starpu.texi 123 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1filll
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Configuring StarPU:: How to configure StarPU
  31. * StarPU API:: The API to use StarPU
  32. * Advanced Topics:: Advanced use of StarPU
  33. * Full source code for the 'Scaling a Vector' example::
  34. @end menu
  35. @c ---------------------------------------------------------------------
  36. @c Introduction to StarPU
  37. @c ---------------------------------------------------------------------
  38. @node Introduction
  39. @chapter Introduction to StarPU
  40. @menu
  41. * Motivation:: Why StarPU ?
  42. * StarPU in a Nutshell:: The Fundamentals of StarPU
  43. @end menu
  44. @node Motivation
  45. @section Motivation
  46. @c complex machines with heterogeneous cores/devices
  47. The use of specialized hardware such as accelerators or coprocessors offers an
  48. interesting approach to overcome the physical limits encountered by processor
  49. architects. As a result, many machines are now equipped with one or several
  50. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  51. efforts have been devoted to offload computation onto such accelerators, very
  52. little attention as been paid to portability concerns on the one hand, and to the
  53. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  54. StarPU is a runtime system that offers support for heterogeneous multicore
  55. architectures, it not only offers a unified view of the computational resources
  56. (i.e. CPUs and accelerators at the same time), but it also takes care of
  57. efficiently mapping and executing tasks onto an heterogeneous machine while
  58. transparently handling low-level issues in a portable fashion.
  59. @c this leads to a complicated distributed memory design
  60. @c which is not (easily) manageable by hand
  61. @c added value/benefits of StarPU
  62. @c - portability
  63. @c - scheduling, perf. portability
  64. @node StarPU in a Nutshell
  65. @section StarPU in a Nutshell
  66. @menu
  67. * Codelet and Tasks::
  68. * StarPU Data Management Library::
  69. @end menu
  70. From a programming point of view, StarPU is not a new language but a library
  71. that executes tasks explicitly submitted by the application. The data that a
  72. task manipulates are automatically transferred onto the accelerator so that the
  73. programmer does not have to take care of complex data movements. StarPU also
  74. takes particular care of scheduling those tasks efficiently and allows
  75. scheduling experts to implement custom scheduling policies in a portable
  76. fashion.
  77. @c explain the notion of codelet and task (i.e. g(A, B)
  78. @node Codelet and Tasks
  79. @subsection Codelet and Tasks
  80. One of StarPU primary data structure is the @b{codelet}. A codelet describes a
  81. computational kernel that can possibly be implemented on multiple architectures
  82. such as a CPU, a CUDA device or a Cell's SPU.
  83. @c TODO insert illustration f : f_spu, f_cpu, ...
  84. Another important data structure is the @b{task}. Executing a StarPU task
  85. consists in applying a codelet on a data set, on one of the architectures on
  86. which the codelet is implemented. In addition to the codelet that a task
  87. implements, it also describes which data are accessed, and how they are
  88. accessed during the computation (read and/or write).
  89. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  90. operation. The task structure can also specify a @b{callback} function that is
  91. called once StarPU has properly executed the task. It also contains optional
  92. fields that the application may use to give hints to the scheduler (such as
  93. priority levels).
  94. A task may be identified by a unique 64-bit number which we refer as a @b{tag}.
  95. Task dependencies can be enforced either by the means of callback functions, or
  96. by expressing dependencies between tags.
  97. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  98. @c DSM
  99. @node StarPU Data Management Library
  100. @subsection StarPU Data Management Library
  101. Because StarPU schedules tasks at runtime, data transfers have to be
  102. done automatically and ``just-in-time'' between processing units,
  103. relieving the application programmer from explicit data transfers.
  104. Moreover, to avoid unnecessary transfers, StarPU keeps data
  105. where it was last needed, even if was modified there, and it
  106. allows multiple copies of the same data to reside at the same time on
  107. several processing units as long as it is not modified.
  108. @c ---------------------------------------------------------------------
  109. @c Installing StarPU
  110. @c ---------------------------------------------------------------------
  111. @node Installing StarPU
  112. @chapter Installing StarPU
  113. @menu
  114. * Downloading StarPU::
  115. * Configuration of StarPU::
  116. * Building and Installing StarPU::
  117. @end menu
  118. StarPU can be built and installed by the standard means of the GNU
  119. autotools. The following chapter is intended to briefly remind how these tools
  120. can be used to install StarPU.
  121. @node Downloading StarPU
  122. @section Downloading StarPU
  123. @menu
  124. * Getting Sources::
  125. * Optional dependencies::
  126. @end menu
  127. @node Getting Sources
  128. @subsection Getting Sources
  129. The source code is managed by a Subversion server hosted by the
  130. InriaGforge. To get the source code, you need:
  131. @itemize
  132. @item
  133. To install the client side of the software Subversion if it is
  134. not already available on your system. The software can be obtained from
  135. @indicateurl{http://subversion.tigris.org}.
  136. @item
  137. You can check out the project's SVN repository through anonymous
  138. access. This will provide you with a read access to the
  139. repository.
  140. You can also choose to become a member of the project @code{starpu}.
  141. For this, you first need to get an account to the gForge server. You
  142. can then send a request to join the project
  143. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  144. @item
  145. More information on how to get a gForge account, to become a member of
  146. a project, or on any other related task can be obtained from the
  147. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  148. thing is to upload your public SSH key on the gForge server (see the
  149. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  150. instructions).
  151. @end itemize
  152. You can now check out the latest version from the Subversion server:
  153. @itemize
  154. @item
  155. using the anonymous access via svn:
  156. @example
  157. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  158. @end example
  159. @item
  160. using the anonymous access via https:
  161. @example
  162. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  163. @end example
  164. The password is @code{anonsvn}.
  165. @item
  166. using your gForge account
  167. @example
  168. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  169. @end example
  170. @end itemize
  171. These steps require to run autoconf and automake to generate the
  172. @code{./configure} script. This can be done by calling
  173. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  174. higher.
  175. @example
  176. % ./autogen.sh
  177. @end example
  178. If the autotools are not available on your machine or not recent
  179. enough, you can choose to download the latest nightly tarball, which
  180. is provided with a @code{configure} script.
  181. @example
  182. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  183. @end example
  184. @node Optional dependencies
  185. @subsection Optional dependencies
  186. The topology discovery library, hwloc, is not mandatory to use StarPU
  187. but strongly recommended. It allows to increase performance, and to
  188. perform some topology aware scheduling.
  189. hwloc is available in major distributions and for most OSes and can be
  190. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  191. @node Configuration of StarPU
  192. @section Configuration of StarPU
  193. @menu
  194. * Generating Makefiles and configuration scripts::
  195. * Running the configuration::
  196. @end menu
  197. @node Generating Makefiles and configuration scripts
  198. @subsection Generating Makefiles and configuration scripts
  199. This step is not necessary when using the tarball releases of StarPU. If you
  200. are using the source code from the svn repository, you first need to generate
  201. the configure scripts and the Makefiles.
  202. @example
  203. % ./autogen.sh
  204. @end example
  205. @node Running the configuration
  206. @subsection Running the configuration
  207. @example
  208. % ./configure
  209. @end example
  210. Details about options that are useful to give to @code{./configure} are given in
  211. @ref{Compilation configuration}.
  212. @node Building and Installing StarPU
  213. @section Building and Installing StarPU
  214. @menu
  215. * Building::
  216. * Sanity Checks::
  217. * Installing::
  218. @end menu
  219. @node Building
  220. @subsection Building
  221. @example
  222. % make
  223. @end example
  224. @node Sanity Checks
  225. @subsection Sanity Checks
  226. In order to make sure that StarPU is working properly on the system, it is also
  227. possible to run a test suite.
  228. @example
  229. % make check
  230. @end example
  231. @node Installing
  232. @subsection Installing
  233. In order to install StarPU at the location that was specified during
  234. configuration:
  235. @example
  236. % make install
  237. @end example
  238. @c ---------------------------------------------------------------------
  239. @c Using StarPU
  240. @c ---------------------------------------------------------------------
  241. @node Using StarPU
  242. @chapter Using StarPU
  243. @menu
  244. * Setting flags for compiling and linking applications::
  245. * Running a basic StarPU application::
  246. @end menu
  247. @node Setting flags for compiling and linking applications
  248. @section Setting flags for compiling and linking applications
  249. Compiling and linking an application against StarPU may require to use
  250. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  251. To this end, it is possible to use the @code{pkg-config} tool.
  252. If StarPU was not installed at some standard location, the path of StarPU's
  253. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  254. that @code{pkg-config} can find it. For example if StarPU was installed in
  255. @code{$prefix_dir}:
  256. @example
  257. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  258. @end example
  259. The flags required to compile or link against StarPU are then
  260. accessible with the following commands:
  261. @example
  262. % pkg-config --cflags libstarpu # options for the compiler
  263. % pkg-config --libs libstarpu # options for the linker
  264. @end example
  265. @node Running a basic StarPU application
  266. @section Running a basic StarPU application
  267. Basic examples using StarPU have been built in the directory
  268. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  269. example @code{vector_scal}.
  270. @example
  271. % $prefix_dir/lib/starpu/examples/vector_scal
  272. BEFORE : First element was 1.000000
  273. AFTER First element is 3.140000
  274. %
  275. @end example
  276. When StarPU is used for the first time, the directory
  277. @code{$HOME/.starpu/} is created, performance models will be stored in
  278. that directory.
  279. Please note that buses are benchmarked when StarPU is launched for the
  280. first time. This may take a few minutes, or less if @code{hwloc} is
  281. installed. This step is done only once per user and per machine.
  282. @c ---------------------------------------------------------------------
  283. @c Basic Examples
  284. @c ---------------------------------------------------------------------
  285. @node Basic Examples
  286. @chapter Basic Examples
  287. @menu
  288. * Compiling and linking options::
  289. * Hello World:: Submitting Tasks
  290. * Scaling a Vector:: Manipulating Data
  291. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  292. * Task and Worker Profiling::
  293. * Partitioning Data:: Partitioning Data
  294. * Performance model example::
  295. * Theoretical lower bound on execution time::
  296. * More examples:: More examples shipped with StarPU
  297. @end menu
  298. @node Compiling and linking options
  299. @section Compiling and linking options
  300. Let's suppose StarPU has been installed in the directory
  301. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  302. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  303. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  304. libraries at runtime.
  305. @example
  306. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  307. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  308. @end example
  309. The Makefile could for instance contain the following lines to define which
  310. options must be given to the compiler and to the linker:
  311. @cartouche
  312. @example
  313. CFLAGS += $$(pkg-config --cflags libstarpu)
  314. LDFLAGS += $$(pkg-config --libs libstarpu)
  315. @end example
  316. @end cartouche
  317. @node Hello World
  318. @section Hello World
  319. @menu
  320. * Required Headers::
  321. * Defining a Codelet::
  322. * Submitting a Task::
  323. * Execution of Hello World::
  324. @end menu
  325. In this section, we show how to implement a simple program that submits a task to StarPU.
  326. @node Required Headers
  327. @subsection Required Headers
  328. The @code{starpu.h} header should be included in any code using StarPU.
  329. @cartouche
  330. @smallexample
  331. #include <starpu.h>
  332. @end smallexample
  333. @end cartouche
  334. @node Defining a Codelet
  335. @subsection Defining a Codelet
  336. @cartouche
  337. @smallexample
  338. void cpu_func(void *buffers[], void *cl_arg)
  339. @{
  340. float *array = cl_arg;
  341. printf("Hello world (array = @{%f, %f@} )\n", array[0], array[1]);
  342. @}
  343. starpu_codelet cl =
  344. @{
  345. .where = STARPU_CPU,
  346. .cpu_func = cpu_func,
  347. .nbuffers = 0
  348. @};
  349. @end smallexample
  350. @end cartouche
  351. A codelet is a structure that represents a computational kernel. Such a codelet
  352. may contain an implementation of the same kernel on different architectures
  353. (e.g. CUDA, Cell's SPU, x86, ...).
  354. The @code{nbuffers} field specifies the number of data buffers that are
  355. manipulated by the codelet: here the codelet does not access or modify any data
  356. that is controlled by our data management library. Note that the argument
  357. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  358. structure) does not count as a buffer since it is not managed by our data
  359. management library.
  360. @c TODO need a crossref to the proper description of "where" see bla for more ...
  361. We create a codelet which may only be executed on the CPUs. The @code{where}
  362. field is a bitmask that defines where the codelet may be executed. Here, the
  363. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  364. (@pxref{Codelets and Tasks} for more details on this field).
  365. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  366. which @emph{must} have the following prototype:
  367. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  368. In this example, we can ignore the first argument of this function which gives a
  369. description of the input and output buffers (e.g. the size and the location of
  370. the matrices). The second argument is a pointer to a buffer passed as an
  371. argument to the codelet by the means of the @code{cl_arg} field of the
  372. @code{starpu_task} structure.
  373. @c TODO rewrite so that it is a little clearer ?
  374. Be aware that this may be a pointer to a
  375. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  376. if the codelet modifies this buffer, there is no guarantee that the initial
  377. buffer will be modified as well: this for instance implies that the buffer
  378. cannot be used as a synchronization medium.
