| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 | 
							- /* dlaed6.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlaed6_(integer *kniter, logical *orgati, doublereal *
 
- 	rho, doublereal *d__, doublereal *z__, doublereal *finit, doublereal *
 
- 	tau, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), log(doublereal), pow_di(doublereal *, integer *);
 
-     /* Local variables */
 
-     doublereal a, b, c__, f;
 
-     integer i__;
 
-     doublereal fc, df, ddf, lbd, eta, ubd, eps, base;
 
-     integer iter;
 
-     doublereal temp, temp1, temp2, temp3, temp4;
 
-     logical scale;
 
-     integer niter;
 
-     doublereal small1, small2, sminv1, sminv2;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     doublereal dscale[3], sclfac, zscale[3], erretm, sclinv;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     February 2007 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAED6 computes the positive or negative root (closest to the origin) */
 
- /*  of */
 
- /*                   z(1)        z(2)        z(3) */
 
- /*  f(x) =   rho + --------- + ---------- + --------- */
 
- /*                  d(1)-x      d(2)-x      d(3)-x */
 
- /*  It is assumed that */
 
- /*        if ORGATI = .true. the root is between d(2) and d(3); */
 
- /*        otherwise it is between d(1) and d(2) */
 
- /*  This routine will be called by DLAED4 when necessary. In most cases, */
 
- /*  the root sought is the smallest in magnitude, though it might not be */
 
- /*  in some extremely rare situations. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  KNITER       (input) INTEGER */
 
- /*               Refer to DLAED4 for its significance. */
 
- /*  ORGATI       (input) LOGICAL */
 
- /*               If ORGATI is true, the needed root is between d(2) and */
 
- /*               d(3); otherwise it is between d(1) and d(2).  See */
 
- /*               DLAED4 for further details. */
 
- /*  RHO          (input) DOUBLE PRECISION */
 
- /*               Refer to the equation f(x) above. */
 
- /*  D            (input) DOUBLE PRECISION array, dimension (3) */
 
- /*               D satisfies d(1) < d(2) < d(3). */
 
- /*  Z            (input) DOUBLE PRECISION array, dimension (3) */
 
- /*               Each of the elements in z must be positive. */
 
- /*  FINIT        (input) DOUBLE PRECISION */
 
- /*               The value of f at 0. It is more accurate than the one */
 
- /*               evaluated inside this routine (if someone wants to do */
 
- /*               so). */
 
- /*  TAU          (output) DOUBLE PRECISION */
 
- /*               The root of the equation f(x). */
 
- /*  INFO         (output) INTEGER */
 
- /*               = 0: successful exit */
 
- /*               > 0: if INFO = 1, failure to converge */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  30/06/99: Based on contributions by */
 
- /*     Ren-Cang Li, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  10/02/03: This version has a few statements commented out for thread */
 
- /*  safety (machine parameters are computed on each entry). SJH. */
 
- /*  05/10/06: Modified from a new version of Ren-Cang Li, use */
 
- /*     Gragg-Thornton-Warner cubic convergent scheme for better stability. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --z__;
 
-     --d__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*orgati) {
 
- 	lbd = d__[2];
 
- 	ubd = d__[3];
 
-     } else {
 
- 	lbd = d__[1];
 
- 	ubd = d__[2];
 
-     }
 
-     if (*finit < 0.) {
 
- 	lbd = 0.;
 
-     } else {
 
- 	ubd = 0.;
 
-     }
 
-     niter = 1;
 
-     *tau = 0.;
 
-     if (*kniter == 2) {
 
- 	if (*orgati) {
 
- 	    temp = (d__[3] - d__[2]) / 2.;
 
- 	    c__ = *rho + z__[1] / (d__[1] - d__[2] - temp);
 
- 	    a = c__ * (d__[2] + d__[3]) + z__[2] + z__[3];
 
- 	    b = c__ * d__[2] * d__[3] + z__[2] * d__[3] + z__[3] * d__[2];
 
- 	} else {
 
- 	    temp = (d__[1] - d__[2]) / 2.;
 
- 	    c__ = *rho + z__[3] / (d__[3] - d__[2] - temp);
 
