starpu.texi 161 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. The following step requires the availability of @code{autoconf} and
  195. @code{automake} to generate the @code{./configure} script. This is
  196. done by calling @code{./autogen.sh}. The required version for
  197. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * Insert Task Utility::
  338. * More examples:: More examples shipped with StarPU
  339. @end menu
  340. @node Compiling and linking options
  341. @section Compiling and linking options
  342. Let's suppose StarPU has been installed in the directory
  343. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  344. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  345. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  346. libraries at runtime.
  347. @example
  348. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  349. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  350. @end example
  351. The Makefile could for instance contain the following lines to define which
  352. options must be given to the compiler and to the linker:
  353. @cartouche
  354. @example
  355. CFLAGS += $$(pkg-config --cflags libstarpu)
  356. LDFLAGS += $$(pkg-config --libs libstarpu)
  357. @end example
  358. @end cartouche
  359. @node Hello World
  360. @section Hello World
  361. @menu
  362. * Required Headers::
  363. * Defining a Codelet::
  364. * Submitting a Task::
  365. * Execution of Hello World::
  366. @end menu
  367. In this section, we show how to implement a simple program that submits a task to StarPU.
  368. @node Required Headers
  369. @subsection Required Headers
  370. The @code{starpu.h} header should be included in any code using StarPU.
  371. @cartouche
  372. @smallexample
  373. #include <starpu.h>
  374. @end smallexample
  375. @end cartouche
  376. @node Defining a Codelet
  377. @subsection Defining a Codelet
  378. @cartouche
  379. @smallexample
  380. struct params @{
  381. int i;
  382. float f;
  383. @};
  384. void cpu_func(void *buffers[], void *cl_arg)
  385. @{
  386. struct params *params = cl_arg;
  387. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  388. @}
  389. starpu_codelet cl =
  390. @{
  391. .where = STARPU_CPU,
  392. .cpu_func = cpu_func,
  393. .nbuffers = 0
  394. @};
  395. @end smallexample
  396. @end cartouche
  397. A codelet is a structure that represents a computational kernel. Such a codelet
  398. may contain an implementation of the same kernel on different architectures
  399. (e.g. CUDA, Cell's SPU, x86, ...).
  400. The @code{nbuffers} field specifies the number of data buffers that are
  401. manipulated by the codelet: here the codelet does not access or modify any data
  402. that is controlled by our data management library. Note that the argument
  403. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  404. structure) does not count as a buffer since it is not managed by our data
  405. management library, but just contain trivial parameters.
  406. @c TODO need a crossref to the proper description of "where" see bla for more ...
  407. We create a codelet which may only be executed on the CPUs. The @code{where}
  408. field is a bitmask that defines where the codelet may be executed. Here, the
  409. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  410. (@pxref{Codelets and Tasks} for more details on this field).
  411. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  412. which @emph{must} have the following prototype:
  413. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  414. In this example, we can ignore the first argument of this function which gives a
  415. description of the input and output buffers (e.g. the size and the location of
  416. the matrices) since there is none.
  417. The second argument is a pointer to a buffer passed as an
  418. argument to the codelet by the means of the @code{cl_arg} field of the
  419. @code{starpu_task} structure.
  420. @c TODO rewrite so that it is a little clearer ?
  421. Be aware that this may be a pointer to a
  422. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  423. if the codelet modifies this buffer, there is no guarantee that the initial
  424. buffer will be modified as well: this for instance implies that the buffer
  425. cannot be used as a synchronization medium. If synchronization is needed, data
  426. has to be registered to StarPU, see @ref{Scaling a Vector}.
  427. @node Submitting a Task
  428. @subsection Submitting a Task
  429. @cartouche
  430. @smallexample
  431. void callback_func(void *callback_arg)
  432. @{
  433. printf("Callback function (arg %x)\n", callback_arg);
  434. @}
  435. int main(int argc, char **argv)
  436. @{
  437. /* @b{initialize StarPU} */
  438. starpu_init(NULL);
  439. struct starpu_task *task = starpu_task_create();
  440. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  441. struct params params = @{ 1, 2.0f @};
  442. task->cl_arg = &params;
  443. task->cl_arg_size = sizeof(params);
  444. task->callback_func = callback_func;
  445. task->callback_arg = 0x42;
  446. /* @b{starpu_task_submit will be a blocking call} */
  447. task->synchronous = 1;
  448. /* @b{submit the task to StarPU} */
  449. starpu_task_submit(task);
  450. /* @b{terminate StarPU} */
  451. starpu_shutdown();
  452. return 0;
  453. @}
  454. @end smallexample
  455. @end cartouche
  456. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  457. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  458. be submitted after the termination of StarPU by a call to
  459. @code{starpu_shutdown}.
  460. In the example above, a task structure is allocated by a call to
  461. @code{starpu_task_create}. This function only allocates and fills the
  462. corresponding structure with the default settings (@pxref{starpu_task_create}),
  463. but it does not submit the task to StarPU.
  464. @c not really clear ;)
  465. The @code{cl} field is a pointer to the codelet which the task will
  466. execute: in other words, the codelet structure describes which computational
  467. kernel should be offloaded on the different architectures, and the task
  468. structure is a wrapper containing a codelet and the piece of data on which the
  469. codelet should operate.
  470. The optional @code{cl_arg} field is a pointer to a buffer (of size
  471. @code{cl_arg_size}) with some parameters for the kernel
  472. described by the codelet. For instance, if a codelet implements a computational
  473. kernel that multiplies its input vector by a constant, the constant could be
  474. specified by the means of this buffer, instead of registering it as a StarPU
  475. data.
  476. Once a task has been executed, an optional callback function is be called.
  477. While the computational kernel could be offloaded on various architectures, the
  478. callback function is always executed on a CPU. The @code{callback_arg}
  479. pointer is passed as an argument of the callback. The prototype of a callback
  480. function must be:
  481. @code{void (*callback_function)(void *);}
  482. If the @code{synchronous} field is non-zero, task submission will be
  483. synchronous: the @code{starpu_task_submit} function will not return until the
  484. task was executed. Note that the @code{starpu_shutdown} method does not
  485. guarantee that asynchronous tasks have been executed before it returns,
  486. @code{starpu_task_wait_for_all} can be used to that effect..
  487. @node Execution of Hello World
  488. @subsection Execution of Hello World
  489. @smallexample
  490. % make hello_world
  491. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  492. % ./hello_world
  493. Hello world (params = @{1, 2.000000@} )
  494. Callback function (arg 42)
  495. @end smallexample
  496. @node Scaling a Vector
  497. @section Manipulating Data: Scaling a Vector
  498. The previous example has shown how to submit tasks. In this section,
  499. we show how StarPU tasks can manipulate data. The full source code for
  500. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  501. @menu
  502. * Source code of Vector Scaling::
  503. * Execution of Vector Scaling::
  504. @end menu
  505. @node Source code of Vector Scaling
  506. @subsection Source code of Vector Scaling
  507. Programmers can describe the data layout of their application so that StarPU is
  508. responsible for enforcing data coherency and availability across the machine.
  509. Instead of handling complex (and non-portable) mechanisms to perform data
  510. movements, programmers only declare which piece of data is accessed and/or
  511. modified by a task, and StarPU makes sure that when a computational kernel
  512. starts somewhere (e.g. on a GPU), its data are available locally.
  513. Before submitting those tasks, the programmer first needs to declare the
  514. different pieces of data to StarPU using the @code{starpu_*_data_register}
  515. functions. To ease the development of applications for StarPU, it is possible
  516. to describe multiple types of data layout. A type of data layout is called an
  517. @b{interface}. There are different predefined interfaces available in StarPU:
  518. here we will consider the @b{vector interface}.
  519. The following lines show how to declare an array of @code{NX} elements of type
  520. @code{float} using the vector interface:
  521. @cartouche
  522. @smallexample
  523. float vector[NX];
  524. starpu_data_handle vector_handle;
  525. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  526. sizeof(vector[0]));
  527. @end smallexample
  528. @end cartouche
  529. The first argument, called the @b{data handle}, is an opaque pointer which
  530. designates the array in StarPU. This is also the structure which is used to
  531. describe which data is used by a task. The second argument is the node number
  532. where the data originally resides. Here it is 0 since the @code{vector} array is in
  533. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  534. the number of elements in the vector and the size of each element.
  535. The following shows how to construct a StarPU task that will manipulate the
  536. vector and a constant factor.
  537. @cartouche
  538. @smallexample
  539. float factor = 3.14;
  540. struct starpu_task *task = starpu_task_create();
  541. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  542. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  543. task->buffers[0].mode = STARPU_RW;
  544. task->cl_arg = &factor;
  545. task->cl_arg_size = sizeof(factor);
  546. task->synchronous = 1;
  547. starpu_task_submit(task);
  548. @end smallexample
  549. @end cartouche
  550. Since the factor is a mere constant float value parameter,
  551. it does not need a preliminary registration, and
  552. can just be passed through the @code{cl_arg} pointer like in the previous
  553. example. The vector parameter is described by its handle.
  554. There are two fields in each element of the @code{buffers} array.
  555. @code{handle} is the handle of the data, and @code{mode} specifies how the
  556. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  557. write-only and @code{STARPU_RW} for read and write access).
  558. The definition of the codelet can be written as follows:
  559. @cartouche
  560. @smallexample
  561. void scal_cpu_func(void *buffers[], void *cl_arg)
  562. @{
  563. unsigned i;
  564. float *factor = cl_arg;
  565. /* length of the vector */
  566. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  567. /* local copy of the vector pointer */
  568. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  569. for (i = 0; i < n; i++)
  570. val[i] *= *factor;
  571. @}
  572. starpu_codelet cl = @{
  573. .where = STARPU_CPU,
  574. .cpu_func = scal_cpu_func,
  575. .nbuffers = 1
  576. @};
  577. @end smallexample
  578. @end cartouche
  579. The first argument is an array that gives
  580. a description of all the buffers passed in the @code{task->buffers}@ array. The
  581. size of this array is given by the @code{nbuffers} field of the codelet
  582. structure. For the sake of genericity, this array contains pointers to the
  583. different interfaces describing each buffer. In the case of the @b{vector
  584. interface}, the location of the vector (resp. its length) is accessible in the
  585. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  586. read-write fashion, any modification will automatically affect future accesses
  587. to this vector made by other tasks.
  588. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  589. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  590. constant factor from this pointer.
  591. @node Execution of Vector Scaling
  592. @subsection Execution of Vector Scaling
  593. @smallexample
  594. % make vector_scal
  595. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  596. % ./vector_scal
  597. 0.000000 3.000000 6.000000 9.000000 12.000000
  598. @end smallexample
  599. @node Vector Scaling on an Hybrid CPU/GPU Machine
  600. @section Vector Scaling on an Hybrid CPU/GPU Machine
  601. Contrary to the previous examples, the task submitted in this example may not
  602. only be executed by the CPUs, but also by a CUDA device.