  379. @node Submitting a Task
  380. @subsection Submitting a Task
  381. @cartouche
  382. @smallexample
  383. void callback_func(void *callback_arg)
  384. @{
  385. printf("Callback function (arg %x)\n", callback_arg);
  386. @}
  387. int main(int argc, char **argv)
  388. @{
  389. /* @b{initialize StarPU} */
  390. starpu_init(NULL);
  391. struct starpu_task *task = starpu_task_create();
  392. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  393. float array[2] = @{1.0f, -1.0f@};
  394. task->cl_arg = &array;
  395. task->cl_arg_size = sizeof(array);
  396. task->callback_func = callback_func;
  397. task->callback_arg = 0x42;
  398. /* @b{starpu_task_submit will be a blocking call} */
  399. task->synchronous = 1;
  400. /* @b{submit the task to StarPU} */
  401. starpu_task_submit(task);
  402. /* @b{terminate StarPU} */
  403. starpu_shutdown();
  404. return 0;
  405. @}
  406. @end smallexample
  407. @end cartouche
  408. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  409. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  410. be submitted after the termination of StarPU by a call to
  411. @code{starpu_shutdown}.
  412. In the example above, a task structure is allocated by a call to
  413. @code{starpu_task_create}. This function only allocates and fills the
  414. corresponding structure with the default settings (@pxref{starpu_task_create}),
  415. but it does not submit the task to StarPU.
  416. @c not really clear ;)
  417. The @code{cl} field is a pointer to the codelet which the task will
  418. execute: in other words, the codelet structure describes which computational
  419. kernel should be offloaded on the different architectures, and the task
  420. structure is a wrapper containing a codelet and the piece of data on which the
  421. codelet should operate.
  422. The optional @code{cl_arg} field is a pointer to a buffer (of size
  423. @code{cl_arg_size}) with some parameters for the kernel
  424. described by the codelet. For instance, if a codelet implements a computational
  425. kernel that multiplies its input vector by a constant, the constant could be
  426. specified by the means of this buffer, instead of registering it.
  427. Once a task has been executed, an optional callback function can be called.
  428. While the computational kernel could be offloaded on various architectures, the
  429. callback function is always executed on a CPU. The @code{callback_arg}
  430. pointer is passed as an argument of the callback. The prototype of a callback
  431. function must be:
  432. @code{void (*callback_function)(void *);}
  433. If the @code{synchronous} field is non-null, task submission will be
  434. synchronous: the @code{starpu_task_submit} function will not return until the
  435. task was executed. Note that the @code{starpu_shutdown} method does not
  436. guarantee that asynchronous tasks have been executed before it returns.
  437. @node Execution of Hello World
  438. @subsection Execution of Hello World
  439. @smallexample
  440. % make hello_world
  441. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  442. % ./hello_world
  443. Hello world (array = @{1.000000, -1.000000@} )
  444. Callback function (arg 42)
  445. @end smallexample
  446. @node Scaling a Vector
  447. @section Manipulating Data: Scaling a Vector
  448. The previous example has shown how to submit tasks. In this section,
  449. we show how StarPU tasks can manipulate data. The full source code for
  450. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  451. @menu
  452. * Source code of Vector Scaling::
  453. * Execution of Vector Scaling::
  454. @end menu
  455. @node Source code of Vector Scaling
  456. @subsection Source code of Vector Scaling
  457. Programmers can describe the data layout of their application so that StarPU is
  458. responsible for enforcing data coherency and availability across the machine.
  459. Instead of handling complex (and non-portable) mechanisms to perform data
  460. movements, programmers only declare which piece of data is accessed and/or
  461. modified by a task, and StarPU makes sure that when a computational kernel
  462. starts somewhere (e.g. on a GPU), its data are available locally.
  463. Before submitting those tasks, the programmer first needs to declare the
  464. different pieces of data to StarPU using the @code{starpu_*_data_register}
  465. functions. To ease the development of applications for StarPU, it is possible
  466. to describe multiple types of data layout. A type of data layout is called an
  467. @b{interface}. By default, there are different interfaces available in StarPU:
  468. here we will consider the @b{vector interface}.
  469. The following lines show how to declare an array of @code{NX} elements of type
  470. @code{float} using the vector interface:
  471. @cartouche
  472. @smallexample
  473. float vector[NX];
  474. starpu_data_handle vector_handle;
  475. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  476. sizeof(vector[0]));
  477. @end smallexample
  478. @end cartouche
  479. The first argument, called the @b{data handle}, is an opaque pointer which
  480. designates the array in StarPU. This is also the structure which is used to
  481. describe which data is used by a task. The second argument is the node number
  482. where the data currently resides. Here it is 0 since the @code{vector} array is in
  483. the main memory. Then comes the pointer @code{vector} where the data can be found,
  484. the number of elements in the vector and the size of each element.
  485. It is possible to construct a StarPU task that will manipulate the
  486. vector and a constant factor.
  487. @cartouche
  488. @smallexample
  489. float factor = 3.14;
  490. struct starpu_task *task = starpu_task_create();
  491. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  492. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  493. task->buffers[0].mode = STARPU_RW;
  494. task->cl_arg = &factor;
  495. task->cl_arg_size = sizeof(factor);
  496. task->synchronous = 1;
  497. starpu_task_submit(task);
  498. @end smallexample
  499. @end cartouche
  500. Since the factor is a mere float value parameter, it does not need a preliminary registration, and
  501. can just be passed through the @code{cl_arg} pointer like in the previous
  502. example. The vector parameter is described by its handle.
  503. There are two fields in each element of the @code{buffers} array.
  504. @code{handle} is the handle of the data, and @code{mode} specifies how the
  505. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  506. write-only and @code{STARPU_RW} for read and write access).
  507. The definition of the codelet can be written as follows:
  508. @cartouche
  509. @smallexample
  510. void scal_cpu_func(void *buffers[], void *cl_arg)
  511. @{
  512. unsigned i;
  513. float *factor = cl_arg;
  514. /* length of the vector */
  515. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  516. /* local copy of the vector pointer */
  517. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  518. for (i = 0; i < n; i++)
  519. val[i] *= *factor;
  520. @}
  521. starpu_codelet cl = @{
  522. .where = STARPU_CPU,
  523. .cpu_func = scal_cpu_func,
  524. .nbuffers = 1
  525. @};
  526. @end smallexample
  527. @end cartouche
  528. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  529. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  530. constant factor from this pointer. The first argument is an array that gives
  531. a description of all the buffers passed in the @code{task->buffers}@ array. The
  532. size of this array is given by the @code{nbuffers} field of the codelet
  533. structure. For the sake of generality, this array contains pointers to the
  534. different interfaces describing each buffer. In the case of the @b{vector
  535. interface}, the location of the vector (resp. its length) is accessible in the
  536. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  537. read-write fashion, any modification will automatically affect future accesses
  538. to this vector made by other tasks.
  539. @node Execution of Vector Scaling
  540. @subsection Execution of Vector Scaling
  541. @smallexample
  542. % make vector_scal
  543. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  544. % ./vector_scal
  545. 0.000000 3.000000 6.000000 9.000000 12.000000
  546. @end smallexample
  547. @node Vector Scaling on an Hybrid CPU/GPU Machine
  548. @section Vector Scaling on an Hybrid CPU/GPU Machine
  549. Contrary to the previous examples, the task submitted in this example may not
  550. only be executed by the CPUs, but also by a CUDA device.
  551. @menu
  552. * Definition of the CUDA Codelet::
  553. * Definition of the OpenCL Codelet::
  554. * Definition of the Main Code::
  555. * Execution of Hybrid Vector Scaling::
  556. @end menu
  557. @node Definition of the CUDA Codelet
  558. @subsection Definition of the CUDA Codelet
  559. The CUDA implementation can be written as follows. It needs to be
  560. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  561. driver.
  562. @cartouche
  563. @smallexample
  564. #include <starpu.h>
  565. static __global__ void vector_mult_cuda(float *val, unsigned n,
  566. float factor)
  567. @{
  568. unsigned i;
  569. for(i = 0 ; i < n ; i++)
  570. val[i] *= factor;
  571. @}
  572. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  573. @{
  574. float *factor = (float *)_args;
  575. /* length of the vector */
  576. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  577. /* local copy of the vector pointer */
  578. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  579. @i{ vector_mult_cuda<<<1,1>>>(val, n, *factor);}
  580. @i{ cudaThreadSynchronize();}
  581. @}
  582. @end smallexample
  583. @end cartouche
  584. @node Definition of the OpenCL Codelet
  585. @subsection Definition of the OpenCL Codelet
  586. The OpenCL implementation can be written as follows. StarPU provides
  587. tools to compile a OpenCL codelet stored in a file.
  588. @cartouche
  589. @smallexample
  590. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  591. @{
  592. const int i = get_global_id(0);
  593. if (i < nx) @{
  594. val[i] *= factor;
  595. @}
  596. @}
  597. @end smallexample
  598. @end cartouche
  599. @cartouche
  600. @smallexample
  601. #include <starpu.h>
  602. @i{#include <starpu_opencl.h>}
  603. @i{extern struct starpu_opencl_program programs;}
  604. void scal_opencl_func(void *buffers[], void *_args)
  605. @{
  606. float *factor = _args;
  607. @i{ int id, devid, err;}
  608. @i{ cl_kernel kernel;}
  609. @i{ cl_command_queue queue;}
  610. /* length of the vector */
  611. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  612. /* local copy of the vector pointer */
  613. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  614. @i{ id = starpu_worker_get_id();}
  615. @i{ devid = starpu_worker_get_devid(id);}
  616. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  617. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  618. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  619. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  620. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  621. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  622. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  623. @i{ @{}
  624. @i{ size_t global=1;}
  625. @i{ size_t local=1;}
  626. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);}
  627. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  628. @i{ @}}
  629. @i{ clFinish(queue);}
  630. @i{ starpu_opencl_release_kernel(kernel);}
  631. @}
  632. @end smallexample
  633. @end cartouche
  634. @node Definition of the Main Code
  635. @subsection Definition of the Main Code
  636. The CPU implementation is the same as in the previous section.
  637. Here is the source of the main application. You can notice the value of the
  638. field @code{where} for the codelet. We specify
  639. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  640. can be executed either on a CPU or on a CUDA or an OpenCL device.
  641. @cartouche
  642. @smallexample
  643. #include <starpu.h>
  644. #define NX 2048
  645. extern void scal_cuda_func(void *buffers[], void *_args);
  646. extern void scal_cpu_func(void *buffers[], void *_args);
  647. extern void scal_opencl_func(void *buffers[], void *_args);
  648. /* @b{Definition of the codelet} */
  649. static starpu_codelet cl = @{
  650. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  651. /* @b{on a CUDA device, or on an OpenCL device} */
  652. .cuda_func = scal_cuda_func;
  653. .cpu_func = scal_cpu_func;
  654. .opencl_func = scal_opencl_func;
  655. .nbuffers = 1;
  656. @}
  657. #ifdef STARPU_USE_OPENCL
  658. /* @b{The compiled version of the OpenCL program} */
  659. struct starpu_opencl_program programs;
  660. #endif
  661. int main(int argc, char **argv)
  662. @{
  663. float *vector;
  664. int i, ret;
  665. float factor=3.0;
  666. struct starpu_task *task;
  667. starpu_data_handle vector_handle;
  668. starpu_init(NULL); /* @b{Initialising StarPU} */
  669. #ifdef STARPU_USE_OPENCL
  670. starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_codelet.cl",
  671. &programs);
  672. #endif
  673. vector = malloc(NX*sizeof(vector[0]));
  674. assert(vector);
  675. for(i=0 ; i<NX ; i++) vector[i] = i;
  676. @end smallexample
  677. @end cartouche
  678. @cartouche
  679. @smallexample
  680. /* @b{Registering data within StarPU} */
  681. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  682. NX, sizeof(vector[0]));
  683. /* @b{Definition of the task} */
  684. task = starpu_task_create();
  685. task->cl = &cl;
  686. task->buffers[0].handle = vector_handle;
  687. task->buffers[0].mode = STARPU_RW;
  688. task->cl_arg = &factor;
  689. task->cl_arg_size = sizeof(factor);
  690. @end smallexample
  691. @end cartouche
  692. @cartouche
  693. @smallexample
  694. /* @b{Submitting the task} */
  695. ret = starpu_task_submit(task);
  696. if (ret == -ENODEV) @{
  697. fprintf(stderr, "No worker may execute this task\n");
  698. return 1;
  699. @}
  700. /* @b{Waiting for its termination} */
  701. starpu_task_wait_for_all();
  702. /* @b{Update the vector in RAM} */
  703. starpu_data_acquire(vector_handle, STARPU_R);
  704. @end smallexample
  705. @end cartouche
  706. @cartouche
  707. @smallexample
  708. /* @b{Access the data} */
  709. for(i=0 ; i<NX; i++) @{
  710. fprintf(stderr, "%f ", vector[i]);
  711. @}
  712. fprintf(stderr, "\n");
  713. /* @b{Release the data and shutdown StarPU} */
  714. starpu_data_release(vector_handle);
  715. starpu_shutdown();
  716. return 0;
  717. @}
  718. @end smallexample
  719. @end cartouche
  720. @node Execution of Hybrid Vector Scaling
  721. @subsection Execution of Hybrid Vector Scaling
  722. The Makefile given at the beginning of the section must be extended to
  723. give the rules to compile the CUDA source code. Note that the source
  724. file of the OpenCL codelet does not need to be compiled now, it will
  725. be compiled at run-time when calling the function
  726. @code{starpu_opencl_load_opencl_from_file} (@pxref{starpu_opencl_load_opencl_from_file}).