- 	    a = c__ * (d__[1] + d__[2]) + z__[1] + z__[2];
 
- 	    b = c__ * d__[1] * d__[2] + z__[1] * d__[2] + z__[2] * d__[1];
 
- 	}
 
- /* Computing MAX */
 
- 	d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__);
 
- 	temp = max(d__1,d__2);
 
- 	a /= temp;
 
- 	b /= temp;
 
- 	c__ /= temp;
 
- 	if (c__ == 0.) {
 
- 	    *tau = b / a;
 
- 	} else if (a <= 0.) {
 
- 	    *tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 
- 		    c__ * 2.);
 
- 	} else {
 
- 	    *tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))
 
- 		    ));
 
- 	}
 
- 	if (*tau < lbd || *tau > ubd) {
 
- 	    *tau = (lbd + ubd) / 2.;
 
- 	}
 
- 	if (d__[1] == *tau || d__[2] == *tau || d__[3] == *tau) {
 
- 	    *tau = 0.;
 
- 	} else {
 
- 	    temp = *finit + *tau * z__[1] / (d__[1] * (d__[1] - *tau)) + *tau 
 
- 		    * z__[2] / (d__[2] * (d__[2] - *tau)) + *tau * z__[3] / (
 
- 		    d__[3] * (d__[3] - *tau));
 
- 	    if (temp <= 0.) {
 
- 		lbd = *tau;
 
- 	    } else {
 
- 		ubd = *tau;
 
- 	    }
 
- 	    if (abs(*finit) <= abs(temp)) {
 
- 		*tau = 0.;
 
- 	    }
 
- 	}
 
-     }
 
- /*     get machine parameters for possible scaling to avoid overflow */
 
- /*     modified by Sven: parameters SMALL1, SMINV1, SMALL2, */
 
- /*     SMINV2, EPS are not SAVEd anymore between one call to the */
 
- /*     others but recomputed at each call */
 
-     eps = _starpu_dlamch_("Epsilon");
 
-     base = _starpu_dlamch_("Base");
 
-     i__1 = (integer) (log(_starpu_dlamch_("SafMin")) / log(base) / 3.);
 
-     small1 = pow_di(&base, &i__1);
 
-     sminv1 = 1. / small1;
 
-     small2 = small1 * small1;
 
-     sminv2 = sminv1 * sminv1;
 
- /*     Determine if scaling of inputs necessary to avoid overflow */
 
- /*     when computing 1/TEMP**3 */
 
-     if (*orgati) {
 
- /* Computing MIN */
 
- 	d__3 = (d__1 = d__[2] - *tau, abs(d__1)), d__4 = (d__2 = d__[3] - *
 
- 		tau, abs(d__2));
 
- 	temp = min(d__3,d__4);
 
-     } else {
 
- /* Computing MIN */
 
- 	d__3 = (d__1 = d__[1] - *tau, abs(d__1)), d__4 = (d__2 = d__[2] - *
 
- 		tau, abs(d__2));
 
- 	temp = min(d__3,d__4);
 
-     }
 
-     scale = FALSE_;
 
-     if (temp <= small1) {
 
- 	scale = TRUE_;
 
- 	if (temp <= small2) {
 
- /*        Scale up by power of radix nearest 1/SAFMIN**(2/3) */
 
- 	    sclfac = sminv2;
 
- 	    sclinv = small2;
 
- 	} else {
 
- /*        Scale up by power of radix nearest 1/SAFMIN**(1/3) */
 
- 	    sclfac = sminv1;
 
- 	    sclinv = small1;
 
- 	}
 
- /*        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1) */
 
- 	for (i__ = 1; i__ <= 3; ++i__) {
 
- 	    dscale[i__ - 1] = d__[i__] * sclfac;
 
- 	    zscale[i__ - 1] = z__[i__] * sclfac;
 
- /* L10: */
 
- 	}
 
- 	*tau *= sclfac;
 
- 	lbd *= sclfac;
 
- 	ubd *= sclfac;
 
-     } else {
 
- /*        Copy D and Z to DSCALE and ZSCALE */
 
- 	for (i__ = 1; i__ <= 3; ++i__) {
 
- 	    dscale[i__ - 1] = d__[i__];
 