  603. @menu
  604. * Definition of the CUDA Kernel::
  605. * Definition of the OpenCL Kernel::
  606. * Definition of the Main Code::
  607. * Execution of Hybrid Vector Scaling::
  608. @end menu
  609. @node Definition of the CUDA Kernel
  610. @subsection Definition of the CUDA Kernel
  611. The CUDA implementation can be written as follows. It needs to be
  612. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  613. driver.
  614. @cartouche
  615. @smallexample
  616. #include <starpu.h>
  617. static __global__ void vector_mult_cuda(float *val, unsigned n,
  618. float factor)
  619. @{
  620. unsigned i;
  621. if (i < n)
  622. val[i] *= factor;
  623. @}
  624. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  625. @{
  626. float *factor = (float *)_args;
  627. /* length of the vector */
  628. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  629. /* local copy of the vector pointer */
  630. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  631. unsigned threads_per_block = 64;
  632. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  633. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  634. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  635. @}
  636. @end smallexample
  637. @end cartouche
  638. @node Definition of the OpenCL Kernel
  639. @subsection Definition of the OpenCL Kernel
  640. The OpenCL implementation can be written as follows. StarPU provides
  641. tools to compile a OpenCL kernel stored in a file.
  642. @cartouche
  643. @smallexample
  644. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  645. @{
  646. const int i = get_global_id(0);
  647. if (i < nx) @{
  648. val[i] *= factor;
  649. @}
  650. @}
  651. @end smallexample
  652. @end cartouche
  653. @cartouche
  654. @smallexample
  655. #include <starpu.h>
  656. @i{#include <starpu_opencl.h>}
  657. @i{extern struct starpu_opencl_program programs;}
  658. void scal_opencl_func(void *buffers[], void *_args)
  659. @{
  660. float *factor = _args;
  661. @i{ int id, devid, err;}
  662. @i{ cl_kernel kernel;}
  663. @i{ cl_command_queue queue;}
  664. @i{ cl_event event;}
  665. /* length of the vector */
  666. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  667. /* local copy of the vector pointer */
  668. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  669. @i{ id = starpu_worker_get_id();}
  670. @i{ devid = starpu_worker_get_devid(id);}
  671. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  672. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  673. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  674. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  675. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  676. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  677. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  678. @i{ @{}
  679. @i{ size_t global=1;}
  680. @i{ size_t local=1;}
  681. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  682. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  683. @i{ @}}
  684. @i{ clFinish(queue);}
  685. @i{ starpu_opencl_collect_stats(event);}
  686. @i{ clReleaseEvent(event);}
  687. @i{ starpu_opencl_release_kernel(kernel);}
  688. @}
  689. @end smallexample
  690. @end cartouche
  691. @node Definition of the Main Code
  692. @subsection Definition of the Main Code
  693. The CPU implementation is the same as in the previous section.
  694. Here is the source of the main application. You can notice the value of the
  695. field @code{where} for the codelet. We specify
  696. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  697. can be executed either on a CPU or on a CUDA or an OpenCL device.
  698. @cartouche
  699. @smallexample
  700. #include <starpu.h>
  701. #define NX 2048
  702. extern void scal_cuda_func(void *buffers[], void *_args);
  703. extern void scal_cpu_func(void *buffers[], void *_args);
  704. extern void scal_opencl_func(void *buffers[], void *_args);
  705. /* @b{Definition of the codelet} */
  706. static starpu_codelet cl = @{
  707. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  708. /* @b{on a CUDA device, or on an OpenCL device} */
  709. .cuda_func = scal_cuda_func;
  710. .cpu_func = scal_cpu_func;
  711. .opencl_func = scal_opencl_func;
  712. .nbuffers = 1;
  713. @}
  714. #ifdef STARPU_USE_OPENCL
  715. /* @b{The compiled version of the OpenCL program} */
  716. struct starpu_opencl_program programs;
  717. #endif
  718. int main(int argc, char **argv)
  719. @{
  720. float *vector;
  721. int i, ret;
  722. float factor=3.0;
  723. struct starpu_task *task;
  724. starpu_data_handle vector_handle;
  725. starpu_init(NULL); /* @b{Initialising StarPU} */
  726. #ifdef STARPU_USE_OPENCL
  727. starpu_opencl_load_opencl_from_file(
  728. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  729. #endif
  730. vector = malloc(NX*sizeof(vector[0]));
  731. assert(vector);
  732. for(i=0 ; i<NX ; i++) vector[i] = i;
  733. @end smallexample
  734. @end cartouche
  735. @cartouche
  736. @smallexample
  737. /* @b{Registering data within StarPU} */
  738. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  739. NX, sizeof(vector[0]));
  740. /* @b{Definition of the task} */
  741. task = starpu_task_create();
  742. task->cl = &cl;
  743. task->buffers[0].handle = vector_handle;
  744. task->buffers[0].mode = STARPU_RW;
  745. task->cl_arg = &factor;
  746. task->cl_arg_size = sizeof(factor);
  747. @end smallexample
  748. @end cartouche
  749. @cartouche
  750. @smallexample
  751. /* @b{Submitting the task} */
  752. ret = starpu_task_submit(task);
  753. if (ret == -ENODEV) @{
  754. fprintf(stderr, "No worker may execute this task\n");
  755. return 1;
  756. @}
  757. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  758. /* @b{Waiting for its termination} */
  759. starpu_task_wait_for_all();
  760. /* @b{Update the vector in RAM} */
  761. starpu_data_acquire(vector_handle, STARPU_R);
  762. @end smallexample
  763. @end cartouche
  764. @cartouche
  765. @smallexample
  766. /* @b{Access the data} */
  767. for(i=0 ; i<NX; i++) @{
  768. fprintf(stderr, "%f ", vector[i]);
  769. @}
  770. fprintf(stderr, "\n");
  771. /* @b{Release the data and shutdown StarPU} */
  772. starpu_data_release(vector_handle);
  773. starpu_shutdown();
  774. return 0;
  775. @}
  776. @end smallexample
  777. @end cartouche
  778. @node Execution of Hybrid Vector Scaling
  779. @subsection Execution of Hybrid Vector Scaling
  780. The Makefile given at the beginning of the section must be extended to
  781. give the rules to compile the CUDA source code. Note that the source
  782. file of the OpenCL kernel does not need to be compiled now, it will
  783. be compiled at run-time when calling the function
  784. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  785. @cartouche
  786. @smallexample
  787. CFLAGS += $(shell pkg-config --cflags libstarpu)
  788. LDFLAGS += $(shell pkg-config --libs libstarpu)
  789. CC = gcc
  790. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  791. %.o: %.cu
  792. nvcc $(CFLAGS) $< -c $@
  793. clean:
  794. rm -f vector_scal *.o
  795. @end smallexample
  796. @end cartouche
  797. @smallexample
  798. % make
  799. @end smallexample
  800. and to execute it, with the default configuration:
  801. @smallexample
  802. % ./vector_scal
  803. 0.000000 3.000000 6.000000 9.000000 12.000000
  804. @end smallexample
  805. or for example, by disabling CPU devices:
  806. @smallexample
  807. % STARPU_NCPUS=0 ./vector_scal
  808. 0.000000 3.000000 6.000000 9.000000 12.000000
  809. @end smallexample
  810. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  811. see @ref{Using accelerators}):
  812. @smallexample
  813. % STARPU_NCUDA=0 ./vector_scal
  814. 0.000000 3.000000 6.000000 9.000000 12.000000
  815. @end smallexample
  816. @node Task and Worker Profiling
  817. @section Task and Worker Profiling
  818. A full example showing how to use the profiling API is available in
  819. the StarPU sources in the directory @code{examples/profiling/}.
  820. @cartouche
  821. @smallexample
  822. struct starpu_task *task = starpu_task_create();
  823. task->cl = &cl;
  824. task->synchronous = 1;
  825. /* We will destroy the task structure by hand so that we can
  826. * query the profiling info before the task is destroyed. */
  827. task->destroy = 0;
  828. /* Submit and wait for completion (since synchronous was set to 1) */
  829. starpu_task_submit(task);
  830. /* The task is finished, get profiling information */
  831. struct starpu_task_profiling_info *info = task->profiling_info;
  832. /* How much time did it take before the task started ? */
  833. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  834. /* How long was the task execution ? */
  835. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  836. /* We don't need the task structure anymore */
  837. starpu_task_destroy(task);
  838. @end smallexample
  839. @end cartouche
  840. @cartouche
  841. @smallexample
  842. /* Display the occupancy of all workers during the test */
  843. int worker;
  844. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  845. @{
  846. struct starpu_worker_profiling_info worker_info;
  847. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  848. STARPU_ASSERT(!ret);
  849. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  850. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  851. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  852. float executing_ratio = 100.0*executing_time/total_time;
  853. float sleeping_ratio = 100.0*sleeping_time/total_time;
  854. char workername[128];
  855. starpu_worker_get_name(worker, workername, 128);
  856. fprintf(stderr, "Worker %s:\n", workername);
  857. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  858. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  859. executing_ratio);
  860. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  861. sleeping_ratio);
  862. @}
  863. @end smallexample
  864. @end cartouche
  865. @node Partitioning Data
  866. @section Partitioning Data
  867. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  868. @cartouche
  869. @smallexample
  870. int vector[NX];
  871. starpu_data_handle handle;
  872. /* Declare data to StarPU */
  873. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  874. /* Partition the vector in PARTS sub-vectors */
  875. starpu_filter f =
  876. @{
  877. .filter_func = starpu_block_filter_func_vector,
  878. .nchildren = PARTS,
  879. .get_nchildren = NULL,
  880. .get_child_ops = NULL
  881. @};
  882. starpu_data_partition(handle, &f);
  883. @end smallexample
  884. @end cartouche
  885. @cartouche
  886. @smallexample
  887. /* Submit a task on each sub-vector */
  888. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  889. /* Get subdata number i (there is only 1 dimension) */
  890. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  891. struct starpu_task *task = starpu_task_create();
  892. task->buffers[0].handle = sub_handle;
  893. task->buffers[0].mode = STARPU_RW;
  894. task->cl = &cl;
  895. task->synchronous = 1;
  896. task->cl_arg = &factor;
  897. task->cl_arg_size = sizeof(factor);
  898. starpu_task_submit(task);
  899. @}
  900. @end smallexample
  901. @end cartouche
  902. Partitioning can be applied several times, see
  903. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  904. @node Performance model example
  905. @section Performance model example
  906. To achieve good scheduling, StarPU scheduling policies need to be able to
  907. estimate in advance the duration of a task. This is done by giving to codelets a
  908. performance model. There are several kinds of performance models.