  727. @cartouche
  728. @smallexample
  729. CFLAGS += $(shell pkg-config --cflags libstarpu)
  730. LDFLAGS += $(shell pkg-config --libs libstarpu)
  731. CC = gcc
  732. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  733. %.o: %.cu
  734. nvcc $(CFLAGS) $< -c $@
  735. clean:
  736. rm -f vector_scal *.o
  737. @end smallexample
  738. @end cartouche
  739. @smallexample
  740. % make
  741. @end smallexample
  742. and to execute it, with the default configuration:
  743. @smallexample
  744. % ./vector_scal
  745. 0.000000 3.000000 6.000000 9.000000 12.000000
  746. @end smallexample
  747. or for example, by disabling CPU devices:
  748. @smallexample
  749. % STARPU_NCPUS=0 ./vector_scal
  750. 0.000000 3.000000 6.000000 9.000000 12.000000
  751. @end smallexample
  752. or by disabling CUDA devices:
  753. @smallexample
  754. % STARPU_NCUDA=0 ./vector_scal
  755. 0.000000 3.000000 6.000000 9.000000 12.000000
  756. @end smallexample
  757. @node Task and Worker Profiling
  758. @section Task and Worker Profiling
  759. A full example showing how to use the profiling API is available in
  760. the StarPU sources in the directory @code{examples/profiling/}.
  761. @cartouche
  762. @smallexample
  763. struct starpu_task *task = starpu_task_create();
  764. task->cl = &cl;
  765. task->synchronous = 1;
  766. /* We will destroy the task structure by hand so that we can
  767. * query the profiling info before the task is destroyed. */
  768. task->destroy = 0;
  769. starpu_task_submit(task);
  770. /* The task is finished, get profiling information */
  771. struct starpu_task_profiling_info *info = task->profiling_info;
  772. /* How much time did it take before the task started ? */
  773. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  774. /* How long was the task execution ? */
  775. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  776. /* We don't need the task structure anymore */
  777. starpu_task_destroy(task);
  778. @end smallexample
  779. @end cartouche
  780. @cartouche
  781. @smallexample
  782. /* Display the occupancy of all workers during the test */
  783. int worker;
  784. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  785. @{
  786. struct starpu_worker_profiling_info worker_info;
  787. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  788. STARPU_ASSERT(!ret);
  789. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  790. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  791. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  792. float executing_ratio = 100.0*executing_time/total_time;
  793. float sleeping_ratio = 100.0*sleeping_time/total_time;
  794. char workername[128];
  795. starpu_worker_get_name(worker, workername, 128);
  796. fprintf(stderr, "Worker %s:\n", workername);
  797. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  798. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  799. executing_ratio);
  800. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  801. sleeping_ratio);
  802. @}
  803. @end smallexample
  804. @end cartouche
  805. @node Partitioning Data
  806. @section Partitioning Data
  807. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  808. @cartouche
  809. @smallexample
  810. int vector[NX];
  811. starpu_data_handle handle;
  812. /* Declare data to StarPU */
  813. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  814. /* Partition the vector in PARTS sub-vectors */
  815. starpu_filter f =
  816. @{
  817. .filter_func = starpu_block_filter_func_vector,
  818. .nchildren = PARTS,
  819. .get_nchildren = NULL,
  820. .get_child_ops = NULL
  821. @};
  822. starpu_data_partition(handle, &f);
  823. @end smallexample
  824. @end cartouche
  825. @cartouche
  826. @smallexample
  827. /* Submit a task on each sub-vector */
  828. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  829. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  830. struct starpu_task *task = starpu_task_create();
  831. task->buffers[0].handle = sub_handle;
  832. task->buffers[0].mode = STARPU_RW;
  833. task->cl = &cl;
  834. task->synchronous = 1;
  835. task->cl_arg = &factor;
  836. task->cl_arg_size = sizeof(factor);
  837. starpu_task_submit(task);
  838. @}
  839. @end smallexample
  840. @end cartouche
  841. Partitioning can be applied several times, see
  842. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  843. @node Performance model example
  844. @section Performance model example
  845. To achieve good scheduling, StarPU scheduling policies need to be able to
  846. estimate in advance the duration of a task. This is done by giving to codelets a
  847. performance model. There are several kinds of performance models.
  848. @itemize
  849. @item
  850. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  851. see for instance
  852. @code{examples/common/blas_model.c} and @code{examples/common/blas_model.h}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  853. @item
  854. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  855. given set of data input/output sizes, the performance will always be about the
  856. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  857. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  858. few different sets of data input/output sizes. StarPU will then keep record of
  859. the average time of previous executions on the various processing units, and use
  860. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  861. for further executions. The following is a small code example.
  862. @cartouche
  863. @smallexample
  864. static struct starpu_perfmodel_t mult_perf_model = @{
  865. .type = STARPU_HISTORY_BASED,
  866. .symbol = "mult_perf_model"
  867. @};
  868. starpu_codelet cl = @{
  869. .where = STARPU_CPU,
  870. .cpu_func = cpu_mult,
  871. .nbuffers = 3,
  872. /* for the scheduling policy to be able to use performance models */
  873. .model = &mult_perf_model
  874. @};
  875. @end smallexample
  876. @end cartouche
  877. @item
  878. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  879. type). This still assumes performance regularity, but can work with various data
  880. input sizes, by applying a*n^b+c regression over observed execution times.
  881. @end itemize
  882. @node Theoretical lower bound on execution time
  883. @section Theoretical lower bound on execution time
  884. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  885. bound for the execution time of a whole set of tasks. See for
  886. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  887. call @code{starpu_bound_start}, and after complete execution, call
  888. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  889. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  890. problem corresponding to the schedule of your tasks. Run it through
  891. @code{lp_solve} or any other linear programming solver, and that will give you a
  892. lower bound for the total execution time of your tasks. If StarPU was compiled
  893. with the glpk library installed, @code{starpu_bound_compute} can be used to
  894. solve it immediately and get the optimized minimum.
  895. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  896. dependencies into account. It must be understood that the linear programming
  897. problem size is quadratic with the number of tasks and thus the time to solve it
  898. will be very long, it could be minutes for just a few dozen tasks. You should
  899. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  900. problem to MPS format and then use a better solver, @code{glpsol} might be
  901. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  902. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  903. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  904. of @code{lp_solve}. For instance, we often just use
  905. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  906. the @code{-gr} option can also be quite useful.
  907. Setting @code{deps} to 0 will only take into account the actual computations
  908. on processing units. It however still properly takes into account the varying
  909. performances of kernels and processing units, which is quite more accurate than
  910. just comparing StarPU performances with the fastest of the kernels being used.
  911. The @code{prio} parameter tells StarPU whether to simulate taking into account
  912. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  913. tasks before less prioritized tasks, to check to which extend this results
  914. to a less optimal solution. This increases even more computation time.
  915. Note that all this however doesn't take into account data transfer, which is
  916. assumed to be completely overlapped.
  917. @node More examples
  918. @section More examples
  919. More examples are available in the StarPU sources in the @code{examples/}
  920. directory. Simple examples include:
  921. @table @asis
  922. @item @code{incrementer/}:
  923. Trivial incrementation test.
  924. @item @code{basic_examples/}:
  925. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  926. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  927. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  928. interface, and an example using the variable data interface.
  929. @item @code{matvecmult/}:
  930. OpenCL example from NVidia, adapted to StarPU.
  931. @item @code{axpy/}:
  932. AXPY CUBLAS operation adapted to StarPU.
  933. @item @code{fortran/}:
  934. Example of Fortran bindings.
  935. @end table
  936. More advanced examples include:
  937. @table @asis
  938. @item @code{filters/}:
  939. Examples using filters, as shown in @ref{Partitioning Data}.
  940. @item @code{lu/}:
  941. LU matrix factorization.
  942. @end table
  943. @c ---------------------------------------------------------------------
  944. @c Configuration options
  945. @c ---------------------------------------------------------------------
  946. @node Configuring StarPU
  947. @chapter Configuring StarPU
  948. @menu
  949. * Compilation configuration::
  950. * Execution configuration through environment variables::
  951. @end menu
  952. @node Compilation configuration
  953. @section Compilation configuration
  954. The following arguments can be given to the @code{configure} script.
  955. @menu
  956. * Common configuration::
  957. * Configuring workers::
  958. * Advanced configuration::
  959. @end menu
  960. @node Common configuration
  961. @subsection Common configuration
  962. @menu
  963. * --enable-debug::
  964. * --enable-fast::
  965. * --enable-verbose::
  966. * --enable-coverage::
  967. @end menu
  968. @node --enable-debug
  969. @subsubsection @code{--enable-debug}
  970. @table @asis
  971. @item @emph{Description}:
  972. Enable debugging messages.
  973. @end table
  974. @node --enable-fast
  975. @subsubsection @code{--enable-fast}
  976. @table @asis
  977. @item @emph{Description}:
  978. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  979. @end table
  980. @node --enable-verbose
  981. @subsubsection @code{--enable-verbose}
  982. @table @asis
  983. @item @emph{Description}:
  984. Augment the verbosity of the debugging messages.
  985. @end table
  986. @node --enable-coverage
  987. @subsubsection @code{--enable-coverage}
  988. @table @asis
  989. @item @emph{Description}:
  990. Enable flags for the coverage tool.
  991. @end table
  992. @node Configuring workers
  993. @subsection Configuring workers
  994. @menu
  995. * --enable-nmaxcpus::
  996. * --disable-cpu::
  997. * --enable-maxcudadev::
  998. * --disable-cuda::
  999. * --with-cuda-dir::
  1000. * --enable-maxopencldev::
  1001. * --disable-opencl::
  1002. * --with-opencl-dir::
  1003. * --enable-gordon::
  1004. * --with-gordon-dir::
  1005. @end menu
  1006. @node --enable-nmaxcpus
  1007. @subsubsection @code{--enable-nmaxcpus=<number>}
  1008. @table @asis
  1009. @item @emph{Description}:
  1010. Defines the maximum number of CPU cores that StarPU will support, then
  1011. available as the @code{STARPU_NMAXCPUS} macro.
  1012. @end table
  1013. @node --disable-cpu
  1014. @subsubsection @code{--disable-cpu}
  1015. @table @asis
  1016. @item @emph{Description}:
  1017. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1018. @end table
  1019. @node --enable-maxcudadev
  1020. @subsubsection @code{--enable-maxcudadev=<number>}
  1021. @table @asis
  1022. @item @emph{Description}:
  1023. Defines the maximum number of CUDA devices that StarPU will support, then
  1024. available as the @code{STARPU_MAXCUDADEVS} macro.
  1025. @end table
  1026. @node --disable-cuda
  1027. @subsubsection @code{--disable-cuda}
  1028. @table @asis
  1029. @item @emph{Description}:
  1030. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1031. @end table
  1032. @node --with-cuda-dir
  1033. @subsubsection @code{--with-cuda-dir=<path>}
  1034. @table @asis
  1035. @item @emph{Description}:
  1036. Specify the directory where CUDA is installed. This directory should notably contain
  1037. @code{include/cuda.h}.
  1038. @end table
  1039. @node --enable-maxopencldev
  1040. @subsubsection @code{--enable-maxopencldev=<number>}
  1041. @table @asis
  1042. @item @emph{Description}:
  1043. Defines the maximum number of OpenCL devices that StarPU will support, then
  1044. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1045. @end table
  1046. @node --disable-opencl
  1047. @subsubsection @code{--disable-opencl}
  1048. @table @asis
  1049. @item @emph{Description}:
  1050. Disable the use of OpenCL, even if the SDK is detected.
  1051. @end table
  1052. @node --with-opencl-dir
  1053. @subsubsection @code{--with-opencl-dir=<path>}
  1054. @table @asis
  1055. @item @emph{Description}:
  1056. Specify the location of the OpenCL SDK. This directory should notably contain
  1057. @code{include/CL/cl.h}.
  1058. @end table
  1059. @node --enable-gordon
  1060. @subsubsection @code{--enable-gordon}
  1061. @table @asis
  1062. @item @emph{Description}:
  1063. Enable the use of the Gordon runtime for Cell SPUs.
  1064. @c TODO: rather default to enabled when detected
  1065. @end table
  1066. @node --with-gordon-dir
  1067. @subsubsection @code{--with-gordon-dir=<path>}
  1068. @table @asis
  1069. @item @emph{Description}:
  1070. Specify the location of the Gordon SDK.
  1071. @end table
  1072. @node Advanced configuration
  1073. @subsection Advanced configuration
  1074. @menu
  1075. * --enable-perf-debug::
  1076. * --enable-model-debug::
  1077. * --enable-stats::
  1078. * --enable-maxbuffers::
  1079. * --enable-allocation-cache::
  1080. * --enable-opengl-render::
  1081. * --enable-blas-lib::
  1082. * --with-magma::
  1083. * --with-fxt::
  1084. * --with-perf-model-dir::
  1085. * --with-mpicc::
  1086. * --with-goto-dir::
  1087. * --with-atlas-dir::
  1088. @end menu
  1089. @node --enable-perf-debug
  1090. @subsubsection @code{--enable-perf-debug}
  1091. @table @asis
  1092. @item @emph{Description}:
  1093. Enable performance debugging.
  1094. @end table
  1095. @node --enable-model-debug
  1096. @subsubsection @code{--enable-model-debug}
  1097. @table @asis
  1098. @item @emph{Description}:
  1099. Enable performance model debugging.
  1100. @end table
  1101. @node --enable-stats
  1102. @subsubsection @code{--enable-stats}
  1103. @table @asis
  1104. @item @emph{Description}:
  1105. Enable statistics.
  1106. @end table
  1107. @node --enable-maxbuffers
  1108. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1109. @table @asis
  1110. @item @emph{Description}:
  1111. Define the maximum number of buffers that tasks will be able to take
  1112. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1113. @end table
  1114. @node --enable-allocation-cache
  1115. @subsubsection @code{--enable-allocation-cache}
  1116. @table @asis
  1117. @item @emph{Description}:
  1118. Enable the use of a data allocation cache to avoid the cost of it with
  1119. CUDA. Still experimental.
  1120. @end table
  1121. @node --enable-opengl-render
  1122. @subsubsection @code{--enable-opengl-render}
  1123. @table @asis
  1124. @item @emph{Description}:
  1125. Enable the use of OpenGL for the rendering of some examples.
  1126. @c TODO: rather default to enabled when detected
  1127. @end table
  1128. @node --enable-blas-lib
  1129. @subsubsection @code{--enable-blas-lib=<name>}
  1130. @table @asis
  1131. @item @emph{Description}:
  1132. Specify the blas library to be used by some of the examples. The
  1133. library has to be 'atlas' or 'goto'.
