| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 | ################### Performance Model Version45##################### COMBs# number of combinations5##################### COMB_0# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)0##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cpu0_impl0 (Comb0)# number of entries4# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n0e8bce2b	16588800       	2.988058e+09   	6.085177e+04   	1.761936e+04   	4.551712e+07   	3.002008e+12   	748ff82dda0	7372800        	8.856576e+08   	1.775772e+04   	3.736007e+03   	2.386637e+07   	4.425714e+11   	1344d39bff17	3276800        	2.625536e+08   	5.276862e+03   	9.789431e+02   	7.070995e+06   	3.859682e+10   	13402c1922b7	819200         	3.287040e+07   	7.675336e+02   	1.464194e+02   	2.842177e+06   	2.260854e+09   	3703##################### COMB_3# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 3##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda3_impl0 (Comb3)# number of entries4# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n0e8bce2b	16588800       	2.988058e+09   	5.422549e+03   	1.109859e+03   	2.917331e+06   	1.648207e+10   	538ff82dda0	7372800        	8.856576e+08   	2.018325e+03   	2.870643e+02   	1.687320e+06   	3.474450e+09   	836d39bff17	3276800        	2.625536e+08   	1.179394e+03   	1.705358e+02   	3.538181e+05   	4.260157e+08   	3002c1922b7	819200         	3.287040e+07   	4.644748e+02   	7.687001e+01   	3.297771e+04   	1.573685e+07   	71##################### COMB_1# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda0_impl0 (Comb1)# number of entries4# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n0e8bce2b	16588800       	2.988058e+09   	5.480822e+03   	1.130650e+03   	2.899355e+06   	1.656711e+10   	529ff82dda0	7372800        	8.856576e+08   	2.005118e+03   	2.787124e+02   	1.836689e+06   	3.753933e+09   	916d39bff17	3276800        	2.625536e+08   	1.227664e+03   	1.874122e+02   	2.970946e+05   	3.732321e+08   	2422c1922b7	819200         	3.287040e+07   	4.209987e+02   	9.547071e+01   	6.441281e+04   	2.851225e+07   	153##################### COMB_2# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 1##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda1_impl0 (Comb2)# number of entries4# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n0e8bce2b	16588800       	2.988058e+09   	5.510320e+03   	1.138149e+03   	2.992104e+06   	1.719084e+10   	543ff82dda0	7372800        	8.856576e+08   	2.005118e+03   	2.787124e+02   	1.836689e+06   	3.753933e+09   	916d39bff17	3276800        	2.625536e+08   	1.227664e+03   	1.874122e+02   	2.970946e+05   	3.732321e+08   	2422c1922b7	819200         	3.287040e+07   	4.209987e+02   	9.547071e+01   	6.441281e+04   	2.851225e+07   	153##################### COMB_4# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 2##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda2_impl0 (Comb4)# number of entries4# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n0e8bce2b	16588800       	2.988058e+09   	5.534879e+03   	1.226333e+03   	3.210230e+06   	1.864049e+10   	580ff82dda0	7372800        	8.856576e+08   	2.051755e+03   	2.742098e+02   	1.811700e+06   	3.783559e+09   	883d39bff17	3276800        	2.625536e+08   	1.153240e+03   	1.913332e+02   	3.194475e+05   	3.785401e+08   	2772c1922b7	819200         	3.287040e+07   	4.950127e+02   	6.747714e+01   	5.445140e+04   	2.745498e+07   	110
 |