  909. @itemize
  910. @item
  911. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  912. see for instance
  913. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  914. @item
  915. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  916. given set of data input/output sizes, the performance will always be about the
  917. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  918. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  919. few different sets of data input/output sizes. StarPU will then keep record of
  920. the average time of previous executions on the various processing units, and use
  921. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  922. for further executions. The following is a small code example.
  923. @cartouche
  924. @smallexample
  925. static struct starpu_perfmodel_t mult_perf_model = @{
  926. .type = STARPU_HISTORY_BASED,
  927. .symbol = "mult_perf_model"
  928. @};
  929. starpu_codelet cl = @{
  930. .where = STARPU_CPU,
  931. .cpu_func = cpu_mult,
  932. .nbuffers = 3,
  933. /* for the scheduling policy to be able to use performance models */
  934. .model = &mult_perf_model
  935. @};
  936. @end smallexample
  937. @end cartouche
  938. @item
  939. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  940. type). This still assumes performance regularity, but can work with various data
  941. input sizes, by applying a*n^b+c regression over observed execution times.
  942. @end itemize
  943. The same can be done for task power consumption estimation, by setting the
  944. @code{power_model} field the same way as the @code{model} field. Note: for
  945. now, the application has to give to the power consumption performance model
  946. a different name.
  947. @node Theoretical lower bound on execution time
  948. @section Theoretical lower bound on execution time
  949. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  950. bound for the execution time of a whole set of tasks. See for
  951. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  952. call @code{starpu_bound_start}, and after complete execution, call
  953. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  954. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  955. problem corresponding to the schedule of your tasks. Run it through
  956. @code{lp_solve} or any other linear programming solver, and that will give you a
  957. lower bound for the total execution time of your tasks. If StarPU was compiled
  958. with the glpk library installed, @code{starpu_bound_compute} can be used to
  959. solve it immediately and get the optimized minimum. Its @code{integer}
  960. parameter allows to decide whether integer resolution should be computed
  961. and returned.
  962. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  963. dependencies into account. It must be understood that the linear programming
  964. problem size is quadratic with the number of tasks and thus the time to solve it
  965. will be very long, it could be minutes for just a few dozen tasks. You should
  966. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  967. problem to MPS format and then use a better solver, @code{glpsol} might be
  968. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  969. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  970. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  971. of @code{lp_solve}. For instance, we often just use
  972. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  973. the @code{-gr} option can also be quite useful.
  974. Setting @code{deps} to 0 will only take into account the actual computations
  975. on processing units. It however still properly takes into account the varying
  976. performances of kernels and processing units, which is quite more accurate than
  977. just comparing StarPU performances with the fastest of the kernels being used.
  978. The @code{prio} parameter tells StarPU whether to simulate taking into account
  979. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  980. tasks before less prioritized tasks, to check to which extend this results
  981. to a less optimal solution. This increases even more computation time.
  982. Note that for simplicity, all this however doesn't take into account data
  983. transfers, which are assumed to be completely overlapped.
  984. @node Insert Task Utility
  985. @section Insert Task Utility
  986. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  987. the creation and submission of tasks.
  988. @emph{Prototype}:
  989. @code{int starpu_insert_task(starpu_codelet *cl, ...);}
  990. The arguments following the codelets can be of the following types:
  991. @itemize
  992. @item
  993. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  994. @item
  995. @code{STARPU_VALUE} followed by a pointer to a constant value and
  996. the size of the constant;
  997. @item
  998. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  999. @item
  1000. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1001. argument to the callback function;
  1002. @item
  1003. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1004. @end itemize
  1005. A call to @code{starpu_insert_task} will create and submit the task
  1006. based on the given arguments. The list of varying arguments has to be
  1007. ended by the value @code{0}.
  1008. Parameters to be passed to the codelet implementation are defined
  1009. through the type @code{STARPU_VALUE}. The function
  1010. @code{starpu_unpack_cl_args} must be called within the codelet
  1011. implementation to retrieve them.
  1012. Here the implementation of the codelet:
  1013. @smallexample
  1014. void func_cpu(void *descr[], void *_args)
  1015. @{
  1016. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1017. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1018. int ifactor;
  1019. float ffactor;
  1020. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1021. *x0 = *x0 * ifactor;
  1022. *x1 = *x1 * ffactor;
  1023. @}
  1024. starpu_codelet mycodelet = @{
  1025. .where = STARPU_CPU,
  1026. .cpu_func = func_cpu,
  1027. .nbuffers = 2
  1028. @};
  1029. @end smallexample
  1030. And the call to the @code{starpu_insert_task} wrapper:
  1031. @smallexample
  1032. starpu_insert_task(&mycodelet,
  1033. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1034. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1035. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1036. 0);
  1037. @end smallexample
  1038. The call to @code{starpu_insert_task} is equivalent to the following
  1039. code:
  1040. @smallexample
  1041. struct starpu_task *task = starpu_task_create();
  1042. task->cl = &mycodelet;
  1043. task->buffers[0].handle = data_handles[0];
  1044. task->buffers[0].mode = STARPU_RW;
  1045. task->buffers[1].handle = data_handles[1];
  1046. task->buffers[1].mode = STARPU_RW;
  1047. char *arg_buffer;
  1048. size_t arg_buffer_size;
  1049. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1050. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1051. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1052. 0);
  1053. task->cl_arg = arg_buffer;
  1054. task->cl_arg_size = arg_buffer_size;
  1055. int ret = starpu_task_submit(task);
  1056. @end smallexample
  1057. @node More examples
  1058. @section More examples
  1059. More examples are available in the StarPU sources in the @code{examples/}
  1060. directory. Simple examples include:
  1061. @table @asis
  1062. @item @code{incrementer/}:
  1063. Trivial incrementation test.
  1064. @item @code{basic_examples/}:
  1065. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1066. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1067. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1068. interface, and an example using the variable data interface.
  1069. @item @code{matvecmult/}:
  1070. OpenCL example from NVidia, adapted to StarPU.
  1071. @item @code{axpy/}:
  1072. AXPY CUBLAS operation adapted to StarPU.
  1073. @item @code{fortran/}:
  1074. Example of Fortran bindings.
  1075. @end table
  1076. More advanced examples include:
  1077. @table @asis
  1078. @item @code{filters/}:
  1079. Examples using filters, as shown in @ref{Partitioning Data}.
  1080. @item @code{lu/}:
  1081. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1082. @item @code{cholesky/}:
  1083. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1084. @end table
  1085. @c ---------------------------------------------------------------------
  1086. @c Performance options
  1087. @c ---------------------------------------------------------------------
  1088. @node Performance optimization
  1089. @chapter How to optimize performance with StarPU
  1090. TODO: improve!
  1091. @menu
  1092. * Data management::
  1093. * Task submission::
  1094. * Task priorities::
  1095. * Task scheduling policy::
  1096. * Task distribution vs Data transfer::
  1097. * Power-based scheduling::
  1098. * Profiling::
  1099. * CUDA-specific optimizations::
  1100. @end menu
  1101. Simply encapsulating application kernels into tasks already permits to
  1102. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1103. few additional changes are needed.
  1104. @node Data management
  1105. @section Data management
  1106. By default, StarPU does not enable data prefetching, because CUDA does
  1107. not announce when too many data transfers were scheduled and can thus block
  1108. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1109. .
  1110. By default, StarPU leaves replicates of data wherever they were used, in case they
  1111. will be re-used by other tasks, thus saving the data transfer time. When some
  1112. task modifies some data, all the other replicates are invalidated, and only the
  1113. processing unit will have a valid replicate of the data. If the application knows
  1114. that this data will not be re-used by further tasks, it should advise StarPU to
  1115. immediately replicate it to a desired list of memory nodes (given through a
  1116. bitmask). This can be understood like the write-through mode of CPU caches.
  1117. @example
  1118. starpu_data_set_wt_mask(img_handle, 1<<0);
  1119. @end example
  1120. will for instance request to always transfer a replicate into the main memory (node
  1121. 0), as bit 0 of the write-through bitmask is being set.
  1122. When the application allocates data, whenever possible it should use the
  1123. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1124. OpenCL to make the allocation itself and pin the corresponding allocated
  1125. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1126. transfer to overlap with computations.
  1127. @node Task submission
  1128. @section Task submission
  1129. To let StarPU make online optimizations, tasks should be submitted
  1130. asynchronously as much as possible. Ideally, all the tasks should be
  1131. submitted, and a mere @code{starpu_task_wait_for_all} call be done to wait for
  1132. termination. StarPU will then be able to rework the whole schedule, overlap
  1133. computation with communication, manage accelerator local memory usage, etc.
  1134. @node Task priorities
  1135. @section Task priorities
  1136. By default, StarPU will consider the tasks in the order they are submitted by
  1137. the application. If the application programmer knows that some tasks should
  1138. be performed in priority (for instance because their output is needed by many
  1139. other tasks and may thus be a bottleneck if not executed early enough), the
  1140. @code{priority} field of the task structure should be set to transmit the
  1141. priority information to StarPU.
  1142. @node Task scheduling policy
  1143. @section Task scheduling policy
  1144. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1145. because it provides correct load balance even if the application codelets do not
  1146. have performance models. If your application codelets have performance models,
  1147. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1148. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1149. the list of available schedulers.
  1150. Most schedulers are based on an estimation of codelet duration on each kind
  1151. of processing unit. For this to be possible, the application programmer needs
  1152. to configure a performance model for the codelets of the application (see
  1153. @ref{Performance model example} for instance). History-based performance models
  1154. use on-line calibration. StarPU will automatically calibrate codelets
  1155. which have never been calibrated yet. To force continuing calibration, use
  1156. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1157. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1158. Note: due to CUDA limitations, to be able to measure kernel duration,
  1159. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1160. disables data transfer / computation overlapping, and should thus not be used
  1161. for eventual benchmarks.
  1162. @node Task distribution vs Data transfer
  1163. @section Task distribution vs Data transfer
  1164. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1165. thus needs to find a balance between both. The target function that the
  1166. @code{dmda} scheduler of StarPU
  1167. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1168. @code{T_execution} is the estimated execution time of the codelet (usually
  1169. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1170. latter is however estimated based on bus calibration before execution start,
  1171. i.e. with an idle machine. You can force bus re-calibration by running
  1172. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1173. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1174. This is of course imprecise, but in practice, a rough estimation already gives
  1175. the good results that a precise estimation would give.
  1176. @node Power-based scheduling
  1177. @section Power-based scheduling
  1178. If the application can provide some power performance model (through
  1179. the @code{power_model} field of the codelet structure), StarPU will
  1180. take it into account when distributing tasks. The target function that
  1181. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1182. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1183. is the estimated task consumption in Joules. To tune this parameter, use
  1184. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1185. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1186. alpha and beta to zero permits to only take into account power consumption.