  1134. @end table
  1135. @node --with-magma
  1136. @subsubsection @code{--with-magma=<path>}
  1137. @table @asis
  1138. @item @emph{Description}:
  1139. Specify where magma is installed.
  1140. @end table
  1141. @node --with-fxt
  1142. @subsubsection @code{--with-fxt=<path>}
  1143. @table @asis
  1144. @item @emph{Description}:
  1145. Specify the location of FxT (for generating traces and rendering them
  1146. using ViTE). This directory should notably contain
  1147. @code{include/fxt/fxt.h}.
  1148. @end table
  1149. @node --with-perf-model-dir
  1150. @subsubsection @code{--with-perf-model-dir=<dir>}
  1151. @table @asis
  1152. @item @emph{Description}:
  1153. Specify where performance models should be stored (instead of defaulting to the
  1154. current user's home).
  1155. @end table
  1156. @node --with-mpicc
  1157. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1158. @table @asis
  1159. @item @emph{Description}:
  1160. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1161. @end table
  1162. @node --with-goto-dir
  1163. @subsubsection @code{--with-goto-dir=<dir>}
  1164. @table @asis
  1165. @item @emph{Description}:
  1166. Specify the location of GotoBLAS.
  1167. @end table
  1168. @node --with-atlas-dir
  1169. @subsubsection @code{--with-atlas-dir=<dir>}
  1170. @table @asis
  1171. @item @emph{Description}:
  1172. Specify the location of ATLAS. This directory should notably contain
  1173. @code{include/cblas.h}.
  1174. @end table
  1175. @c ---------------------------------------------------------------------
  1176. @c Environment variables
  1177. @c ---------------------------------------------------------------------
  1178. @node Execution configuration through environment variables
  1179. @section Execution configuration through environment variables
  1180. @menu
  1181. * Workers:: Configuring workers
  1182. * Scheduling:: Configuring the Scheduling engine
  1183. * Misc:: Miscellaneous and debug
  1184. @end menu
  1185. Note: the values given in @code{starpu_conf} structure passed when
  1186. calling @code{starpu_init} will override the values of the environment
  1187. variables.
  1188. @node Workers
  1189. @subsection Configuring workers
  1190. @menu
  1191. * STARPU_NCPUS:: Number of CPU workers
  1192. * STARPU_NCUDA:: Number of CUDA workers
  1193. * STARPU_NOPENCL:: Number of OpenCL workers
  1194. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1195. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1196. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1197. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1198. @end menu
  1199. @node STARPU_NCPUS
  1200. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1201. @table @asis
  1202. @item @emph{Description}:
  1203. Specify the maximum number of CPU workers. Note that StarPU will not allocate
  1204. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1205. the accelerators.
  1206. @end table
  1207. @node STARPU_NCUDA
  1208. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1209. @table @asis
  1210. @item @emph{Description}:
  1211. Specify the maximum number of CUDA devices that StarPU can use. If
  1212. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1213. possible to select which CUDA devices should be used by the means of the
  1214. @code{STARPU_WORKERS_CUDAID} environment variable.
  1215. @end table
  1216. @node STARPU_NOPENCL
  1217. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1218. @table @asis
  1219. @item @emph{Description}:
  1220. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1221. @end table
  1222. @node STARPU_NGORDON
  1223. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1224. @table @asis
  1225. @item @emph{Description}:
  1226. Specify the maximum number of SPUs that StarPU can use.
  1227. @end table
  1228. @node STARPU_WORKERS_CPUID
  1229. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1230. @table @asis
  1231. @item @emph{Description}:
  1232. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1233. specifies on which logical CPU the different workers should be
  1234. bound. For instance, if @code{STARPU_WORKERS_CPUID = "1 3 0 2"}, the first
  1235. worker will be bound to logical CPU #1, the second CPU worker will be bound to
  1236. logical CPU #3 and so on. Note that the logical ordering of the CPUs is either
  1237. determined by the OS, or provided by the @code{hwloc} library in case it is
  1238. available.
  1239. Note that the first workers correspond to the CUDA workers, then come the
  1240. OpenCL and the SPU, and finally the CPU workers. For example if
  1241. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1242. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1243. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1244. the logical CPUs #1 and #3 will be used by the CPU workers.
  1245. If the number of workers is larger than the array given in
  1246. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1247. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1248. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1249. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1250. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1251. @end table
  1252. @node STARPU_WORKERS_CUDAID
  1253. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1254. @table @asis
  1255. @item @emph{Description}:
  1256. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1257. possible to select which CUDA devices should be used by StarPU. On a machine
  1258. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1259. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1260. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1261. the one reported by CUDA).
  1262. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1263. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1264. @end table
  1265. @node STARPU_WORKERS_OPENCLID
  1266. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1267. @table @asis
  1268. @item @emph{Description}:
  1269. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1270. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1271. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1272. @end table
  1273. @node Scheduling
  1274. @subsection Configuring the Scheduling engine
  1275. @menu
  1276. * STARPU_SCHED:: Scheduling policy
  1277. * STARPU_CALIBRATE:: Calibrate performance models
  1278. * STARPU_PREFETCH:: Use data prefetch
  1279. * STARPU_SCHED_ALPHA:: Computation factor
  1280. * STARPU_SCHED_BETA:: Communication factor
  1281. @end menu
  1282. @node STARPU_SCHED
  1283. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1284. @table @asis
  1285. @item @emph{Description}:
  1286. This chooses between the different scheduling policies proposed by StarPU: work
  1287. random, stealing, greedy, with performance models, etc.
  1288. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1289. @end table
  1290. @node STARPU_CALIBRATE
  1291. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1292. @table @asis
  1293. @item @emph{Description}:
  1294. If this variable is set to 1, the performance models are calibrated during
  1295. the execution. If it is set to 2, the previous values are dropped to restart
  1296. calibration from scratch.
  1297. Note: this currently only applies to dm and dmda scheduling policies.
  1298. @end table
  1299. @node STARPU_PREFETCH
  1300. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1301. @table @asis
  1302. @item @emph{Description}:
  1303. This variable indicates whether data prefetching should be enabled (0 means
  1304. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1305. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1306. advance, so that data is already present on the GPU when the task starts. As a
  1307. result, computation and data transfers are overlapped.
  1308. @end table
  1309. @node STARPU_SCHED_ALPHA
  1310. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1311. @table @asis
  1312. @item @emph{Description}:
  1313. To estimate the cost of a task StarPU takes into account the estimated
  1314. computation time (obtained thanks to performance models). The alpha factor is
  1315. the coefficient to be applied to it before adding it to the communication part.
  1316. @end table
  1317. @node STARPU_SCHED_BETA
  1318. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1319. @table @asis
  1320. @item @emph{Description}:
  1321. To estimate the cost of a task StarPU takes into account the estimated
  1322. data transfer time (obtained thanks to performance models). The beta factor is
  1323. the coefficient to be applied to it before adding it to the computation part.
  1324. @end table
  1325. @node Misc
  1326. @subsection Miscellaneous and debug
  1327. @menu
  1328. * STARPU_LOGFILENAME:: Select debug file name
  1329. @end menu
  1330. @node STARPU_LOGFILENAME
  1331. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1332. @table @asis
  1333. @item @emph{Description}:
  1334. This variable specify in which file the debugging output should be saved to.
  1335. @end table
  1336. @c ---------------------------------------------------------------------
  1337. @c StarPU API
  1338. @c ---------------------------------------------------------------------
  1339. @node StarPU API
  1340. @chapter StarPU API
  1341. @menu
  1342. * Initialization and Termination:: Initialization and Termination methods
  1343. * Workers' Properties:: Methods to enumerate workers' properties
  1344. * Data Library:: Methods to manipulate data
  1345. * Data Interfaces::
  1346. * Data Partition::
  1347. * Codelets and Tasks:: Methods to construct tasks
  1348. * Explicit Dependencies:: Explicit Dependencies
  1349. * Implicit Data Dependencies:: Implicit Data Dependencies
  1350. * Performance Model API::
  1351. * Profiling API:: Profiling API
  1352. * CUDA extensions:: CUDA extensions
  1353. * OpenCL extensions:: OpenCL extensions
  1354. * Cell extensions:: Cell extensions
  1355. * Miscellaneous helpers::
  1356. @end menu
  1357. @node Initialization and Termination
  1358. @section Initialization and Termination
  1359. @menu
  1360. * starpu_init:: Initialize StarPU
  1361. * struct starpu_conf:: StarPU runtime configuration
  1362. * starpu_shutdown:: Terminate StarPU
  1363. @end menu
  1364. @node starpu_init
  1365. @subsection @code{starpu_init} -- Initialize StarPU
  1366. @table @asis
  1367. @item @emph{Description}:
  1368. This is StarPU initialization method, which must be called prior to any other
  1369. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1370. policy, number of cores, ...) by passing a non-null argument. Default
  1371. configuration is used if the passed argument is @code{NULL}.
  1372. @item @emph{Return value}:
  1373. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1374. indicates that no worker was available (so that StarPU was not initialized).
  1375. @item @emph{Prototype}:
  1376. @code{int starpu_init(struct starpu_conf *conf);}
  1377. @end table
  1378. @node struct starpu_conf
  1379. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1380. @table @asis
  1381. @item @emph{Description}:
  1382. This structure is passed to the @code{starpu_init} function in order
  1383. to configure StarPU.
  1384. When the default value is used, StarPU automatically selects the number
  1385. of processing units and takes the default scheduling policy. This parameter
  1386. overwrites the equivalent environment variables.
  1387. @item @emph{Fields}:
  1388. @table @asis
  1389. @item @code{sched_policy_name} (default = NULL):
  1390. This is the name of the scheduling policy. This can also be specified with the
  1391. @code{STARPU_SCHED} environment variable.
  1392. @item @code{sched_policy} (default = NULL):
  1393. This is the definition of the scheduling policy. This field is ignored
  1394. if @code{sched_policy_name} is set.
  1395. @item @code{ncpus} (default = -1):
  1396. This is the maximum number of CPU cores that StarPU can use. This can also be
  1397. specified with the @code{STARPU_NCPUS} environment variable.
  1398. @item @code{ncuda} (default = -1):
  1399. This is the maximum number of CUDA devices that StarPU can use. This can also be
  1400. specified with the @code{STARPU_NCUDA} environment variable.
  1401. @item @code{nopencl} (default = -1):
  1402. This is the maximum number of OpenCL devices that StarPU can use. This can also be
  1403. specified with the @code{STARPU_NOPENCL} environment variable.
  1404. @item @code{nspus} (default = -1):
  1405. This is the maximum number of Cell SPUs that StarPU can use. This can also be
  1406. specified with the @code{STARPU_NGORDON} environment variable.
  1407. @item @code{use_explicit_workers_bindid} (default = 0)
  1408. If this flag is set, the @code{workers_bindid} array indicates where the
  1409. different workers are bound, otherwise StarPU automatically selects where to
  1410. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1411. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1412. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1413. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1414. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1415. where to bind the different workers. The i-th entry of the
  1416. @code{workers_bindid} indicates the logical identifier of the processor which
  1417. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1418. either determined by the OS, or provided by the @code{hwloc} library in case it
  1419. is available.
  1420. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1421. ignored.
  1422. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1423. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1424. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1425. CUDA devices in a round-robin fashion.
  1426. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1427. ignored.
  1428. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1429. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1430. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1431. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1432. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1433. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1434. OpenCL devices in a round-robin fashion.
  1435. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1436. @item @code{calibrate} (default = 0):
  1437. If this flag is set, StarPU will calibrate the performance models when
  1438. executing tasks. If this value is equal to -1, the default value is used. The
  1439. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1440. variable when it is set.
  1441. @end table
  1442. @end table
  1443. @node starpu_shutdown
  1444. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1445. @table @asis
  1446. @item @emph{Description}:
  1447. This is StarPU termination method. It must be called at the end of the
  1448. application: statistics and other post-mortem debugging information are not
  1449. guaranteed to be available until this method has been called.
  1450. @item @emph{Prototype}:
  1451. @code{void starpu_shutdown(void);}
  1452. @end table
  1453. @node Workers' Properties
  1454. @section Workers' Properties
  1455. @menu
  1456. * starpu_worker_get_count:: Get the number of processing units
  1457. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1458. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1459. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1460. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1461. * starpu_worker_get_id:: Get the identifier of the current worker
  1462. * starpu_worker_get_devid:: Get the device identifier of a worker
  1463. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1464. * starpu_worker_get_name:: Get the name of a worker
  1465. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1466. @end menu
  1467. @node starpu_worker_get_count
  1468. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1469. @table @asis
  1470. @item @emph{Description}:
  1471. This function returns the number of workers (i.e. processing units executing
  1472. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1473. @item @emph{Prototype}:
  1474. @code{unsigned starpu_worker_get_count(void);}
  1475. @end table
  1476. @node starpu_cpu_worker_get_count
  1477. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1478. @table @asis
  1479. @item @emph{Description}:
  1480. This function returns the number of CPUs controlled by StarPU. The returned
  1481. value should be at most @code{STARPU_NMAXCPUS}.