- 	    zscale[i__ - 1] = z__[i__];
 
- /* L20: */
 
- 	}
 
-     }
 
-     fc = 0.;
 
-     df = 0.;
 
-     ddf = 0.;
 
-     for (i__ = 1; i__ <= 3; ++i__) {
 
- 	temp = 1. / (dscale[i__ - 1] - *tau);
 
- 	temp1 = zscale[i__ - 1] * temp;
 
- 	temp2 = temp1 * temp;
 
- 	temp3 = temp2 * temp;
 
- 	fc += temp1 / dscale[i__ - 1];
 
- 	df += temp2;
 
- 	ddf += temp3;
 
- /* L30: */
 
-     }
 
-     f = *finit + *tau * fc;
 
-     if (abs(f) <= 0.) {
 
- 	goto L60;
 
-     }
 
-     if (f <= 0.) {
 
- 	lbd = *tau;
 
-     } else {
 
- 	ubd = *tau;
 
-     }
 
- /*        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent */
 
- /*                            scheme */
 
- /*     It is not hard to see that */
 
- /*           1) Iterations will go up monotonically */
 
- /*              if FINIT < 0; */
 
- /*           2) Iterations will go down monotonically */
 
- /*              if FINIT > 0. */
 
-     iter = niter + 1;
 
-     for (niter = iter; niter <= 40; ++niter) {
 
- 	if (*orgati) {
 
- 	    temp1 = dscale[1] - *tau;
 
- 	    temp2 = dscale[2] - *tau;
 
- 	} else {
 
- 	    temp1 = dscale[0] - *tau;
 
- 	    temp2 = dscale[1] - *tau;
 
- 	}
 
- 	a = (temp1 + temp2) * f - temp1 * temp2 * df;
 
- 	b = temp1 * temp2 * f;
 
- 	c__ = f - (temp1 + temp2) * df + temp1 * temp2 * ddf;
 
- /* Computing MAX */
 
- 	d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__);
 
- 	temp = max(d__1,d__2);
 
- 	a /= temp;
 
- 	b /= temp;
 
- 	c__ /= temp;
 
- 	if (c__ == 0.) {
 
- 	    eta = b / a;
 
- 	} else if (a <= 0.) {
 
- 	    eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ 
 
- 		    * 2.);
 
- 	} else {
 
- 	    eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
 
- 		    );
 
- 	}
 
- 	if (f * eta >= 0.) {
 
- 	    eta = -f / df;
 
- 	}
 
- 	*tau += eta;
 
- 	if (*tau < lbd || *tau > ubd) {
 
- 	    *tau = (lbd + ubd) / 2.;
 
- 	}
 
- 	fc = 0.;
 
- 	erretm = 0.;
 
- 	df = 0.;
 
- 	ddf = 0.;
 
- 	for (i__ = 1; i__ <= 3; ++i__) {
 
- 	    temp = 1. / (dscale[i__ - 1] - *tau);
 
- 	    temp1 = zscale[i__ - 1] * temp;
 
- 	    temp2 = temp1 * temp;
 
- 	    temp3 = temp2 * temp;
 
- 	    temp4 = temp1 / dscale[i__ - 1];
 
- 	    fc += temp4;
 
- 	    erretm += abs(temp4);
 
- 	    df += temp2;
 
- 	    ddf += temp3;
 
- /* L40: */
 
- 	}
 
- 	f = *finit + *tau * fc;
 
- 	erretm = (abs(*finit) + abs(*tau) * erretm) * 8. + abs(*tau) * df;
 
- 	if (abs(f) <= eps * erretm) {
 
- 	    goto L60;
 
- 	}
 
- 	if (f <= 0.) {
 
- 	    lbd = *tau;
 
- 	} else {
 
- 	    ubd = *tau;
 
- 	}
 
- /* L50: */
 
-     }
 
-     *info = 1;
 
- L60:
 
- /*     Undo scaling */
 
-     if (scale) {
 
- 	*tau *= sclinv;
 
-     }
 
-     return 0;
 
- /*     End of DLAED6 */
 
- } /* _starpu_dlaed6_ */
 
 
  |