  1187. This is however not sufficient to correctly optimize power: the scheduler would
  1188. simply tend to run all computations on the most energy-conservative processing
  1189. unit. To account for the consumption of the whole machine (including idle
  1190. processing units), the idle power of the machine should be given by setting
  1191. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1192. be obtained from the machine power supplier.
  1193. The power actually consumed by the total execution can be displayed by setting
  1194. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1195. @node Profiling
  1196. @section Profiling
  1197. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1198. calling @code{starpu_profiling_status_set} from the source code.
  1199. Statistics on the execution can then be obtained by using @code{export
  1200. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1201. stats will include an approximation of the number of executed tasks even if
  1202. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1203. execution did happen on accelerators without penalizing performance with
  1204. the profiling overhead. More details on performance feedback are provided by the
  1205. next chapter.
  1206. @node CUDA-specific optimizations
  1207. @section CUDA-specific optimizations
  1208. Due to CUDA limitations, StarPU will have a hard time overlapping
  1209. communications and computations if the application does not use a dedicated
  1210. CUDA stream for its computations. StarPU provides one by the use of
  1211. @code{starpu_cuda_get_local_stream()}. For instance:
  1212. @example
  1213. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1214. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1215. @end example
  1216. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1217. @c ---------------------------------------------------------------------
  1218. @c Performance feedback
  1219. @c ---------------------------------------------------------------------
  1220. @node Performance feedback
  1221. @chapter Performance feedback
  1222. @menu
  1223. * On-line:: On-line performance feedback
  1224. * Off-line:: Off-line performance feedback
  1225. * Codelet performance:: Performance of codelets
  1226. @end menu
  1227. @node On-line
  1228. @section On-line performance feedback
  1229. @menu
  1230. * Enabling monitoring:: Enabling on-line performance monitoring
  1231. * Task feedback:: Per-task feedback
  1232. * Codelet feedback:: Per-codelet feedback
  1233. * Worker feedback:: Per-worker feedback
  1234. * Bus feedback:: Bus-related feedback
  1235. @end menu
  1236. @node Enabling monitoring
  1237. @subsection Enabling on-line performance monitoring
  1238. In order to enable online performance monitoring, the application can call
  1239. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1240. detect whether monitoring is already enabled or not by calling
  1241. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1242. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1243. can also be set to 1 to achieve the same effect.
  1244. Likewise, performance monitoring is stopped by calling
  1245. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1246. does not reset the performance counters so that the application may consult
  1247. them later on.
  1248. More details about the performance monitoring API are available in section
  1249. @ref{Profiling API}.
  1250. @node Task feedback
  1251. @subsection Per-task feedback
  1252. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1253. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1254. structure when a task terminates.
  1255. This structure is automatically destroyed when the task structure is destroyed,
  1256. either automatically or by calling @code{starpu_task_destroy}.
  1257. The @code{starpu_task_profiling_info} structure indicates the date when the
  1258. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1259. terminated (@code{end_time}), relative to the initialization of
  1260. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1261. that has executed the task (@code{workerid}).
  1262. These date are stored as @code{timespec} structures which the user may convert
  1263. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1264. function.
  1265. It it worth noting that the application may directly access this structure from
  1266. the callback executed at the end of the task. The @code{starpu_task} structure
  1267. associated to the callback currently being executed is indeed accessible with
  1268. the @code{starpu_get_current_task()} function.
  1269. @node Codelet feedback
  1270. @subsection Per-codelet feedback
  1271. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1272. an array of counters. The i-th entry of the array is incremented every time a
  1273. task implementing the codelet is executed on the i-th worker.
  1274. This array is not reinitialized when profiling is enabled or disabled.
  1275. @node Worker feedback
  1276. @subsection Per-worker feedback
  1277. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1278. function is a @code{starpu_worker_profiling_info} structure that gives
  1279. statistics about the specified worker. This structure specifies when StarPU
  1280. started collecting profiling information for that worker (@code{start_time}),
  1281. the duration of the profiling measurement interval (@code{total_time}), the
  1282. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1283. because there is no task to execute at all (@code{sleeping_time}), and the
  1284. number of tasks that were executed while profiling was enabled.
  1285. These values give an estimation of the proportion of time spent do real work,
  1286. and the time spent either sleeping because there are not enough executable
  1287. tasks or simply wasted in pure StarPU overhead.
  1288. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1289. information associated to a worker.
  1290. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1291. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1292. generate a graphic showing the evolution of these values during the time, for
  1293. the different workers.
  1294. @node Bus feedback
  1295. @subsection Bus-related feedback
  1296. TODO
  1297. @c how to enable/disable performance monitoring
  1298. @c what kind of information do we get ?
  1299. @node Off-line
  1300. @section Off-line performance feedback
  1301. @menu
  1302. * Generating traces:: Generating traces with FxT
  1303. * Gantt diagram:: Creating a Gantt Diagram
  1304. * DAG:: Creating a DAG with graphviz
  1305. * starpu-top:: Monitoring activity
  1306. @end menu
  1307. @node Generating traces
  1308. @subsection Generating traces with FxT
  1309. StarPU can use the FxT library (see
  1310. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1311. with a limited runtime overhead.
  1312. You can either get the FxT library from CVS (autotools are required):
  1313. @example
  1314. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1315. % ./bootstrap
  1316. @end example
  1317. If autotools are not available on your machine, or if you prefer to do so,
  1318. FxT's code is also available as a tarball:
  1319. @example
  1320. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1321. @end example
  1322. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1323. done following the standard procedure:
  1324. @example
  1325. % ./configure --prefix=$FXTDIR
  1326. % make
  1327. % make install
  1328. @end example
  1329. In order to have StarPU to generate traces, StarPU should be configured with
  1330. the @code{--with-fxt} option:
  1331. @example
  1332. $ ./configure --with-fxt=$FXTDIR
  1333. @end example
  1334. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1335. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1336. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1337. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1338. @code{/tmp/} directory by default, or by the directory specified by
  1339. the @code{STARPU_FXT_PREFIX} environment variable.
  1340. @node Gantt diagram
  1341. @subsection Creating a Gantt Diagram
  1342. When the FxT trace file @code{filename} has been generated, it is possible to
  1343. generate a trace in the Paje format by calling:
  1344. @example
  1345. % starpu_fxt_tool -i filename
  1346. @end example
  1347. This will create a @code{paje.trace} file in the current directory that can be
  1348. inspected with the ViTE trace visualizing open-source tool. More information
  1349. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1350. possible to open the @code{paje.trace} file with ViTE by using the following
  1351. command:
  1352. @example
  1353. % vite paje.trace
  1354. @end example
  1355. @node DAG
  1356. @subsection Creating a DAG with graphviz
  1357. When the FxT trace file @code{filename} has been generated, it is possible to
  1358. generate a task graph in the DOT format by calling:
  1359. @example
  1360. $ starpu_fxt_tool -i filename
  1361. @end example
  1362. This will create a @code{dag.dot} file in the current directory. This file is a
  1363. task graph described using the DOT language. It is possible to get a
  1364. graphical output of the graph by using the graphviz library:
  1365. @example
  1366. $ dot -Tpdf dag.dot -o output.pdf
  1367. @end example
  1368. @node starpu-top
  1369. @subsection Monitoring activity
  1370. When the FxT trace file @code{filename} has been generated, it is possible to
  1371. generate a activity trace by calling:
  1372. @example
  1373. $ starpu_fxt_tool -i filename
  1374. @end example
  1375. This will create an @code{activity.data} file in the current
  1376. directory. A profile of the application showing the activity of StarPU
  1377. during the execution of the program can be generated:
  1378. @example
  1379. $ starpu_top.sh activity.data
  1380. @end example
  1381. This will create a file named @code{activity.eps} in the current directory.
  1382. This picture is composed of two parts.
  1383. The first part shows the activity of the different workers. The green sections
  1384. indicate which proportion of the time was spent executed kernels on the
  1385. processing unit. The red sections indicate the proportion of time spent in
  1386. StartPU: an important overhead may indicate that the granularity may be too
  1387. low, and that bigger tasks may be appropriate to use the processing unit more
  1388. efficiently. The black sections indicate that the processing unit was blocked
  1389. because there was no task to process: this may indicate a lack of parallelism
  1390. which may be alleviated by creating more tasks when it is possible.
  1391. The second part of the @code{activity.eps} picture is a graph showing the
  1392. evolution of the number of tasks available in the system during the execution.
  1393. Ready tasks are shown in black, and tasks that are submitted but not
  1394. schedulable yet are shown in grey.
  1395. @node Codelet performance
  1396. @section Performance of codelets
  1397. The performance model of codelets can be examined by using the
  1398. @code{starpu_perfmodel_display} tool:
  1399. @example
  1400. $ starpu_perfmodel_display -l
  1401. file: <malloc_pinned.hannibal>
  1402. file: <starpu_slu_lu_model_21.hannibal>
  1403. file: <starpu_slu_lu_model_11.hannibal>
  1404. file: <starpu_slu_lu_model_22.hannibal>
  1405. file: <starpu_slu_lu_model_12.hannibal>
  1406. @end example
  1407. Here, the codelets of the lu example are available. We can examine the
  1408. performance of the 22 kernel:
  1409. @example
  1410. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1411. performance model for cpu
  1412. # hash size mean dev n
  1413. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1414. performance model for cuda_0
  1415. # hash size mean dev n
  1416. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1417. performance model for cuda_1
  1418. # hash size mean dev n
  1419. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1420. performance model for cuda_2
  1421. # hash size mean dev n
  1422. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1423. @end example
  1424. We can see that for the given size, over a sample of a few hundreds of
  1425. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1426. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1427. CPUs.
  1428. @c ---------------------------------------------------------------------
  1429. @c MPI support
  1430. @c ---------------------------------------------------------------------
  1431. @node StarPU MPI support
  1432. @chapter StarPU MPI support
  1433. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1434. @c ---------------------------------------------------------------------
  1435. @c Configuration options
  1436. @c ---------------------------------------------------------------------
  1437. @node Configuring StarPU
  1438. @chapter Configuring StarPU
  1439. @menu
  1440. * Compilation configuration::
  1441. * Execution configuration through environment variables::
  1442. @end menu
  1443. @node Compilation configuration
  1444. @section Compilation configuration
  1445. The following arguments can be given to the @code{configure} script.
  1446. @menu
  1447. * Common configuration::
  1448. * Configuring workers::
  1449. * Advanced configuration::
  1450. @end menu
  1451. @node Common configuration
  1452. @subsection Common configuration
  1453. @menu
  1454. * --enable-debug::
  1455. * --enable-fast::
  1456. * --enable-verbose::
  1457. * --enable-coverage::
  1458. @end menu
  1459. @node --enable-debug
  1460. @subsubsection @code{--enable-debug}
  1461. @table @asis
  1462. @item @emph{Description}:
  1463. Enable debugging messages.
  1464. @end table
  1465. @node --enable-fast
  1466. @subsubsection @code{--enable-fast}
  1467. @table @asis
  1468. @item @emph{Description}:
  1469. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1470. @end table
  1471. @node --enable-verbose
  1472. @subsubsection @code{--enable-verbose}
  1473. @table @asis
  1474. @item @emph{Description}:
  1475. Augment the verbosity of the debugging messages. This can be disabled
  1476. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1477. any value.
