
  3461. given the @code{callback_arg} pointer as argument.
  3462. @item @emph{Prototype}:
  3463. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3464. @end table
  3465. @node starpu_execute_on_each_worker
  3466. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3467. @table @asis
  3468. @item @emph{Description}:
  3469. When calling this method, the offloaded function specified by the first argument is
  3470. executed by every StarPU worker that may execute the function.
  3471. The second argument is passed to the offloaded function.
  3472. The last argument specifies on which types of processing units the function
  3473. should be executed. Similarly to the @code{where} field of the
  3474. @code{starpu_codelet} structure, it is possible to specify that the function
  3475. should be executed on every CUDA device and every CPU by passing
  3476. @code{STARPU_CPU|STARPU_CUDA}.
  3477. This function blocks until the function has been executed on every appropriate
  3478. processing units, so that it may not be called from a callback function for
  3479. instance.
  3480. @item @emph{Prototype}:
  3481. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3482. @end table
  3483. @c ---------------------------------------------------------------------
  3484. @c Advanced Topics
  3485. @c ---------------------------------------------------------------------
  3486. @node Advanced Topics
  3487. @chapter Advanced Topics
  3488. @menu
  3489. * Defining a new data interface::
  3490. * Defining a new scheduling policy::
  3491. @end menu
  3492. @node Defining a new data interface
  3493. @section Defining a new data interface
  3494. @menu
  3495. * struct starpu_data_interface_ops_t:: Per-interface methods
  3496. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3497. * An example of data interface:: An example of data interface
  3498. @end menu
  3499. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3500. @node struct starpu_data_interface_ops_t
  3501. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3502. @table @asis
  3503. @item @emph{Description}:
  3504. TODO describe all the different fields
  3505. @end table
  3506. @node struct starpu_data_copy_methods
  3507. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3508. @table @asis
  3509. @item @emph{Description}:
  3510. TODO describe all the different fields
  3511. @end table
  3512. @node An example of data interface
  3513. @subsection An example of data interface
  3514. @table @asis
  3515. TODO
  3516. @end table
  3517. @node Defining a new scheduling policy
  3518. @section Defining a new scheduling policy
  3519. TODO
  3520. A full example showing how to define a new scheduling policy is available in
  3521. the StarPU sources in the directory @code{examples/scheduler/}.
  3522. @menu
  3523. * struct starpu_sched_policy_s::
  3524. * starpu_worker_set_sched_condition::
  3525. * starpu_sched_set_min_priority:: Set the minimum priority level
  3526. * starpu_sched_set_max_priority:: Set the maximum priority level
  3527. * Source code::
  3528. @end menu
  3529. @node struct starpu_sched_policy_s
  3530. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3531. @table @asis
  3532. @item @emph{Description}:
  3533. This structure contains all the methods that implement a scheduling policy. An
  3534. application may specify which scheduling strategy in the @code{sched_policy}
  3535. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3536. function.
  3537. @item @emph{Fields}:
  3538. @table @asis
  3539. @item @code{init_sched}:
  3540. Initialize the scheduling policy.
  3541. @item @code{deinit_sched}:
  3542. Cleanup the scheduling policy.
  3543. @item @code{push_task}:
  3544. Insert a task into the scheduler.
  3545. @item @code{push_prio_task}:
  3546. Insert a priority task into the scheduler.
  3547. @item @code{pop_task}:
  3548. Get a task from the scheduler. The mutex associated to the worker is already
  3549. taken when this method is called.
  3550. @item @code{pop_every_task}:
  3551. Remove all available tasks from the scheduler (tasks are chained by the means
  3552. of the prev and next fields of the starpu_task structure). The mutex associated
  3553. to the worker is already taken when this method is called.
  3554. @item @code{post_exec_hook} (optionnal):
  3555. This method is called every time a task has been executed.
  3556. @item @code{policy_name}:
  3557. Name of the policy (optionnal).
  3558. @item @code{policy_description}:
  3559. Description of the policy (optionnal).
  3560. @end table
  3561. @end table
  3562. @node starpu_worker_set_sched_condition
  3563. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3564. @table @asis
  3565. @item @emph{Description}:
  3566. When there is no available task for a worker, StarPU blocks this worker on a
  3567. condition variable. This function specifies which condition variable (and the
  3568. associated mutex) should be used to block (and to wake up) a worker. Note that
  3569. multiple workers may use the same condition variable. For instance, in the case
  3570. of a scheduling strategy with a single task queue, the same condition variable
  3571. would be used to block and wake up all workers.