  1482. @item @emph{Prototype}:
  1483. @code{unsigned starpu_cpu_worker_get_count(void);}
  1484. @end table
  1485. @node starpu_cuda_worker_get_count
  1486. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1487. @table @asis
  1488. @item @emph{Description}:
  1489. This function returns the number of CUDA devices controlled by StarPU. The returned
  1490. value should be at most @code{STARPU_MAXCUDADEVS}.
  1491. @item @emph{Prototype}:
  1492. @code{unsigned starpu_cuda_worker_get_count(void);}
  1493. @end table
  1494. @node starpu_opencl_worker_get_count
  1495. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1496. @table @asis
  1497. @item @emph{Description}:
  1498. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1499. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1500. @item @emph{Prototype}:
  1501. @code{unsigned starpu_opencl_worker_get_count(void);}
  1502. @end table
  1503. @node starpu_spu_worker_get_count
  1504. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1505. @table @asis
  1506. @item @emph{Description}:
  1507. This function returns the number of Cell SPUs controlled by StarPU.
  1508. @item @emph{Prototype}:
  1509. @code{unsigned starpu_opencl_worker_get_count(void);}
  1510. @end table
  1511. @node starpu_worker_get_id
  1512. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1513. @table @asis
  1514. @item @emph{Description}:
  1515. This function returns the identifier of the worker associated to the calling
  1516. thread. The returned value is either -1 if the current context is not a StarPU
  1517. worker (i.e. when called from the application outside a task or a callback), or
  1518. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1519. @item @emph{Prototype}:
  1520. @code{int starpu_worker_get_id(void);}
  1521. @end table
  1522. @node starpu_worker_get_devid
  1523. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  1524. @table @asis
  1525. @item @emph{Description}:
  1526. This functions returns the device id of the worker associated to an identifier
  1527. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  1528. CUDA worker, this device identifier is the logical device identifier exposed by
  1529. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  1530. identifier of a CPU worker is the logical identifier of the core on which the
  1531. worker was bound; this identifier is either provided by the OS or by the
  1532. @code{hwloc} library in case it is available.
  1533. @item @emph{Prototype}:
  1534. @code{int starpu_worker_get_devid(int id);}
  1535. @end table
  1536. @node starpu_worker_get_type
  1537. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  1538. @table @asis
  1539. @item @emph{Description}:
  1540. This function returns the type of worker associated to an identifier (as
  1541. returned by the @code{starpu_worker_get_id} function). The returned value
  1542. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  1543. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  1544. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  1545. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  1546. identifier is unspecified.
  1547. @item @emph{Prototype}:
  1548. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  1549. @end table
  1550. @node starpu_worker_get_name
  1551. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  1552. @table @asis
  1553. @item @emph{Description}:
  1554. StarPU associates a unique human readable string to each processing unit. This
  1555. function copies at most the @code{maxlen} first bytes of the unique string
  1556. associated to a worker identified by its identifier @code{id} into the
  1557. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  1558. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  1559. function on an invalid identifier results in an unspecified behaviour.
  1560. @item @emph{Prototype}:
  1561. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  1562. @end table
  1563. @node starpu_worker_get_memory_node
  1564. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  1565. @table @asis
  1566. @item @emph{Description}:
  1567. This function returns the identifier of the memory node associated to the
  1568. worker identified by @code{workerid}.
  1569. @item @emph{Prototype}:
  1570. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  1571. @end table
  1572. @node Data Library
  1573. @section Data Library
  1574. This section describes the data management facilities provided by StarPU.
  1575. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  1576. design their own data interfaces if required.
  1577. @menu
  1578. * starpu_access_mode:: starpu_access_mode
  1579. * unsigned memory_node:: Memory node
  1580. * starpu_data_handle:: StarPU opaque data handle
  1581. * void *interface:: StarPU data interface
  1582. * starpu_data_register:: Register a piece of data to StarPU
  1583. * starpu_data_unregister:: Unregister a piece of data from StarPU
  1584. * starpu_data_invalidate:: Invalidate all data replicates
  1585. * starpu_data_acquire:: Access registered data from the application
  1586. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  1587. * starpu_data_release:: Release registered data from the application
  1588. @end menu
  1589. @node starpu_access_mode
  1590. @subsection @code{starpu_access_mode} -- Data access mode
  1591. This datatype describes a data access mode. The different available modes are:
  1592. @table @asis
  1593. @table @asis
  1594. @item @code{STARPU_R} read-only mode.
  1595. @item @code{STARPU_W} write-only mode.
  1596. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  1597. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency.
  1598. @end table
  1599. @end table
  1600. @node unsigned memory_node
  1601. @subsection @code{unsigned memory_node} -- Memory node
  1602. @table @asis
  1603. @item @emph{Description}:
  1604. Every worker is associated to a memory node which is a logical abstraction of
  1605. the address space from which the processing unit gets its data. For instance,
  1606. the memory node associated to the different CPU workers represents main memory
  1607. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  1608. Every memory node is identified by a logical index which is accessible from the
  1609. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  1610. to StarPU, the specified memory node indicates where the piece of data
  1611. initially resides (we also call this memory node the home node of a piece of
  1612. data).
  1613. @end table
  1614. @node starpu_data_handle
  1615. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  1616. @table @asis
  1617. @item @emph{Description}:
  1618. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  1619. data. Once a piece of data has been registered to StarPU, it is associated to a
  1620. @code{starpu_data_handle} which keeps track of the state of the piece of data
  1621. over the entire machine, so that we can maintain data consistency and locate
  1622. data replicates for instance.
  1623. @end table
  1624. @node void *interface
  1625. @subsection @code{void *interface} -- StarPU data interface
  1626. @table @asis
  1627. @item @emph{Description}:
  1628. Data management is done at a high-level in StarPU: rather than accessing a mere
  1629. list of contiguous buffers, the tasks may manipulate data that are described by
  1630. a high-level construct which we call data interface.
  1631. An example of data interface is the "vector" interface which describes a
  1632. contiguous data array on a spefic memory node. This interface is a simple
  1633. structure containing the number of elements in the array, the size of the
  1634. elements, and the address of the array in the appropriate address space (this
  1635. address may be invalid if there is no valid copy of the array in the memory
  1636. node). More informations on the data interfaces provided by StarPU are
  1637. given in @ref{Data Interfaces}.
  1638. When a piece of data managed by StarPU is used by a task, the task
  1639. implementation is given a pointer to an interface describing a valid copy of
  1640. the data that is accessible from the current processing unit.
  1641. @end table
  1642. @node starpu_data_register
  1643. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  1644. @table @asis
  1645. @item @emph{Description}:
  1646. Register a piece of data into the handle located at the @code{handleptr}
  1647. address. The @code{interface} buffer contains the initial description of the
  1648. data in the home node. The @code{ops} argument is a pointer to a structure
  1649. describing the different methods used to manipulate this type of interface. See
  1650. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  1651. If @code{home_node} is not a valid memory node, StarPU will automatically
  1652. allocate the memory described by the interface the data handle is used for the
  1653. first time in write-only mode. Once such data handle has been automatically
  1654. allocated, it is possible to access it using any access mode.
  1655. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  1656. matrix) which can be registered by the means of helper functions (e.g.
  1657. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  1658. @item @emph{Prototype}:
  1659. @code{void starpu_data_register(starpu_data_handle *handleptr,
  1660. uint32_t home_node,
  1661. void *interface,
  1662. struct starpu_data_interface_ops_t *ops);}
  1663. @end table
  1664. @node starpu_data_unregister
  1665. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  1666. @table @asis
  1667. @item @emph{Description}:
  1668. This function unregisters a data handle from StarPU. If the data was
  1669. automatically allocated by StarPU because the home node was not valid, all
  1670. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  1671. is put back into the home node in the buffer that was initially registered.
  1672. Using a data handle that has been unregistered from StarPU results in an
  1673. undefined behaviour.
  1674. @item @emph{Prototype}:
  1675. @code{void starpu_data_unregister(starpu_data_handle handle);}
  1676. @end table
  1677. @node starpu_data_invalidate
  1678. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  1679. @table @asis
  1680. @item @emph{Description}:
  1681. Destroy all replicates of the data handle. After data invalidation, the first
  1682. access to the handle must be performed in write-only mode. Accessing an
  1683. invalidated data in read-mode results in undefined behaviour.
  1684. @item @emph{Prototype}:
  1685. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  1686. @end table
  1687. @c TODO create a specific sections about user interaction with the DSM ?
  1688. @node starpu_data_acquire
  1689. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  1690. @table @asis
  1691. @item @emph{Description}:
  1692. The application must call this function prior to accessing registered data from
  1693. main memory outside tasks. StarPU ensures that the application will get an
  1694. up-to-date copy of the data in main memory located where the data was
  1695. originally registered, and that all concurrent accesses (e.g. from tasks) will
  1696. be consistent with the access mode specified in the @code{mode} argument.
  1697. @code{starpu_data_release} must be called once the application does not need to
  1698. access the piece of data anymore.
  1699. Note that implicit data dependencies are also enforced by
  1700. @code{starpu_data_acquire} in case they are enabled.
  1701. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  1702. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  1703. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  1704. @item @emph{Prototype}:
  1705. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  1706. @end table
  1707. @node starpu_data_acquire_cb
  1708. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  1709. @table @asis
  1710. @item @emph{Description}:
  1711. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  1712. @code{starpu_data_release}. When the data specified in the first argument is
  1713. available in the appropriate access mode, the callback function is executed.
  1714. The application may access the requested data during the execution of this
  1715. callback. The callback function must call @code{starpu_data_release} once the
  1716. application does not need to access the piece of data anymore.
  1717. Note that implicit data dependencies are also enforced by
  1718. @code{starpu_data_acquire} in case they are enabled.
  1719. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  1720. be called from task callbacks. Upon successful completion, this function
  1721. returns 0.
  1722. @item @emph{Prototype}:
  1723. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  1724. @end table
  1725. @node starpu_data_release
  1726. @subsection @code{starpu_data_release} -- Release registered data from the application
  1727. @table @asis
  1728. @item @emph{Description}:
  1729. This function releases the piece of data acquired by the application either by
  1730. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  1731. @item @emph{Prototype}:
  1732. @code{void starpu_data_release(starpu_data_handle handle);}
  1733. @end table
  1734. @node Data Interfaces
  1735. @section Data Interfaces
  1736. @menu
  1737. * Variable Interface::
  1738. * Vector Interface::
  1739. * Matrix Interface::
  1740. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  1741. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  1742. * Block Interface::
  1743. @end menu
  1744. @node Variable Interface
  1745. @subsection Variable Interface
  1746. @table @asis
  1747. @item @emph{Description}:
  1748. @item @emph{Prototype}:
  1749. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  1750. uint32_t home_node,
  1751. uintptr_t ptr, size_t elemsize);}
  1752. @item @emph{Example}:
  1753. @cartouche
  1754. @smallexample
  1755. float var;
  1756. starpu_data_handle var_handle;
  1757. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  1758. @end smallexample
  1759. @end cartouche
  1760. @end table
  1761. @node Vector Interface
  1762. @subsection Vector Interface
  1763. @table @asis
  1764. @item @emph{Description}:
  1765. @item @emph{Prototype}:
  1766. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  1767. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  1768. @item @emph{Example}:
  1769. @cartouche
  1770. @smallexample
  1771. float vector[NX];
  1772. starpu_data_handle vector_handle;
  1773. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  1774. sizeof(vector[0]));
  1775. @end smallexample
  1776. @end cartouche
  1777. @end table
  1778. @node Matrix Interface
  1779. @subsection Matrix Interface
  1780. @table @asis
  1781. @item @emph{Description}:
  1782. @item @emph{Prototype}:
  1783. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  1784. uintptr_t ptr, uint32_t ld, uint32_t nx,
  1785. uint32_t ny, size_t elemsize);}
  1786. @item @emph{Example}:
  1787. @cartouche
  1788. @smallexample
  1789. float *matrix;
  1790. starpu_data_handle matrix_handle;
  1791. matrix = (float*)malloc(width * height * sizeof(float));
  1792. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  1793. width, width, height, sizeof(float));
  1794. @end smallexample
  1795. @end cartouche
  1796. @end table
  1797. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  1798. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  1799. @table @asis
  1800. @item @emph{Description}:
  1801. @item @emph{Prototype}:
  1802. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  1803. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  1804. @item @emph{Example}:
  1805. @cartouche
  1806. @smallexample
  1807. @end smallexample
  1808. @end cartouche
  1809. @end table
  1810. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  1811. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  1812. @table @asis
  1813. @item @emph{Description}:
  1814. @item @emph{Prototype}:
  1815. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  1816. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  1817. @item @emph{Example}:
  1818. @cartouche
  1819. @smallexample
  1820. @end smallexample
  1821. @end cartouche
  1822. @end table
  1823. @node Block Interface
  1824. @subsection Block Interface
  1825. @table @asis
  1826. @item @emph{Description}:
  1827. @item @emph{Prototype}:
  1828. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  1829. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  1830. uint32_t ny, uint32_t nz, size_t elemsize);}
  1831. @item @emph{Example}:
  1832. @cartouche
  1833. @smallexample
  1834. float *block;
  1835. starpu_data_handle block_handle;
  1836. block = (float*)malloc(nx*ny*nz*sizeof(float));
  1837. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  1838. nx, nx*ny, nx, ny, nz, sizeof(float));
  1839. @end smallexample
  1840. @end cartouche
  1841. @end table
  1842. @node Data Partition
  1843. @section Data Partition
  1844. @menu
  1845. * struct starpu_data_filter:: StarPU filter structure
  1846. * starpu_data_partition:: Partition Data
  1847. * starpu_data_unpartition:: Unpartition Data
  1848. * starpu_data_get_nb_children::
  1849. * starpu_data_get_sub_data::
  1850. * Predefined filter functions::
  1851. @end menu
  1852. @node struct starpu_data_filter
  1853. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  1854. @table @asis
  1855. @item @emph{Description}:
  1856. The filter structure describes a data partitioning function.
  1857. @item @emph{Fields}:
  1858. @table @asis
  1859. @item @code{filter_func}:
  1860. TODO
  1861. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  1862. @item @code{get_nchildren}:
  1863. TODO
  1864. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  1865. @item @code{get_child_ops}:
  1866. TODO
  1867. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  1868. @item @code{filter_arg}:
  1869. TODO
  1870. @item @code{nchildren}:
  1871. TODO
  1872. @item @code{filter_arg_ptr}:
  1873. TODO
  1874. @end table
  1875. @end table
  1876. @node starpu_data_partition
  1877. @subsection starpu_data_partition -- Partition Data
  1878. @table @asis
  1879. @item @emph{Description}:
  1880. TODO
  1881. @item @emph{Prototype}:
  1882. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  1883. @end table
  1884. @node starpu_data_unpartition
  1885. @subsection starpu_data_unpartition -- Unpartition data
  1886. @table @asis
  1887. @item @emph{Description}:
  1888. TODO
  1889. @item @emph{Prototype}:
  1890. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  1891. @end table
  1892. @node starpu_data_get_nb_children
  1893. @subsection starpu_data_get_nb_children
  1894. @table @asis
  1895. @item @emph{Description}:
  1896. TODO
  1897. @item @emph{Return value}:
  1898. This function returns returns the number of children.
  1899. @item @emph{Prototype}:
  1900. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  1901. @end table
  1902. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  1903. @node starpu_data_get_sub_data
  1904. @subsection starpu_data_get_sub_data
  1905. @table @asis
  1906. @item @emph{Description}:
  1907. TODO
  1908. @item @emph{Return value}:
  1909. TODO
  1910. @item @emph{Prototype}:
  1911. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  1912. @end table
  1913. @node Predefined filter functions
  1914. @subsection Predefined filter functions
  1915. @menu
  1916. * Partitioning BCSR Data::
  1917. * Partitioning BLAS interface::
  1918. * Partitioning Vector Data::
  1919. * Partitioning Block Data::
  1920. @end menu
  1921. This section gives a list of the predefined partitioning functions.
  1922. Examples on how to use them are shown in @ref{Partitioning Data}.
  1923. @node Partitioning BCSR Data
  1924. @subsubsection Partitioning BCSR Data
  1925. @itemize
  1926. @item
  1927. TODO
  1928. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1929. @item
  1930. TODO
  1931. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1932. @end itemize
  1933. @node Partitioning BLAS interface
  1934. @subsubsection Partitioning BLAS interface
  1935. @itemize
  1936. @item
  1937. TODO
  1938. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1939. @item
  1940. TODO
  1941. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1942. @end itemize
  1943. @node Partitioning Vector Data
  1944. @subsubsection Partitioning Vector Data
  1945. @itemize
  1946. @item
  1947. TODO
  1948. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1949. @item
  1950. TODO
  1951. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1952. @item
  1953. TODO
  1954. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1955. @end itemize
  1956. @node Partitioning Block Data
  1957. @subsubsection Partitioning Block Data
  1958. @itemize
  1959. @item
  1960. TODO
  1961. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1962. @end itemize
  1963. @node Codelets and Tasks
  1964. @section Codelets and Tasks
  1965. @menu
  1966. * struct starpu_codelet:: StarPU codelet structure
  1967. * struct starpu_task:: StarPU task structure
  1968. * starpu_task_init:: Initialize a Task
  1969. * starpu_task_create:: Allocate and Initialize a Task
  1970. * starpu_task_deinit:: Release all the resources used by a Task
  1971. * starpu_task_destroy:: Destroy a dynamically allocated Task
  1972. * starpu_task_wait:: Wait for the termination of a Task
  1973. * starpu_task_submit:: Submit a Task
  1974. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  1975. * starpu_get_current_task:: Return the task currently executed by the worker
  1976. * starpu_display_codelet_stats:: Display statistics
  1977. @end menu
  1978. @node struct starpu_codelet
  1979. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  1980. @table @asis
  1981. @item @emph{Description}:
  1982. The codelet structure describes a kernel that is possibly implemented on
  1983. various targets.
  1984. @item @emph{Fields}:
  1985. @table @asis
  1986. @item @code{where}:
  1987. Indicates which types of processing units are able to execute the codelet.
  1988. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1989. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  1990. indicates that it is only available on Cell SPUs.
  1991. @item @code{cpu_func} (optional):
  1992. Is a function pointer to the CPU implementation of the codelet. Its prototype
  1993. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1994. argument being the array of data managed by the data management library, and
  1995. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1996. field of the @code{starpu_task} structure.
  1997. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  1998. the @code{where} field, it must be non-null otherwise.
  1999. @item @code{cuda_func} (optional):
  2000. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2001. must be a host-function written in the CUDA runtime API}. Its prototype must
  2002. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2003. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2004. field, it must be non-null otherwise.
  2005. @item @code{opencl_func} (optional):
  2006. Is a function pointer to the OpenCL implementation of the codelet. Its
  2007. prototype must be:
  2008. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2009. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2010. @code{where} field, it must be non-null otherwise.
  2011. @item @code{gordon_func} (optional):
  2012. This is the index of the Cell SPU implementation within the Gordon library.
  2013. See Gordon documentation for more details on how to register a kernel and
  2014. retrieve its index.
  2015. @item @code{nbuffers}:
  2016. Specifies the number of arguments taken by the codelet. These arguments are
  2017. managed by the DSM and are accessed from the @code{void *buffers[]}
  2018. array. The constant argument passed with the @code{cl_arg} field of the
  2019. @code{starpu_task} structure is not counted in this number. This value should
  2020. not be above @code{STARPU_NMAXBUFS}.
  2021. @item @code{model} (optional):
  2022. This is a pointer to the performance model associated to this codelet. This
  2023. optional field is ignored when set to @code{NULL}. TODO
  2024. @end table
  2025. @end table
  2026. @node struct starpu_task
  2027. @subsection @code{struct starpu_task} -- StarPU task structure
  2028. @table @asis
  2029. @item @emph{Description}:
  2030. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2031. processing units managed by StarPU. It instantiates a codelet. It can either be
  2032. allocated dynamically with the @code{starpu_task_create} method, or declared
  2033. statically. In the latter case, the programmer has to zero the
  2034. @code{starpu_task} structure and to fill the different fields properly. The
  2035. indicated default values correspond to the configuration of a task allocated
  2036. with @code{starpu_task_create}.
  2037. @item @emph{Fields}:
  2038. @table @asis
  2039. @item @code{cl}:
  2040. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2041. describes where the kernel should be executed, and supplies the appropriate
  2042. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2043. such empty tasks can be useful for synchronization purposes.
  2044. @item @code{buffers}:
  2045. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2046. different pieces of data accessed by the task, and how they should be accessed.
  2047. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2048. @code{handle} field specifies the handle of the piece of data, and the
  2049. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2050. of entries in this array must be specified in the @code{nbuffers} field of the
  2051. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2052. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2053. option when configuring StarPU.
  2054. @item @code{cl_arg} (optional) (default = NULL):
  2055. This pointer is passed to the codelet through the second argument
  2056. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2057. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2058. argument.
  2059. @item @code{cl_arg_size} (optional, Cell specific):
  2060. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2061. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2062. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2063. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2064. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2065. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2066. codelets.
  2067. @item @code{callback_func} (optional) (default = @code{NULL}):
  2068. This is a function pointer of prototype @code{void (*f)(void *)} which
  2069. specifies a possible callback. If this pointer is non-null, the callback
  2070. function is executed @emph{on the host} after the execution of the task. The
  2071. callback is passed the value contained in the @code{callback_arg} field. No
  2072. callback is executed if the field is set to @code{NULL}.
  2073. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2074. This is the pointer passed to the callback function. This field is ignored if
  2075. the @code{callback_func} is set to @code{NULL}.
  2076. @item @code{use_tag} (optional) (default = 0):
  2077. If set, this flag indicates that the task should be associated with the tag
  2078. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2079. with the task and to express task dependencies easily.
  2080. @item @code{tag_id}:
  2081. This fields contains the tag associated to the task if the @code{use_tag} field
  2082. was set, it is ignored otherwise.
  2083. @item @code{synchronous}:
  2084. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2085. returns only when the task has been executed (or if no worker is able to
  2086. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2087. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2088. This field indicates a level of priority for the task. This is an integer value
  2089. that must be set between the return values of the
  2090. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2091. and that of the @code{starpu_sched_get_max_priority} for the most important
  2092. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2093. are provided for convenience and respectively returns value of
  2094. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2095. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2096. order to allow static task initialization. Scheduling strategies that take
  2097. priorities into account can use this parameter to take better scheduling
  2098. decisions, but the scheduling policy may also ignore it.
  2099. @item @code{execute_on_a_specific_worker} (default = 0):
  2100. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2101. task to the worker specified by the @code{workerid} field.
  2102. @item @code{workerid} (optional):
  2103. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2104. which is the identifier of the worker that should process this task (as
  2105. returned by @code{starpu_worker_get_id}). This field is ignored if
  2106. @code{execute_on_a_specific_worker} field is set to 0.
  2107. @item @code{detach} (optional) (default = 1):
  2108. If this flag is set, it is not possible to synchronize with the task
  2109. by the means of @code{starpu_task_wait} later on. Internal data structures
  2110. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2111. flag is not set.
  2112. @item @code{destroy} (optional) (default = 1):
  2113. If this flag is set, the task structure will automatically be freed, either
  2114. after the execution of the callback if the task is detached, or during
  2115. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2116. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2117. called explicitly. Setting this flag for a statically allocated task structure
  2118. will result in undefined behaviour.
  2119. @item @code{predicted} (output field):
  2120. Predicted duration of the task. This field is only set if the scheduling
  2121. strategy used performance models.
  2122. @end table
  2123. @end table
  2124. @node starpu_task_init
  2125. @subsection @code{starpu_task_init} -- Initialize a Task
  2126. @table @asis
  2127. @item @emph{Description}:
  2128. Initialize a task structure with default values. This function is implicitly
  2129. called by @code{starpu_task_create}. By default, tasks initialized with
  2130. @code{starpu_task_init} must be deinitialized explicitly with
  2131. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2132. constant @code{STARPU_TASK_INITIALIZER}.
  2133. @item @emph{Prototype}:
  2134. @code{void starpu_task_init(struct starpu_task *task);}
  2135. @end table
  2136. @node starpu_task_create
  2137. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2138. @table @asis
  2139. @item @emph{Description}:
  2140. Allocate a task structure and initialize it with default values. Tasks
  2141. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2142. task is terminated. If the destroy flag is explicitly unset, the resources used
  2143. by the task are freed by calling
  2144. @code{starpu_task_destroy}.
  2145. @item @emph{Prototype}:
  2146. @code{struct starpu_task *starpu_task_create(void);}
  2147. @end table
  2148. @node starpu_task_deinit
  2149. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2150. @table @asis
  2151. @item @emph{Description}:
  2152. Release all the structures automatically allocated to execute the task. This is
  2153. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2154. freed. This should be used for statically allocated tasks for instance.
  2155. @item @emph{Prototype}:
  2156. @code{void starpu_task_deinit(struct starpu_task *task);}
  2157. @end table
  2158. @node starpu_task_destroy
  2159. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2160. @table @asis
  2161. @item @emph{Description}:
  2162. Free the resource allocated during @code{starpu_task_create}. This function can be
  2163. called automatically after the execution of a task by setting the
  2164. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2165. Calling this function on a statically allocated task results in an undefined
  2166. behaviour.
  2167. @item @emph{Prototype}:
  2168. @code{void starpu_task_destroy(struct starpu_task *task);}
  2169. @end table
  2170. @node starpu_task_wait
  2171. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2172. @table @asis
  2173. @item @emph{Description}:
  2174. This function blocks until the task has been executed. It is not possible to
  2175. synchronize with a task more than once. It is not possible to wait for
  2176. synchronous or detached tasks.
  2177. @item @emph{Return value}:
  2178. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2179. indicates that the specified task was either synchronous or detached.
  2180. @item @emph{Prototype}:
  2181. @code{int starpu_task_wait(struct starpu_task *task);}
  2182. @end table
  2183. @node starpu_task_submit
  2184. @subsection @code{starpu_task_submit} -- Submit a Task
  2185. @table @asis
  2186. @item @emph{Description}:
  2187. This function submits a task to StarPU. Calling this function does
  2188. not mean that the task will be executed immediately as there can be data or task
  2189. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2190. scheduling this task with respect to such dependencies.
  2191. This function returns immediately if the @code{synchronous} field of the
  2192. @code{starpu_task} structure was set to 0, and block until the termination of
  2193. the task otherwise. It is also possible to synchronize the application with
  2194. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2195. function for instance.
  2196. @item @emph{Return value}:
  2197. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2198. means that there is no worker able to process this task (e.g. there is no GPU
  2199. available and this task is only implemented for CUDA devices).
  2200. @item @emph{Prototype}:
  2201. @code{int starpu_task_submit(struct starpu_task *task);}
  2202. @end table
  2203. @node starpu_task_wait_for_all
  2204. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2205. @table @asis
  2206. @item @emph{Description}:
  2207. This function blocks until all the tasks that were submitted are terminated.
  2208. @item @emph{Prototype}:
  2209. @code{void starpu_task_wait_for_all(void);}
  2210. @end table
  2211. @node starpu_get_current_task
  2212. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2213. @table @asis
  2214. @item @emph{Description}:
  2215. This function returns the task currently executed by the worker, or
  2216. NULL if it is called either from a thread that is not a task or simply
  2217. because there is no task being executed at the moment.