  1478. @smallexample
  1479. % STARPU_SILENT=1 ./vector_scal
  1480. @end smallexample
  1481. @end table
  1482. @node --enable-coverage
  1483. @subsubsection @code{--enable-coverage}
  1484. @table @asis
  1485. @item @emph{Description}:
  1486. Enable flags for the @code{gcov} coverage tool.
  1487. @end table
  1488. @node Configuring workers
  1489. @subsection Configuring workers
  1490. @menu
  1491. * --enable-nmaxcpus::
  1492. * --disable-cpu::
  1493. * --enable-maxcudadev::
  1494. * --disable-cuda::
  1495. * --with-cuda-dir::
  1496. * --with-cuda-include-dir::
  1497. * --with-cuda-lib-dir::
  1498. * --enable-maxopencldev::
  1499. * --disable-opencl::
  1500. * --with-opencl-dir::
  1501. * --with-opencl-include-dir::
  1502. * --with-opencl-lib-dir::
  1503. * --enable-gordon::
  1504. * --with-gordon-dir::
  1505. @end menu
  1506. @node --enable-nmaxcpus
  1507. @subsubsection @code{--enable-nmaxcpus=<number>}
  1508. @table @asis
  1509. @item @emph{Description}:
  1510. Defines the maximum number of CPU cores that StarPU will support, then
  1511. available as the @code{STARPU_NMAXCPUS} macro.
  1512. @end table
  1513. @node --disable-cpu
  1514. @subsubsection @code{--disable-cpu}
  1515. @table @asis
  1516. @item @emph{Description}:
  1517. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1518. @end table
  1519. @node --enable-maxcudadev
  1520. @subsubsection @code{--enable-maxcudadev=<number>}
  1521. @table @asis
  1522. @item @emph{Description}:
  1523. Defines the maximum number of CUDA devices that StarPU will support, then
  1524. available as the @code{STARPU_MAXCUDADEVS} macro.
  1525. @end table
  1526. @node --disable-cuda
  1527. @subsubsection @code{--disable-cuda}
  1528. @table @asis
  1529. @item @emph{Description}:
  1530. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1531. @end table
  1532. @node --with-cuda-dir
  1533. @subsubsection @code{--with-cuda-dir=<path>}
  1534. @table @asis
  1535. @item @emph{Description}:
  1536. Specify the directory where CUDA is installed. This directory should notably contain
  1537. @code{include/cuda.h}.
  1538. @end table
  1539. @node --with-cuda-include-dir
  1540. @subsubsection @code{--with-cuda-include-dir=<path>}
  1541. @table @asis
  1542. @item @emph{Description}:
  1543. Specify the directory where CUDA headers are installed. This directory should
  1544. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1545. value given to @code{--with-cuda-dir}.
  1546. @end table
  1547. @node --with-cuda-lib-dir
  1548. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1549. @table @asis
  1550. @item @emph{Description}:
  1551. Specify the directory where the CUDA library is installed. This directory should
  1552. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1553. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1554. @end table
  1555. @node --enable-maxopencldev
  1556. @subsubsection @code{--enable-maxopencldev=<number>}
  1557. @table @asis
  1558. @item @emph{Description}:
  1559. Defines the maximum number of OpenCL devices that StarPU will support, then
  1560. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1561. @end table
  1562. @node --disable-opencl
  1563. @subsubsection @code{--disable-opencl}
  1564. @table @asis
  1565. @item @emph{Description}:
  1566. Disable the use of OpenCL, even if the SDK is detected.
  1567. @end table
  1568. @node --with-opencl-dir
  1569. @subsubsection @code{--with-opencl-dir=<path>}
  1570. @table @asis
  1571. @item @emph{Description}:
  1572. Specify the location of the OpenCL SDK. This directory should notably contain
  1573. @code{include/CL/cl.h}.
  1574. @end table
  1575. @node --with-opencl-include-dir
  1576. @subsubsection @code{--with-opencl-include-dir=<path>}
  1577. @table @asis
  1578. @item @emph{Description}:
  1579. Specify the location of OpenCL headers. This directory should notably contain
  1580. @code{CL/cl.h}. This defaults to
  1581. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1582. @end table
  1583. @node --with-opencl-lib-dir
  1584. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1585. @table @asis
  1586. @item @emph{Description}:
  1587. Specify the location of the OpenCL library. This directory should notably
  1588. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1589. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1590. @end table
  1591. @node --enable-gordon
  1592. @subsubsection @code{--enable-gordon}
  1593. @table @asis
  1594. @item @emph{Description}:
  1595. Enable the use of the Gordon runtime for Cell SPUs.
  1596. @c TODO: rather default to enabled when detected
  1597. @end table
  1598. @node --with-gordon-dir
  1599. @subsubsection @code{--with-gordon-dir=<path>}
  1600. @table @asis
  1601. @item @emph{Description}:
  1602. Specify the location of the Gordon SDK.
  1603. @end table
  1604. @node Advanced configuration
  1605. @subsection Advanced configuration
  1606. @menu
  1607. * --enable-perf-debug::
  1608. * --enable-model-debug::
  1609. * --enable-stats::
  1610. * --enable-maxbuffers::
  1611. * --enable-allocation-cache::
  1612. * --enable-opengl-render::
  1613. * --enable-blas-lib::
  1614. * --with-magma::
  1615. * --with-fxt::
  1616. * --with-perf-model-dir::
  1617. * --with-mpicc::
  1618. * --with-goto-dir::
  1619. * --with-atlas-dir::
  1620. * --with-mkl-cflags::
  1621. * --with-mkl-ldflags::
  1622. @end menu
  1623. @node --enable-perf-debug
  1624. @subsubsection @code{--enable-perf-debug}
  1625. @table @asis
  1626. @item @emph{Description}:
  1627. Enable performance debugging.
  1628. @end table
  1629. @node --enable-model-debug
  1630. @subsubsection @code{--enable-model-debug}
  1631. @table @asis
  1632. @item @emph{Description}:
  1633. Enable performance model debugging.
  1634. @end table
  1635. @node --enable-stats
  1636. @subsubsection @code{--enable-stats}
  1637. @table @asis
  1638. @item @emph{Description}:
  1639. Enable statistics.
  1640. @end table
  1641. @node --enable-maxbuffers
  1642. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1643. @table @asis
  1644. @item @emph{Description}:
  1645. Define the maximum number of buffers that tasks will be able to take
  1646. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1647. @end table
  1648. @node --enable-allocation-cache
  1649. @subsubsection @code{--enable-allocation-cache}
  1650. @table @asis
  1651. @item @emph{Description}:
  1652. Enable the use of a data allocation cache to avoid the cost of it with
  1653. CUDA. Still experimental.
  1654. @end table
  1655. @node --enable-opengl-render
  1656. @subsubsection @code{--enable-opengl-render}
  1657. @table @asis
  1658. @item @emph{Description}:
  1659. Enable the use of OpenGL for the rendering of some examples.
  1660. @c TODO: rather default to enabled when detected
  1661. @end table
  1662. @node --enable-blas-lib
  1663. @subsubsection @code{--enable-blas-lib=<name>}
  1664. @table @asis
  1665. @item @emph{Description}:
  1666. Specify the blas library to be used by some of the examples. The
  1667. library has to be 'atlas' or 'goto'.
  1668. @end table
  1669. @node --with-magma
  1670. @subsubsection @code{--with-magma=<path>}
  1671. @table @asis
  1672. @item @emph{Description}:
  1673. Specify where magma is installed. This directory should notably contain
  1674. @code{include/magmablas.h}.
  1675. @end table
  1676. @node --with-fxt
  1677. @subsubsection @code{--with-fxt=<path>}
  1678. @table @asis
  1679. @item @emph{Description}:
  1680. Specify the location of FxT (for generating traces and rendering them
  1681. using ViTE). This directory should notably contain
  1682. @code{include/fxt/fxt.h}.
  1683. @c TODO add ref to other section
  1684. @end table
  1685. @node --with-perf-model-dir
  1686. @subsubsection @code{--with-perf-model-dir=<dir>}
  1687. @table @asis
  1688. @item @emph{Description}:
  1689. Specify where performance models should be stored (instead of defaulting to the
  1690. current user's home).
  1691. @end table
  1692. @node --with-mpicc
  1693. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1694. @table @asis
  1695. @item @emph{Description}:
  1696. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1697. @end table
  1698. @node --with-goto-dir
  1699. @subsubsection @code{--with-goto-dir=<dir>}
  1700. @table @asis
  1701. @item @emph{Description}:
  1702. Specify the location of GotoBLAS.
  1703. @end table
  1704. @node --with-atlas-dir
  1705. @subsubsection @code{--with-atlas-dir=<dir>}
  1706. @table @asis
  1707. @item @emph{Description}:
  1708. Specify the location of ATLAS. This directory should notably contain
  1709. @code{include/cblas.h}.
  1710. @end table
  1711. @node --with-mkl-cflags
  1712. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1713. @table @asis
  1714. @item @emph{Description}:
  1715. Specify the compilation flags for the MKL Library.
  1716. @end table
  1717. @node --with-mkl-ldflags
  1718. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1719. @table @asis
  1720. @item @emph{Description}:
  1721. Specify the linking flags for the MKL Library. Note that the
  1722. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1723. website provides a script to determine the linking flags.
  1724. @end table
  1725. @c ---------------------------------------------------------------------
  1726. @c Environment variables
  1727. @c ---------------------------------------------------------------------
  1728. @node Execution configuration through environment variables
  1729. @section Execution configuration through environment variables
  1730. @menu
  1731. * Workers:: Configuring workers
  1732. * Scheduling:: Configuring the Scheduling engine
  1733. * Misc:: Miscellaneous and debug
  1734. @end menu
  1735. Note: the values given in @code{starpu_conf} structure passed when
  1736. calling @code{starpu_init} will override the values of the environment
  1737. variables.
  1738. @node Workers
  1739. @subsection Configuring workers
  1740. @menu
  1741. * STARPU_NCPUS:: Number of CPU workers
  1742. * STARPU_NCUDA:: Number of CUDA workers
  1743. * STARPU_NOPENCL:: Number of OpenCL workers
  1744. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1745. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1746. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1747. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1748. @end menu
  1749. @node STARPU_NCPUS
  1750. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1751. @table @asis
  1752. @item @emph{Description}:
  1753. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1754. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1755. the accelerators.