  3572. The initialization method of a scheduling strategy (@code{init_sched}) must
  3573. call this function once per worker.
  3574. @item @emph{Prototype}:
  3575. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3576. @end table
  3577. @node starpu_sched_set_min_priority
  3578. @subsection @code{starpu_sched_set_min_priority}
  3579. @table @asis
  3580. @item @emph{Description}:
  3581. Defines the minimum priority level supported by the scheduling policy. The
  3582. default minimum priority level is the same as the default priority level which
  3583. is 0 by convention. The application may access that value by calling the
  3584. @code{starpu_sched_get_min_priority} function. This function should only be
  3585. called from the initialization method of the scheduling policy, and should not
  3586. be used directly from the application.
  3587. @item @emph{Prototype}:
  3588. @code{void starpu_sched_set_min_priority(int min_prio)}
  3589. @end table
  3590. @node starpu_sched_set_max_priority
  3591. @subsection @code{starpu_sched_set_max_priority}
  3592. @table @asis
  3593. @item @emph{Description}:
  3594. Defines the maximum priority level supported by the scheduling policy. The
  3595. default maximum priority level is 1. The application may access that value by
  3596. calling the @code{starpu_sched_get_max_priority} function. This function should
  3597. only be called from the initialization method of the scheduling policy, and
  3598. should not be used directly from the application.
  3599. @item @emph{Prototype}:
  3600. @code{void starpu_sched_set_min_priority(int max_prio)}
  3601. @end table
  3602. @node Source code
  3603. @subsection Source code
  3604. @cartouche
  3605. @smallexample
  3606. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3607. .init_sched = init_dummy_sched,
  3608. .deinit_sched = deinit_dummy_sched,
  3609. .push_task = push_task_dummy,
  3610. .push_prio_task = NULL,
  3611. .pop_task = pop_task_dummy,
  3612. .post_exec_hook = NULL,
  3613. .pop_every_task = NULL,
  3614. .policy_name = "dummy",
  3615. .policy_description = "dummy scheduling strategy"
  3616. @};
  3617. @end smallexample
  3618. @end cartouche
  3619. @c ---------------------------------------------------------------------
  3620. @c Appendices
  3621. @c ---------------------------------------------------------------------
  3622. @c ---------------------------------------------------------------------
  3623. @c Full source code for the 'Scaling a Vector' example
  3624. @c ---------------------------------------------------------------------
  3625. @node Full source code for the 'Scaling a Vector' example
  3626. @appendix Full source code for the 'Scaling a Vector' example
  3627. @menu
  3628. * Main application::
  3629. * CPU Kernel::
  3630. * CUDA Kernel::
  3631. * OpenCL Kernel::
  3632. @end menu
  3633. @node Main application
  3634. @section Main application
  3635. @smallexample
  3636. @include vector_scal_c.texi
  3637. @end smallexample
  3638. @node CPU Kernel
  3639. @section CPU Kernel
  3640. @smallexample
  3641. @include vector_scal_cpu.texi
  3642. @end smallexample
  3643. @node CUDA Kernel
  3644. @section CUDA Kernel
  3645. @smallexample
  3646. @include vector_scal_cuda.texi
  3647. @end smallexample
  3648. @node OpenCL Kernel
  3649. @section OpenCL Kernel
  3650. @menu
  3651. * Invoking the kernel::
  3652. * Source of the kernel::
  3653. @end menu
  3654. @node Invoking the kernel
  3655. @subsection Invoking the kernel
  3656. @smallexample
  3657. @include vector_scal_opencl.texi
  3658. @end smallexample
  3659. @node Source of the kernel
  3660. @subsection Source of the kernel
  3661. @smallexample
  3662. @include vector_scal_opencl_codelet.texi
  3663. @end smallexample
  3664. @bye