  2218. @item @emph{Prototype}:
  2219. @code{struct starpu_task *starpu_get_current_task(void);}
  2220. @end table
  2221. @node starpu_display_codelet_stats
  2222. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2223. @table @asis
  2224. @item @emph{Description}:
  2225. TODO
  2226. @item @emph{Prototype}:
  2227. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2228. @end table
  2229. @c Callbacks : what can we put in callbacks ?
  2230. @node Explicit Dependencies
  2231. @section Explicit Dependencies
  2232. @menu
  2233. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2234. * starpu_tag_t:: Task logical identifier
  2235. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2236. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2237. * starpu_tag_wait:: Block until a Tag is terminated
  2238. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2239. * starpu_tag_remove:: Destroy a Tag
  2240. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2241. @end menu
  2242. @node starpu_task_declare_deps_array
  2243. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2244. @table @asis
  2245. @item @emph{Description}:
  2246. Declare task dependencies between a @code{task} and an array of tasks of length
  2247. @code{ndeps}. This function must be called prior to the submission of the task,
  2248. but it may called after the submission or the execution of the tasks in the
  2249. array provided the tasks are still valid (ie. they were not automatically
  2250. destroyed). Calling this function on a task that was already submitted or with
  2251. an entry of @code{task_array} that is not a valid task anymore results in an
  2252. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2253. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2254. same task, in this case, the dependencies are added. It is possible to have
  2255. redundancy in the task dependencies.
  2256. @item @emph{Prototype}:
  2257. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2258. @end table
  2259. @node starpu_tag_t
  2260. @subsection @code{starpu_tag_t} -- Task logical identifier
  2261. @table @asis
  2262. @item @emph{Description}:
  2263. It is possible to associate a task with a unique ``tag'' and to express
  2264. dependencies between tasks by the means of those tags. To do so, fill the
  2265. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2266. be arbitrary) and set the @code{use_tag} field to 1.
  2267. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2268. not be started until the tasks which holds the declared dependency tags are
  2269. completed.
  2270. @end table
  2271. @node starpu_tag_declare_deps
  2272. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2273. @table @asis
  2274. @item @emph{Description}:
  2275. Specify the dependencies of the task identified by tag @code{id}. The first
  2276. argument specifies the tag which is configured, the second argument gives the
  2277. number of tag(s) on which @code{id} depends. The following arguments are the
  2278. tags which have to be terminated to unlock the task.
  2279. This function must be called before the associated task is submitted to StarPU
  2280. with @code{starpu_task_submit}.
  2281. @item @emph{Remark}
  2282. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2283. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2284. typically need to be explicitly casted. Using the
  2285. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2286. @item @emph{Prototype}:
  2287. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2288. @item @emph{Example}:
  2289. @cartouche
  2290. @example
  2291. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2292. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2293. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2294. @end example
  2295. @end cartouche
  2296. @end table
  2297. @node starpu_tag_declare_deps_array
  2298. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2299. @table @asis
  2300. @item @emph{Description}:
  2301. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2302. does not take a variable number of arguments but an array of tags of size
  2303. @code{ndeps}.
  2304. @item @emph{Prototype}:
  2305. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2306. @item @emph{Example}:
  2307. @cartouche
  2308. @example
  2309. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2310. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2311. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2312. @end example
  2313. @end cartouche
  2314. @end table
  2315. @node starpu_tag_wait
  2316. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2317. @table @asis
  2318. @item @emph{Description}:
  2319. This function blocks until the task associated to tag @code{id} has been
  2320. executed. This is a blocking call which must therefore not be called within
  2321. tasks or callbacks, but only from the application directly. It is possible to
  2322. synchronize with the same tag multiple times, as long as the
  2323. @code{starpu_tag_remove} function is not called. Note that it is still
  2324. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2325. data structure was freed (e.g. if the @code{destroy} flag of the
  2326. @code{starpu_task} was enabled).
  2327. @item @emph{Prototype}:
  2328. @code{void starpu_tag_wait(starpu_tag_t id);}
  2329. @end table
  2330. @node starpu_tag_wait_array
  2331. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2332. @table @asis
  2333. @item @emph{Description}:
  2334. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2335. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2336. terminated.
  2337. @item @emph{Prototype}:
  2338. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2339. @end table
  2340. @node starpu_tag_remove
  2341. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2342. @table @asis
  2343. @item @emph{Description}:
  2344. This function releases the resources associated to tag @code{id}. It can be
  2345. called once the corresponding task has been executed and when there is
  2346. no other tag that depend on this tag anymore.
  2347. @item @emph{Prototype}:
  2348. @code{void starpu_tag_remove(starpu_tag_t id);}
  2349. @end table
  2350. @node starpu_tag_notify_from_apps
  2351. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2352. @table @asis
  2353. @item @emph{Description}:
  2354. This function explicitly unlocks tag @code{id}. It may be useful in the
  2355. case of applications which execute part of their computation outside StarPU
  2356. tasks (e.g. third-party libraries). It is also provided as a
  2357. convenient tool for the programmer, for instance to entirely construct the task
  2358. DAG before actually giving StarPU the opportunity to execute the tasks.
  2359. @item @emph{Prototype}:
  2360. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2361. @end table
  2362. @node Implicit Data Dependencies
  2363. @section Implicit Data Dependencies
  2364. @menu
  2365. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2366. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2367. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2368. @end menu
  2369. In this section, we describe how StarPU makes it possible to insert implicit
  2370. task dependencies in order to enforce sequential data consistency. When this
  2371. data consistency is enabled on a specific data handle, any data access will
  2372. appear as sequentially consistent from the application. For instance, if the
  2373. application submits two tasks that access the same piece of data in read-only
  2374. mode, and then a third task that access it in write mode, dependencies will be
  2375. added between the two first tasks and the third one. Implicit data dependencies
  2376. are also inserted in the case of data accesses from the application.
  2377. @node starpu_data_set_default_sequential_consistency_flag
  2378. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2379. @table @asis
  2380. @item @emph{Description}:
  2381. Set the default sequential consistency flag. If a non-zero value is passed, a
  2382. sequential data consistency will be enforced for all handles registered after
  2383. this function call, otherwise it is disabled. By default, StarPU enables
  2384. sequential data consistency. It is also possible to select the data consistency
  2385. mode of a specific data handle with the
  2386. @code{starpu_data_set_sequential_consistency_flag} function.
  2387. @item @emph{Prototype}:
  2388. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2389. @end table
  2390. @node starpu_data_get_default_sequential_consistency_flag
  2391. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2392. @table @asis
  2393. @item @emph{Description}:
  2394. This function returns the current default sequential consistency flag.
  2395. @item @emph{Prototype}:
  2396. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2397. @end table
  2398. @node starpu_data_set_sequential_consistency_flag
  2399. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2400. @table @asis
  2401. @item @emph{Description}:
  2402. Select the data consistency mode associated to a data handle. The consistency
  2403. mode set using this function has the priority over the default mode which can
  2404. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2405. @item @emph{Prototype}:
  2406. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2407. @end table
  2408. @node Performance Model API
  2409. @section Performance Model API
  2410. @menu
  2411. * starpu_load_history_debug::
  2412. * starpu_perfmodel_debugfilepath::
  2413. * starpu_perfmodel_get_arch_name::
  2414. * starpu_force_bus_sampling::
  2415. @end menu
  2416. @node starpu_load_history_debug
  2417. @subsection @code{starpu_load_history_debug}
  2418. @table @asis
  2419. @item @emph{Description}:
  2420. TODO
  2421. @item @emph{Prototype}:
  2422. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  2423. @end table
  2424. @node starpu_perfmodel_debugfilepath
  2425. @subsection @code{starpu_perfmodel_debugfilepath}
  2426. @table @asis
  2427. @item @emph{Description}:
  2428. TODO
  2429. @item @emph{Prototype}:
  2430. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  2431. @end table
  2432. @node starpu_perfmodel_get_arch_name
  2433. @subsection @code{starpu_perfmodel_get_arch_name}
  2434. @table @asis
  2435. @item @emph{Description}:
  2436. TODO
  2437. @item @emph{Prototype}:
  2438. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  2439. @end table
  2440. @node starpu_force_bus_sampling
  2441. @subsection @code{starpu_force_bus_sampling}
  2442. @table @asis
  2443. @item @emph{Description}:
  2444. TODO
  2445. @item @emph{Prototype}:
  2446. @code{void starpu_force_bus_sampling(void);}
  2447. @end table
  2448. @node Profiling API
  2449. @section Profiling API
  2450. @menu
  2451. * starpu_profiling_status_set:: starpu_profiling_status_set
  2452. * starpu_profiling_status_get:: starpu_profiling_status_get
  2453. * struct starpu_task_profiling_info:: task profiling information
  2454. * struct starpu_worker_profiling_info:: worker profiling information
  2455. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  2456. * struct starpu_bus_profiling_info:: bus profiling information
  2457. * starpu_bus_get_count::
  2458. * starpu_bus_get_id::
  2459. * starpu_bus_get_src::
  2460. * starpu_bus_get_dst::
  2461. * starpu_timing_timespec_delay_us::
  2462. * starpu_timing_timespec_to_us::
  2463. * starpu_bus_profiling_helper_display_summary::
  2464. @end menu
  2465. @node starpu_profiling_status_set
  2466. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  2467. @table @asis
  2468. @item @emph{Description}:
  2469. Thie function sets the profiling status. Profiling is activated by passing
  2470. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  2471. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2472. resets all profiling measurements. When profiling is enabled, the
  2473. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2474. to a valid @code{struct starpu_task_profiling_info} structure containing
  2475. information about the execution of the task.
  2476. @item @emph{Return value}:
  2477. Negative return values indicate an error, otherwise the previous status is
  2478. returned.
  2479. @item @emph{Prototype}:
  2480. @code{int starpu_profiling_status_set(int status);}
  2481. @end table
  2482. @node starpu_profiling_status_get
  2483. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  2484. @table @asis
  2485. @item @emph{Description}:
  2486. Return the current profiling status or a negative value in case there was an error.
  2487. @item @emph{Prototype}:
  2488. @code{int starpu_profiling_status_get(void);}
  2489. @end table
  2490. @node struct starpu_task_profiling_info
  2491. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  2492. @table @asis
  2493. @item @emph{Description}:
  2494. This structure contains information about the execution of a task. It is
  2495. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2496. structure if profiling was enabled.
  2497. @item @emph{Fields}:
  2498. @table @asis
  2499. @item @code{submit_time}:
  2500. Date of task submission (relative to the initialization of StarPU).
  2501. @item @code{start_time}:
  2502. Date of task execution beginning (relative to the initialization of StarPU).
  2503. @item @code{end_time}:
  2504. Date of task execution termination (relative to the initialization of StarPU).
  2505. @item @code{workerid}:
  2506. Identifier of the worker which has executed the task.
  2507. @end table
  2508. @end table
  2509. @node struct starpu_worker_profiling_info
  2510. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  2511. @table @asis
  2512. @item @emph{Description}:
  2513. This structure contains the profiling information associated to a worker.
  2514. @item @emph{Fields}:
  2515. @table @asis
  2516. @item @code{start_time}:
  2517. Starting date for the reported profiling measurements.
  2518. @item @code{total_time}:
  2519. Duration of the profiling measurement interval.
  2520. @item @code{executing_time}:
  2521. Time spent by the worker to execute tasks during the profiling measurement interval.
  2522. @item @code{sleeping_time}:
  2523. Time spent idling by the worker during the profiling measurement interval.
  2524. @item @code{executed_tasks}:
  2525. Number of tasks executed by the worker during the profiling measurement interval.
  2526. @end table
  2527. @end table
  2528. @node starpu_worker_get_profiling_info
  2529. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  2530. @table @asis
  2531. @item @emph{Description}:
  2532. Get the profiling info associated to the worker identified by @code{workerid},
  2533. and reset the profiling measurements. If the @code{worker_info} argument is
  2534. NULL, only reset the counters associated to worker @code{workerid}.
  2535. @item @emph{Return value}:
  2536. Upon successful completion, this function returns 0. Otherwise, a negative
  2537. value is returned.