  1756. @end table
  1757. @node STARPU_NCUDA
  1758. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1759. @table @asis
  1760. @item @emph{Description}:
  1761. Specify the number of CUDA devices that StarPU can use. If
  1762. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1763. possible to select which CUDA devices should be used by the means of the
  1764. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1765. create as many CUDA workers as there are CUDA devices.
  1766. @end table
  1767. @node STARPU_NOPENCL
  1768. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1769. @table @asis
  1770. @item @emph{Description}:
  1771. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1772. @end table
  1773. @node STARPU_NGORDON
  1774. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1775. @table @asis
  1776. @item @emph{Description}:
  1777. Specify the number of SPUs that StarPU can use.
  1778. @end table
  1779. @node STARPU_WORKERS_CPUID
  1780. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1781. @table @asis
  1782. @item @emph{Description}:
  1783. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1784. specifies on which logical CPU the different workers should be
  1785. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1786. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1787. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1788. determined by the OS, or provided by the @code{hwloc} library in case it is
  1789. available.
  1790. Note that the first workers correspond to the CUDA workers, then come the
  1791. OpenCL and the SPU, and finally the CPU workers. For example if
  1792. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1793. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1794. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1795. the logical CPUs #1 and #3 will be used by the CPU workers.
  1796. If the number of workers is larger than the array given in
  1797. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1798. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1799. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1800. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1801. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1802. @end table
  1803. @node STARPU_WORKERS_CUDAID
  1804. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1805. @table @asis
  1806. @item @emph{Description}:
  1807. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1808. possible to select which CUDA devices should be used by StarPU. On a machine
  1809. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1810. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1811. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1812. the one reported by CUDA).
  1813. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1814. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1815. @end table
  1816. @node STARPU_WORKERS_OPENCLID
  1817. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1818. @table @asis
  1819. @item @emph{Description}:
  1820. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1821. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1822. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1823. @end table
  1824. @node Scheduling
  1825. @subsection Configuring the Scheduling engine
  1826. @menu
  1827. * STARPU_SCHED:: Scheduling policy
  1828. * STARPU_CALIBRATE:: Calibrate performance models
  1829. * STARPU_PREFETCH:: Use data prefetch
  1830. * STARPU_SCHED_ALPHA:: Computation factor
  1831. * STARPU_SCHED_BETA:: Communication factor
  1832. @end menu
  1833. @node STARPU_SCHED
  1834. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1835. @table @asis
  1836. @item @emph{Description}:
  1837. This chooses between the different scheduling policies proposed by StarPU: work
  1838. random, stealing, greedy, with performance models, etc.
  1839. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1840. @end table
  1841. @node STARPU_CALIBRATE
  1842. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1843. @table @asis
  1844. @item @emph{Description}:
  1845. If this variable is set to 1, the performance models are calibrated during
  1846. the execution. If it is set to 2, the previous values are dropped to restart
  1847. calibration from scratch. Setting this variable to 0 disable calibration, this
  1848. is the default behaviour.
  1849. Note: this currently only applies to dm and dmda scheduling policies.
  1850. @end table
  1851. @node STARPU_PREFETCH
  1852. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1853. @table @asis
  1854. @item @emph{Description}:
  1855. This variable indicates whether data prefetching should be enabled (0 means
  1856. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1857. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1858. advance, so that data is already present on the GPU when the task starts. As a
  1859. result, computation and data transfers are overlapped.
  1860. @end table
  1861. @node STARPU_SCHED_ALPHA
  1862. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1863. @table @asis
  1864. @item @emph{Description}:
  1865. To estimate the cost of a task StarPU takes into account the estimated
  1866. computation time (obtained thanks to performance models). The alpha factor is
  1867. the coefficient to be applied to it before adding it to the communication part.
  1868. @end table
  1869. @node STARPU_SCHED_BETA
  1870. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1871. @table @asis
  1872. @item @emph{Description}:
  1873. To estimate the cost of a task StarPU takes into account the estimated
  1874. data transfer time (obtained thanks to performance models). The beta factor is
  1875. the coefficient to be applied to it before adding it to the computation part.
  1876. @end table
  1877. @node Misc
  1878. @subsection Miscellaneous and debug
  1879. @menu
  1880. * STARPU_SILENT:: Disable verbose mode
  1881. * STARPU_LOGFILENAME:: Select debug file name
  1882. * STARPU_FXT_PREFIX:: FxT trace location
  1883. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1884. @end menu
  1885. @node STARPU_SILENT
  1886. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1887. @table @asis
  1888. @item @emph{Description}:
  1889. This variable allows to disable verbose mode at runtime when StarPU
  1890. has been configured with the option @code{--enable-verbose}.
  1891. @end table
  1892. @node STARPU_LOGFILENAME
  1893. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1894. @table @asis
  1895. @item @emph{Description}:
  1896. This variable specifies in which file the debugging output should be saved to.
  1897. @end table
  1898. @node STARPU_FXT_PREFIX
  1899. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1900. @table @asis
  1901. @item @emph{Description}
  1902. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1903. @end table
  1904. @node STARPU_LIMIT_GPU_MEM
  1905. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1906. @table @asis
  1907. @item @emph{Description}
  1908. This variable specifies the maximum number of megabytes that should be
  1909. available to the application on each GPUs. In case this value is smaller than
  1910. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1911. on the device. This variable is intended to be used for experimental purposes
  1912. as it emulates devices that have a limited amount of memory.
  1913. @end table
  1914. @c ---------------------------------------------------------------------
  1915. @c StarPU API
  1916. @c ---------------------------------------------------------------------
  1917. @node StarPU API
  1918. @chapter StarPU API
  1919. @menu
  1920. * Initialization and Termination:: Initialization and Termination methods
  1921. * Workers' Properties:: Methods to enumerate workers' properties
  1922. * Data Library:: Methods to manipulate data
  1923. * Data Interfaces::
  1924. * Data Partition::
  1925. * Codelets and Tasks:: Methods to construct tasks
  1926. * Explicit Dependencies:: Explicit Dependencies
  1927. * Implicit Data Dependencies:: Implicit Data Dependencies
  1928. * Performance Model API::
  1929. * Profiling API:: Profiling API
  1930. * CUDA extensions:: CUDA extensions
  1931. * OpenCL extensions:: OpenCL extensions
  1932. * Cell extensions:: Cell extensions
  1933. * Miscellaneous helpers::
  1934. @end menu
  1935. @node Initialization and Termination
  1936. @section Initialization and Termination
  1937. @menu
  1938. * starpu_init:: Initialize StarPU
  1939. * struct starpu_conf:: StarPU runtime configuration
  1940. * starpu_conf_init:: Initialize starpu_conf structure
  1941. * starpu_shutdown:: Terminate StarPU
  1942. @end menu
  1943. @node starpu_init
  1944. @subsection @code{starpu_init} -- Initialize StarPU
  1945. @table @asis
  1946. @item @emph{Description}:
  1947. This is StarPU initialization method, which must be called prior to any other
  1948. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1949. policy, number of cores, ...) by passing a non-null argument. Default
  1950. configuration is used if the passed argument is @code{NULL}.
  1951. @item @emph{Return value}:
  1952. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1953. indicates that no worker was available (so that StarPU was not initialized).
  1954. @item @emph{Prototype}:
  1955. @code{int starpu_init(struct starpu_conf *conf);}
  1956. @end table
  1957. @node struct starpu_conf
  1958. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1959. @table @asis
  1960. @item @emph{Description}:
  1961. This structure is passed to the @code{starpu_init} function in order
  1962. to configure StarPU.
  1963. When the default value is used, StarPU automatically selects the number
  1964. of processing units and takes the default scheduling policy. This parameter
  1965. overwrites the equivalent environment variables.
  1966. @item @emph{Fields}:
  1967. @table @asis
  1968. @item @code{sched_policy_name} (default = NULL):
  1969. This is the name of the scheduling policy. This can also be specified with the
  1970. @code{STARPU_SCHED} environment variable.
  1971. @item @code{sched_policy} (default = NULL):
  1972. This is the definition of the scheduling policy. This field is ignored
  1973. if @code{sched_policy_name} is set.
  1974. @item @code{ncpus} (default = -1):
  1975. This is the number of CPU cores that StarPU can use. This can also be
  1976. specified with the @code{STARPU_NCPUS} environment variable.
  1977. @item @code{ncuda} (default = -1):
  1978. This is the number of CUDA devices that StarPU can use. This can also be
  1979. specified with the @code{STARPU_NCUDA} environment variable.
  1980. @item @code{nopencl} (default = -1):
  1981. This is the number of OpenCL devices that StarPU can use. This can also be
  1982. specified with the @code{STARPU_NOPENCL} environment variable.
  1983. @item @code{nspus} (default = -1):
  1984. This is the number of Cell SPUs that StarPU can use. This can also be
  1985. specified with the @code{STARPU_NGORDON} environment variable.
  1986. @item @code{use_explicit_workers_bindid} (default = 0)
  1987. If this flag is set, the @code{workers_bindid} array indicates where the
  1988. different workers are bound, otherwise StarPU automatically selects where to
  1989. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1990. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1991. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1992. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1993. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1994. where to bind the different workers. The i-th entry of the
  1995. @code{workers_bindid} indicates the logical identifier of the processor which
  1996. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1997. either determined by the OS, or provided by the @code{hwloc} library in case it
  1998. is available.
  1999. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2000. ignored.
  2001. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2002. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2003. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2004. CUDA devices in a round-robin fashion.
  2005. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2006. ignored.
  2007. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2008. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2009. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2010. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2011. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2012. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2013. OpenCL devices in a round-robin fashion.
  2014. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2015. @item @code{calibrate} (default = 0):
  2016. If this flag is set, StarPU will calibrate the performance models when
  2017. executing tasks. If this value is equal to -1, the default value is used. The
  2018. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2019. variable when it is set.
  2020. @end table
  2021. @end table
  2022. @node starpu_conf_init
  2023. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2024. @table @asis
  2025. This function initializes the @code{starpu_conf} structure passed as argument
  2026. with the default values. In case some configuration parameters are already
  2027. specified through environment variables, @code{starpu_conf_init} initializes
  2028. the fields of the structure according to the environment variables. For
  2029. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2030. @code{.ncuda} field of the structure passed as argument.
  2031. @item @emph{Return value}:
  2032. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2033. indicates that the argument was NULL.
  2034. @item @emph{Prototype}:
  2035. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2036. @end table
  2037. @node starpu_shutdown
  2038. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2039. @table @asis
  2040. @item @emph{Description}:
  2041. This is StarPU termination method. It must be called at the end of the
  2042. application: statistics and other post-mortem debugging information are not
  2043. guaranteed to be available until this method has been called.
  2044. @item @emph{Prototype}:
  2045. @code{void starpu_shutdown(void);}
  2046. @end table
  2047. @node Workers' Properties
  2048. @section Workers' Properties
  2049. @menu
  2050. * starpu_worker_get_count:: Get the number of processing units
  2051. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2052. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2053. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2054. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2055. * starpu_worker_get_id:: Get the identifier of the current worker
  2056. * starpu_worker_get_devid:: Get the device identifier of a worker
  2057. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2058. * starpu_worker_get_name:: Get the name of a worker
  2059. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2060. @end menu
  2061. @node starpu_worker_get_count
  2062. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2063. @table @asis
  2064. @item @emph{Description}:
  2065. This function returns the number of workers (i.e. processing units executing
  2066. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2067. @item @emph{Prototype}:
  2068. @code{unsigned starpu_worker_get_count(void);}
  2069. @end table
  2070. @node starpu_cpu_worker_get_count
  2071. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2072. @table @asis
  2073. @item @emph{Description}:
  2074. This function returns the number of CPUs controlled by StarPU. The returned
  2075. value should be at most @code{STARPU_NMAXCPUS}.
  2076. @item @emph{Prototype}:
  2077. @code{unsigned starpu_cpu_worker_get_count(void);}
  2078. @end table
  2079. @node starpu_cuda_worker_get_count
  2080. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2081. @table @asis
  2082. @item @emph{Description}:
  2083. This function returns the number of CUDA devices controlled by StarPU. The returned
  2084. value should be at most @code{STARPU_MAXCUDADEVS}.
  2085. @item @emph{Prototype}:
  2086. @code{unsigned starpu_cuda_worker_get_count(void);}
  2087. @end table
  2088. @node starpu_opencl_worker_get_count
  2089. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2090. @table @asis
  2091. @item @emph{Description}:
  2092. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2093. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2094. @item @emph{Prototype}:
  2095. @code{unsigned starpu_opencl_worker_get_count(void);}
  2096. @end table
  2097. @node starpu_spu_worker_get_count
  2098. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2099. @table @asis
  2100. @item @emph{Description}:
  2101. This function returns the number of Cell SPUs controlled by StarPU.
  2102. @item @emph{Prototype}:
  2103. @code{unsigned starpu_opencl_worker_get_count(void);}
  2104. @end table
  2105. @node starpu_worker_get_id
  2106. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2107. @table @asis
  2108. @item @emph{Description}:
  2109. This function returns the identifier of the worker associated to the calling
  2110. thread. The returned value is either -1 if the current context is not a StarPU
  2111. worker (i.e. when called from the application outside a task or a callback), or
  2112. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2113. @item @emph{Prototype}:
  2114. @code{int starpu_worker_get_id(void);}
  2115. @end table
  2116. @node starpu_worker_get_devid
  2117. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2118. @table @asis
  2119. @item @emph{Description}:
  2120. This functions returns the device id of the worker associated to an identifier
  2121. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2122. CUDA worker, this device identifier is the logical device identifier exposed by
  2123. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2124. identifier of a CPU worker is the logical identifier of the core on which the
  2125. worker was bound; this identifier is either provided by the OS or by the
  2126. @code{hwloc} library in case it is available.
  2127. @item @emph{Prototype}:
  2128. @code{int starpu_worker_get_devid(int id);}
  2129. @end table
  2130. @node starpu_worker_get_type
  2131. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2132. @table @asis
  2133. @item @emph{Description}:
  2134. This function returns the type of worker associated to an identifier (as
  2135. returned by the @code{starpu_worker_get_id} function). The returned value
  2136. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2137. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2138. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2139. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2140. identifier is unspecified.
  2141. @item @emph{Prototype}:
  2142. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2143. @end table
  2144. @node starpu_worker_get_name
  2145. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2146. @table @asis
  2147. @item @emph{Description}:
  2148. StarPU associates a unique human readable string to each processing unit. This
  2149. function copies at most the @code{maxlen} first bytes of the unique string
  2150. associated to a worker identified by its identifier @code{id} into the
  2151. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2152. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2153. function on an invalid identifier results in an unspecified behaviour.
  2154. @item @emph{Prototype}:
  2155. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2156. @end table
  2157. @node starpu_worker_get_memory_node
  2158. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2159. @table @asis
  2160. @item @emph{Description}:
  2161. This function returns the identifier of the memory node associated to the
  2162. worker identified by @code{workerid}.
  2163. @item @emph{Prototype}:
  2164. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2165. @end table
  2166. @node Data Library
  2167. @section Data Library
  2168. This section describes the data management facilities provided by StarPU.
  2169. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2170. design their own data interfaces if required.
  2171. @menu
  2172. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2173. * starpu_access_mode:: Data access mode
  2174. * unsigned memory_node:: Memory node
  2175. * starpu_data_handle:: StarPU opaque data handle
  2176. * void *interface:: StarPU data interface
  2177. * starpu_data_register:: Register a piece of data to StarPU
  2178. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2179. * starpu_data_invalidate:: Invalidate all data replicates
  2180. * starpu_data_acquire:: Access registered data from the application
  2181. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2182. * starpu_data_release:: Release registered data from the application
  2183. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2184. @end menu
  2185. @node starpu_data_malloc_pinned_if_possible
  2186. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2187. @table @asis
  2188. @item @emph{Description}:
  2189. This function allocates data of the given size. It will also try to pin it in
  2190. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2191. thus permit data transfer and computation overlapping.
  2192. @item @emph{Prototype}:
  2193. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2194. @end table
  2195. @node starpu_access_mode
  2196. @subsection @code{starpu_access_mode} -- Data access mode
  2197. This datatype describes a data access mode. The different available modes are:
  2198. @table @asis
  2199. @table @asis
  2200. @item @code{STARPU_R} read-only mode.
  2201. @item @code{STARPU_W} write-only mode.
  2202. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2203. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2204. @end table
  2205. @end table
  2206. @node unsigned memory_node
  2207. @subsection @code{unsigned memory_node} -- Memory node
  2208. @table @asis
  2209. @item @emph{Description}:
  2210. Every worker is associated to a memory node which is a logical abstraction of
  2211. the address space from which the processing unit gets its data. For instance,
  2212. the memory node associated to the different CPU workers represents main memory
  2213. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2214. Every memory node is identified by a logical index which is accessible from the
  2215. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2216. to StarPU, the specified memory node indicates where the piece of data
  2217. initially resides (we also call this memory node the home node of a piece of
  2218. data).
  2219. @end table
  2220. @node starpu_data_handle
  2221. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2222. @table @asis
  2223. @item @emph{Description}:
  2224. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2225. data. Once a piece of data has been registered to StarPU, it is associated to a
  2226. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2227. over the entire machine, so that we can maintain data consistency and locate
  2228. data replicates for instance.
  2229. @end table
  2230. @node void *interface
  2231. @subsection @code{void *interface} -- StarPU data interface
  2232. @table @asis
  2233. @item @emph{Description}:
  2234. Data management is done at a high-level in StarPU: rather than accessing a mere
  2235. list of contiguous buffers, the tasks may manipulate data that are described by
  2236. a high-level construct which we call data interface.
  2237. An example of data interface is the "vector" interface which describes a
  2238. contiguous data array on a spefic memory node. This interface is a simple
  2239. structure containing the number of elements in the array, the size of the
  2240. elements, and the address of the array in the appropriate address space (this
  2241. address may be invalid if there is no valid copy of the array in the memory
  2242. node). More informations on the data interfaces provided by StarPU are
  2243. given in @ref{Data Interfaces}.
  2244. When a piece of data managed by StarPU is used by a task, the task
  2245. implementation is given a pointer to an interface describing a valid copy of
  2246. the data that is accessible from the current processing unit.
  2247. @end table
  2248. @node starpu_data_register
  2249. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2250. @table @asis
  2251. @item @emph{Description}:
  2252. Register a piece of data into the handle located at the @code{handleptr}
  2253. address. The @code{interface} buffer contains the initial description of the
  2254. data in the home node. The @code{ops} argument is a pointer to a structure
  2255. describing the different methods used to manipulate this type of interface. See
  2256. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2257. If @code{home_node} is -1, StarPU will automatically
  2258. allocate the memory when it is used for the
  2259. first time in write-only mode. Once such data handle has been automatically
  2260. allocated, it is possible to access it using any access mode.
  2261. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2262. matrix) which can be registered by the means of helper functions (e.g.
  2263. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2264. @item @emph{Prototype}:
  2265. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2266. uint32_t home_node,
  2267. void *interface,
  2268. struct starpu_data_interface_ops_t *ops);}
  2269. @end table
  2270. @node starpu_data_unregister
  2271. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2272. @table @asis
  2273. @item @emph{Description}:
  2274. This function unregisters a data handle from StarPU. If the data was
  2275. automatically allocated by StarPU because the home node was -1, all
  2276. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2277. is put back into the home node in the buffer that was initially registered.
  2278. Using a data handle that has been unregistered from StarPU results in an
  2279. undefined behaviour.
  2280. @item @emph{Prototype}:
  2281. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2282. @end table
  2283. @node starpu_data_invalidate
  2284. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2285. @table @asis
  2286. @item @emph{Description}:
  2287. Destroy all replicates of the data handle. After data invalidation, the first
  2288. access to the handle must be performed in write-only mode. Accessing an
  2289. invalidated data in read-mode results in undefined behaviour.
  2290. @item @emph{Prototype}:
  2291. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2292. @end table
  2293. @c TODO create a specific sections about user interaction with the DSM ?
  2294. @node starpu_data_acquire
  2295. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2296. @table @asis
  2297. @item @emph{Description}:
  2298. The application must call this function prior to accessing registered data from
  2299. main memory outside tasks. StarPU ensures that the application will get an
  2300. up-to-date copy of the data in main memory located where the data was
  2301. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2302. be consistent with the access mode specified in the @code{mode} argument.
  2303. @code{starpu_data_release} must be called once the application does not need to
  2304. access the piece of data anymore.
  2305. Note that implicit data dependencies are also enforced by
  2306. @code{starpu_data_acquire} in case they are enabled.
  2307. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2308. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2309. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2310. @item @emph{Prototype}:
  2311. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2312. @end table
  2313. @node starpu_data_acquire_cb
  2314. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2315. @table @asis
  2316. @item @emph{Description}:
  2317. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2318. @code{starpu_data_release}. When the data specified in the first argument is
  2319. available in the appropriate access mode, the callback function is executed.
  2320. The application may access the requested data during the execution of this
  2321. callback. The callback function must call @code{starpu_data_release} once the
  2322. application does not need to access the piece of data anymore.
  2323. Note that implicit data dependencies are also enforced by
  2324. @code{starpu_data_acquire_cb} in case they are enabled.
  2325. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2326. be called from task callbacks. Upon successful completion, this function
  2327. returns 0.