  2538. @item @emph{Prototype}:
  2539. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  2540. @end table
  2541. @node struct starpu_bus_profiling_info
  2542. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  2543. @table @asis
  2544. @item @emph{Description}:
  2545. TODO
  2546. @item @emph{Fields}:
  2547. @table @asis
  2548. @item @code{start_time}:
  2549. TODO
  2550. @item @code{total_time}:
  2551. TODO
  2552. @item @code{transferred_bytes}:
  2553. TODO
  2554. @item @code{transfer_count}:
  2555. TODO
  2556. @end table
  2557. @end table
  2558. @node starpu_bus_get_count
  2559. @subsection @code{starpu_bus_get_count}
  2560. @table @asis
  2561. @item @emph{Description}:
  2562. TODO
  2563. @item @emph{Prototype}:
  2564. @code{int starpu_bus_get_count(void);}
  2565. @end table
  2566. @node starpu_bus_get_id
  2567. @subsection @code{starpu_bus_get_id}
  2568. @table @asis
  2569. @item @emph{Description}:
  2570. TODO
  2571. @item @emph{Prototype}:
  2572. @code{int starpu_bus_get_id(int src, int dst);}
  2573. @end table
  2574. @node starpu_bus_get_src
  2575. @subsection @code{starpu_bus_get_src}
  2576. @table @asis
  2577. @item @emph{Description}:
  2578. TODO
  2579. @item @emph{Prototype}:
  2580. @code{int starpu_bus_get_src(int busid);}
  2581. @end table
  2582. @node starpu_bus_get_dst
  2583. @subsection @code{starpu_bus_get_dst}
  2584. @table @asis
  2585. @item @emph{Description}:
  2586. TODO
  2587. @item @emph{Prototype}:
  2588. @code{int starpu_bus_get_dst(int busid);}
  2589. @end table
  2590. @node starpu_timing_timespec_delay_us
  2591. @subsection @code{starpu_timing_timespec_delay_us}
  2592. @table @asis
  2593. @item @emph{Description}:
  2594. TODO
  2595. @item @emph{Prototype}:
  2596. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  2597. @end table
  2598. @node starpu_timing_timespec_to_us
  2599. @subsection @code{starpu_timing_timespec_to_us}
  2600. @table @asis
  2601. @item @emph{Description}:
  2602. TODO
  2603. @item @emph{Prototype}:
  2604. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  2605. @end table
  2606. @node starpu_bus_profiling_helper_display_summary
  2607. @subsection @code{starpu_bus_profiling_helper_display_summary}
  2608. @table @asis
  2609. @item @emph{Description}:
  2610. TODO
  2611. @item @emph{Prototype}:
  2612. @code{void starpu_bus_profiling_helper_display_summary(void);}
  2613. @end table
  2614. @node CUDA extensions
  2615. @section CUDA extensions
  2616. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  2617. @menu
  2618. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  2619. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  2620. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  2621. @end menu
  2622. @node starpu_cuda_get_local_stream
  2623. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  2624. @table @asis
  2625. @item @emph{Description}:
  2626. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2627. function is only provided for convenience so that programmers can easily use
  2628. asynchronous operations within codelets without having to create a stream by
  2629. hand. Note that the application is not forced to use the stream provided by
  2630. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2631. @item @emph{Prototype}:
  2632. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  2633. @end table
  2634. @node starpu_helper_cublas_init
  2635. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  2636. @table @asis
  2637. @item @emph{Description}:
  2638. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2639. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  2640. controlled by StarPU. This call blocks until CUBLAS has been properly
  2641. initialized on every device.
  2642. @item @emph{Prototype}:
  2643. @code{void starpu_helper_cublas_init(void);}
  2644. @end table
  2645. @node starpu_helper_cublas_shutdown
  2646. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  2647. @table @asis
  2648. @item @emph{Description}:
  2649. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2650. @item @emph{Prototype}:
  2651. @code{void starpu_helper_cublas_shutdown(void);}
  2652. @end table
  2653. @node OpenCL extensions
  2654. @section OpenCL extensions
  2655. @menu
  2656. * Enabling OpenCL:: Enabling OpenCL
  2657. * Compiling OpenCL codelets:: Compiling OpenCL codelets
  2658. * Loading OpenCL codelets:: Loading OpenCL codelets
  2659. @end menu
  2660. @node Enabling OpenCL
  2661. @subsection Enabling OpenCL
  2662. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  2663. enabled by default. To enable OpenCL, you need either to disable CUDA
  2664. when configuring StarPU:
  2665. @example
  2666. % ./configure --disable-cuda
  2667. @end example
  2668. or when running applications:
  2669. @example
  2670. % STARPU_NCUDA=0 ./application
  2671. @end example
  2672. OpenCL will automatically be started on any device not yet used by
  2673. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  2674. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  2675. so:
  2676. @example
  2677. % STARPU_NCUDA=2 ./application
  2678. @end example
  2679. @node Compiling OpenCL codelets
  2680. @subsection Compiling OpenCL codelets
  2681. Source codes for OpenCL codelets can be stored in a file or in a
  2682. string. StarPU provides functions to build the program executable for
  2683. each available OpenCL device as a @code{cl_program} object. This
  2684. program executable can then be loaded within a specific queue as
  2685. explained in the next section. These are only helpers, Applications
  2686. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2687. use (e.g. different programs on the different OpenCL devices, for
  2688. relocation purpose for instance).
  2689. @menu
  2690. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  2691. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  2692. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  2693. @end menu
  2694. @node starpu_opencl_load_opencl_from_file
  2695. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  2696. @table @asis
  2697. @item @emph{Description}:
  2698. TODO
  2699. @item @emph{Prototype}:
  2700. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  2701. @end table
  2702. @node starpu_opencl_load_opencl_from_string
  2703. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  2704. @table @asis
  2705. @item @emph{Description}:
  2706. TODO
  2707. @item @emph{Prototype}:
  2708. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  2709. @end table
  2710. @node starpu_opencl_unload_opencl
  2711. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  2712. @table @asis
  2713. @item @emph{Description}:
  2714. TODO
  2715. @item @emph{Prototype}:
  2716. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  2717. @end table
  2718. @node Loading OpenCL codelets
  2719. @subsection Loading OpenCL codelets
  2720. @menu
  2721. * starpu_opencl_load_kernel:: Loading a kernel
  2722. * starpu_opencl_relase_kernel:: Releasing a kernel
  2723. @end menu
  2724. @node starpu_opencl_load_kernel
  2725. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  2726. @table @asis
  2727. @item @emph{Description}:
  2728. TODO
  2729. @item @emph{Prototype}:
  2730. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  2731. }
  2732. @end table
  2733. @node starpu_opencl_relase_kernel
  2734. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  2735. @table @asis
  2736. @item @emph{Description}:
  2737. TODO
  2738. @item @emph{Prototype}:
  2739. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  2740. @end table
  2741. @node Cell extensions
  2742. @section Cell extensions
  2743. nothing yet.
  2744. @node Miscellaneous helpers
  2745. @section Miscellaneous helpers
  2746. @menu
  2747. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  2748. @end menu
  2749. @node starpu_execute_on_each_worker
  2750. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  2751. @table @asis
  2752. @item @emph{Description}:
  2753. When calling this method, the offloaded function specified by the first argument is
  2754. executed by every StarPU worker that may execute the function.
  2755. The second argument is passed to the offloaded function.
  2756. The last argument specifies on which types of processing units the function
  2757. should be executed. Similarly to the @code{where} field of the
  2758. @code{starpu_codelet} structure, it is possible to specify that the function
  2759. should be executed on every CUDA device and every CPU by passing
  2760. @code{STARPU_CPU|STARPU_CUDA}.
  2761. This function blocks until the function has been executed on every appropriate
  2762. processing units, so that it may not be called from a callback function for
  2763. instance.
  2764. @item @emph{Prototype}:
  2765. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  2766. @end table
  2767. @c ---------------------------------------------------------------------
  2768. @c Advanced Topics
  2769. @c ---------------------------------------------------------------------
  2770. @node Advanced Topics
  2771. @chapter Advanced Topics
  2772. @menu
  2773. * Defining a new data interface::
  2774. * Defining a new scheduling policy::
  2775. @end menu
  2776. @node Defining a new data interface
  2777. @section Defining a new data interface
  2778. @menu
  2779. * struct starpu_data_interface_ops_t:: Per-interface methods
  2780. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  2781. * An example of data interface:: An example of data interface
  2782. @end menu
  2783. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  2784. @node struct starpu_data_interface_ops_t
  2785. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  2786. @table @asis
  2787. @item @emph{Description}:
  2788. TODO describe all the different fields
  2789. @end table
  2790. @node struct starpu_data_copy_methods
  2791. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  2792. @table @asis
  2793. @item @emph{Description}:
  2794. TODO describe all the different fields
  2795. @end table
  2796. @node An example of data interface
  2797. @subsection An example of data interface
  2798. @table @asis
  2799. TODO
  2800. @end table
  2801. @node Defining a new scheduling policy
  2802. @section Defining a new scheduling policy
  2803. TODO
  2804. A full example showing how to define a new scheduling policy is available in
  2805. the StarPU sources in the directory @code{examples/scheduler/}.
  2806. @menu
  2807. * struct starpu_sched_policy_s::
  2808. * starpu_worker_set_sched_condition::
  2809. * starpu_sched_set_min_priority:: Set the minimum priority level
  2810. * starpu_sched_set_max_priority:: Set the maximum priority level
  2811. * Source code::
  2812. @end menu
  2813. @node struct starpu_sched_policy_s
  2814. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  2815. @table @asis
  2816. @item @emph{Description}:
  2817. This structure contains all the methods that implement a scheduling policy. An
  2818. application may specify which scheduling strategy in the @code{sched_policy}
  2819. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  2820. function.
  2821. @item @emph{Fields}:
  2822. @table @asis
  2823. @item @code{init_sched}:
  2824. Initialize the scheduling policy.
  2825. @item @code{deinit_sched}:
  2826. Cleanup the scheduling policy.
  2827. @item @code{push_task}:
  2828. Insert a task into the scheduler.
  2829. @item @code{push_prio_task}:
  2830. Insert a priority task into the scheduler.
  2831. @item @code{pop_task}:
  2832. Get a task from the scheduler. The mutex associated to the worker is already
  2833. taken when this method is called.
  2834. @item @code{pop_every_task}:
  2835. Remove all available tasks from the scheduler (tasks are chained by the means
  2836. of the prev and next fields of the starpu_task structure). The mutex associated
  2837. to the worker is already taken when this method is called.
  2838. @item @code{post_exec_hook} (optionnal):
  2839. This method is called every time a task has been executed.
  2840. @item @code{policy_name}:
  2841. Name of the policy (optionnal).
  2842. @item @code{policy_description}:
  2843. Description of the policy (optionnal).
  2844. @end table
  2845. @end table
  2846. @node starpu_worker_set_sched_condition
  2847. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  2848. @table @asis
  2849. @item @emph{Description}:
  2850. When there is no available task for a worker, StarPU blocks this worker on a
  2851. condition variable. This function specifies which condition variable (and the
  2852. associated mutex) should be used to block (and to wake up) a worker. Note that
  2853. multiple workers may use the same condition variable. For instance, in the case
  2854. of a scheduling strategy with a single task queue, the same condition variable
  2855. would be used to block and wake up all workers.
  2856. The initialization method of a scheduling strategy (@code{init_sched}) must
  2857. call this function once per worker.
  2858. @item @emph{Prototype}:
  2859. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  2860. @end table
  2861. @node starpu_sched_set_min_priority
  2862. @subsection @code{starpu_sched_set_min_priority}
  2863. @table @asis
  2864. @item @emph{Description}:
  2865. Defines the minimum priority level supported by the scheduling policy. The
  2866. default minimum priority level is the same as the default priority level which
  2867. is 0 by convention. The application may access that value by calling the
  2868. @code{starpu_sched_get_min_priority} function. This function should only be
  2869. called from the initialization method of the scheduling policy, and should not
  2870. be used directly from the application.
  2871. @item @emph{Prototype}:
  2872. @code{void starpu_sched_set_min_priority(int min_prio)}
  2873. @end table
  2874. @node starpu_sched_set_max_priority
  2875. @subsection @code{starpu_sched_set_max_priority}
  2876. @table @asis
  2877. @item @emph{Description}:
  2878. Defines the maximum priority level supported by the scheduling policy. The
  2879. default maximum priority level is 1. The application may access that value by
  2880. calling the @code{starpu_sched_get_max_priority} function. This function should
  2881. only be called from the initialization method of the scheduling policy, and
  2882. should not be used directly from the application.
  2883. @item @emph{Prototype}:
  2884. @code{void starpu_sched_set_min_priority(int max_prio)}
  2885. @end table
  2886. @node Source code
  2887. @subsection Source code
  2888. @cartouche
  2889. @smallexample
  2890. static struct starpu_sched_policy_s dummy_sched_policy = @{
  2891. .init_sched = init_dummy_sched,
  2892. .deinit_sched = deinit_dummy_sched,
  2893. .push_task = push_task_dummy,
  2894. .push_prio_task = NULL,
  2895. .pop_task = pop_task_dummy,
  2896. .post_exec_hook = NULL,
  2897. .pop_every_task = NULL,
  2898. .policy_name = "dummy",
  2899. .policy_description = "dummy scheduling strategy"
  2900. @};
  2901. @end smallexample
  2902. @end cartouche
  2903. @c ---------------------------------------------------------------------
  2904. @c Appendices
  2905. @c ---------------------------------------------------------------------
  2906. @c ---------------------------------------------------------------------
  2907. @c Full source code for the 'Scaling a Vector' example
  2908. @c ---------------------------------------------------------------------
  2909. @node Full source code for the 'Scaling a Vector' example
  2910. @appendix Full source code for the 'Scaling a Vector' example
  2911. @menu
  2912. * Main application::
  2913. * CPU Codelet::
  2914. * CUDA Codelet::
  2915. * OpenCL Codelet::
  2916. @end menu
  2917. @node Main application
  2918. @section Main application
  2919. @smallexample
  2920. @include vector_scal_c.texi
  2921. @end smallexample
  2922. @node CPU Codelet
  2923. @section CPU Codelet
  2924. @smallexample
  2925. @include vector_scal_cpu.texi
  2926. @end smallexample
  2927. @node CUDA Codelet
  2928. @section CUDA Codelet
  2929. @smallexample
  2930. @include vector_scal_cuda.texi
  2931. @end smallexample
  2932. @node OpenCL Codelet
  2933. @section OpenCL Codelet
  2934. @menu
  2935. * Invoking the kernel::
  2936. * Source of the kernel::
  2937. @end menu
  2938. @node Invoking the kernel
  2939. @subsection Invoking the kernel
  2940. @smallexample
  2941. @include vector_scal_opencl.texi
  2942. @end smallexample
  2943. @node Source of the kernel
  2944. @subsection Source of the kernel
  2945. @smallexample
  2946. @include vector_scal_opencl_codelet.texi
  2947. @end smallexample
  2948. @bye