  2328. @item @emph{Prototype}:
  2329. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2330. @end table
  2331. @node starpu_data_release
  2332. @subsection @code{starpu_data_release} -- Release registered data from the application
  2333. @table @asis
  2334. @item @emph{Description}:
  2335. This function releases the piece of data acquired by the application either by
  2336. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2337. @item @emph{Prototype}:
  2338. @code{void starpu_data_release(starpu_data_handle handle);}
  2339. @end table
  2340. @node starpu_data_set_wt_mask
  2341. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2342. @table @asis
  2343. @item @emph{Description}:
  2344. This function sets the write-through mask of a given data, i.e. a bitmask of
  2345. nodes where the data should be always replicated after modification.
  2346. @item @emph{Prototype}:
  2347. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2348. @end table
  2349. @node Data Interfaces
  2350. @section Data Interfaces
  2351. @menu
  2352. * Variable Interface::
  2353. * Vector Interface::
  2354. * Matrix Interface::
  2355. * 3D Matrix Interface::
  2356. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2357. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2358. @end menu
  2359. @node Variable Interface
  2360. @subsection Variable Interface
  2361. @table @asis
  2362. @item @emph{Description}:
  2363. This variant of @code{starpu_data_register} uses the variable interface,
  2364. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2365. and @code{elemsize} is the size of the variable.
  2366. @item @emph{Prototype}:
  2367. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2368. uint32_t home_node,
  2369. uintptr_t ptr, size_t elemsize);}
  2370. @item @emph{Example}:
  2371. @cartouche
  2372. @smallexample
  2373. float var;
  2374. starpu_data_handle var_handle;
  2375. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2376. @end smallexample
  2377. @end cartouche
  2378. @end table
  2379. @node Vector Interface
  2380. @subsection Vector Interface
  2381. @table @asis
  2382. @item @emph{Description}:
  2383. This variant of @code{starpu_data_register} uses the vector interface,
  2384. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2385. element in the home node. @code{nx} is the number of elements in the vector.
  2386. @code{elemsize} is the size of each element.
  2387. @item @emph{Prototype}:
  2388. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2389. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2390. @item @emph{Example}:
  2391. @cartouche
  2392. @smallexample
  2393. float vector[NX];
  2394. starpu_data_handle vector_handle;
  2395. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2396. sizeof(vector[0]));
  2397. @end smallexample
  2398. @end cartouche
  2399. @end table
  2400. @node Matrix Interface
  2401. @subsection Matrix Interface
  2402. @table @asis
  2403. @item @emph{Description}:
  2404. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2405. matrices of elements. @code{ptr} is the address of the first element in the home
  2406. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2407. of elements in a row (this can be different from @code{ld} if there are extra
  2408. elements for alignment for instance). @code{ny} is the number of rows.
  2409. @code{elemsize} is the size of each element.
  2410. @item @emph{Prototype}:
  2411. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2412. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2413. uint32_t ny, size_t elemsize);}
  2414. @item @emph{Example}:
  2415. @cartouche
  2416. @smallexample
  2417. float *matrix;
  2418. starpu_data_handle matrix_handle;
  2419. matrix = (float*)malloc(width * height * sizeof(float));
  2420. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2421. width, width, height, sizeof(float));
  2422. @end smallexample
  2423. @end cartouche
  2424. @end table
  2425. @node 3D Matrix Interface
  2426. @subsection 3D Matrix Interface
  2427. @table @asis
  2428. @item @emph{Description}:
  2429. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2430. @code{ptr} is the address of the array of first element in the home node.
  2431. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2432. of rows between z planes. @code{nx} is the number of elements in a row (this
  2433. can be different from @code{ldy} if there are extra elements for alignment
  2434. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2435. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2436. each element.
  2437. @item @emph{Prototype}:
  2438. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2439. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2440. uint32_t ny, uint32_t nz, size_t elemsize);}
  2441. @item @emph{Example}:
  2442. @cartouche
  2443. @smallexample
  2444. float *block;
  2445. starpu_data_handle block_handle;
  2446. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2447. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2448. nx, nx*ny, nx, ny, nz, sizeof(float));
  2449. @end smallexample
  2450. @end cartouche
  2451. @end table
  2452. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2453. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2454. @table @asis
  2455. @item @emph{Description}:
  2456. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2457. TODO
  2458. @item @emph{Prototype}:
  2459. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2460. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2461. @item @emph{Example}:
  2462. @cartouche
  2463. @smallexample
  2464. @end smallexample
  2465. @end cartouche
  2466. @end table
  2467. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2468. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2469. @table @asis
  2470. @item @emph{Description}:
  2471. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2472. TODO
  2473. @item @emph{Prototype}:
  2474. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2475. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2476. @item @emph{Example}:
  2477. @cartouche
  2478. @smallexample
  2479. @end smallexample
  2480. @end cartouche
  2481. @end table
  2482. @node Data Partition
  2483. @section Data Partition
  2484. @menu
  2485. * struct starpu_data_filter:: StarPU filter structure
  2486. * starpu_data_partition:: Partition Data
  2487. * starpu_data_unpartition:: Unpartition Data
  2488. * starpu_data_get_nb_children::
  2489. * starpu_data_get_sub_data::
  2490. * Predefined filter functions::
  2491. @end menu
  2492. @node struct starpu_data_filter
  2493. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2494. @table @asis
  2495. @item @emph{Description}:
  2496. The filter structure describes a data partitioning operation, to be given to the
  2497. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2498. @item @emph{Fields}:
  2499. @table @asis
  2500. @item @code{filter_func}:
  2501. This function fills the @code{child_interface} structure with interface
  2502. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2503. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2504. @item @code{nchildren}:
  2505. This is the number of parts to partition the data into.
  2506. @item @code{get_nchildren}:
  2507. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2508. children depends on the actual data (e.g. the number of blocks in a sparse
  2509. matrix).
  2510. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2511. @item @code{get_child_ops}:
  2512. In case the resulting children use a different data interface, this function
  2513. returns which interface is used by child number @code{id}.
  2514. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2515. @item @code{filter_arg}:
  2516. Some filters take an addition parameter, but this is usually unused.
  2517. @item @code{filter_arg_ptr}:
  2518. Some filters take an additional array parameter like the sizes of the parts, but
  2519. this is usually unused.
  2520. @end table
  2521. @end table
  2522. @node starpu_data_partition
  2523. @subsection starpu_data_partition -- Partition Data
  2524. @table @asis
  2525. @item @emph{Description}:
  2526. This requests partitioning one StarPU data @code{initial_handle} into several
  2527. subdata according to the filter @code{f}
  2528. @item @emph{Prototype}:
  2529. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2530. @item @emph{Example}:
  2531. @cartouche
  2532. @smallexample
  2533. struct starpu_data_filter f = @{
  2534. .filter_func = starpu_vertical_block_filter_func,
  2535. .nchildren = nslicesx,
  2536. .get_nchildren = NULL,
  2537. .get_child_ops = NULL
  2538. @};
  2539. starpu_data_partition(A_handle, &f);
  2540. @end smallexample
  2541. @end cartouche
  2542. @end table
  2543. @node starpu_data_unpartition
  2544. @subsection starpu_data_unpartition -- Unpartition data
  2545. @table @asis
  2546. @item @emph{Description}:
  2547. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2548. collected back into one big piece in the @code{gathering_node} (usually 0).
  2549. @item @emph{Prototype}:
  2550. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2551. @item @emph{Example}:
  2552. @cartouche
  2553. @smallexample
  2554. starpu_data_unpartition(A_handle, 0);
  2555. @end smallexample
  2556. @end cartouche
  2557. @end table
  2558. @node starpu_data_get_nb_children
  2559. @subsection starpu_data_get_nb_children
  2560. @table @asis
  2561. @item @emph{Description}:
  2562. This function returns the number of children.
  2563. @item @emph{Return value}:
  2564. The number of children.
  2565. @item @emph{Prototype}:
  2566. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2567. @end table
  2568. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2569. @node starpu_data_get_sub_data
  2570. @subsection starpu_data_get_sub_data
  2571. @table @asis
  2572. @item @emph{Description}:
  2573. After partitioning a StarPU data by applying a filter,
  2574. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2575. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2576. is the number of filters to traverse (in case several filters have been applied,
  2577. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2578. parameters are the indexes.
  2579. @item @emph{Return value}:
  2580. A handle to the subdata.
  2581. @item @emph{Prototype}:
  2582. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2583. @item @emph{Example}:
  2584. @cartouche
  2585. @smallexample
  2586. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2587. @end smallexample
  2588. @end cartouche
  2589. @end table
  2590. @node Predefined filter functions
  2591. @subsection Predefined filter functions
  2592. @menu
  2593. * Partitioning BCSR Data::
  2594. * Partitioning BLAS interface::
  2595. * Partitioning Vector Data::
  2596. * Partitioning Block Data::
  2597. @end menu
  2598. This section gives a partial list of the predefined partitioning functions.
  2599. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2600. list can be found in @code{starpu_data_filters.h} .
  2601. @node Partitioning BCSR Data
  2602. @subsubsection Partitioning BCSR Data
  2603. @table @asis
  2604. @item @emph{Description}:
  2605. TODO
  2606. @item @emph{Prototype}:
  2607. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2608. @end table
  2609. @table @asis
  2610. @item @emph{Description}:
  2611. TODO
  2612. @item @emph{Prototype}:
  2613. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2614. @end table
  2615. @node Partitioning BLAS interface
  2616. @subsubsection Partitioning BLAS interface
  2617. @table @asis
  2618. @item @emph{Description}:
  2619. This partitions a dense Matrix into horizontal blocks.
  2620. @item @emph{Prototype}:
  2621. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2622. @end table
  2623. @table @asis
  2624. @item @emph{Description}:
  2625. This partitions a dense Matrix into vertical blocks.
  2626. @item @emph{Prototype}:
  2627. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2628. @end table
  2629. @node Partitioning Vector Data
  2630. @subsubsection Partitioning Vector Data
  2631. @table @asis
  2632. @item @emph{Description}:
  2633. This partitions a vector into blocks of the same size.
  2634. @item @emph{Prototype}:
  2635. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2636. @end table
  2637. @table @asis
  2638. @item @emph{Description}:
  2639. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2640. @item @emph{Prototype}:
  2641. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2642. @end table
  2643. @table @asis
  2644. @item @emph{Description}:
  2645. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2646. @item @emph{Prototype}:
  2647. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2648. @end table
  2649. @node Partitioning Block Data
  2650. @subsubsection Partitioning Block Data
  2651. @table @asis
  2652. @item @emph{Description}:
  2653. This partitions a 3D matrix along the X axis.
  2654. @item @emph{Prototype}:
  2655. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2656. @end table
  2657. @node Codelets and Tasks
  2658. @section Codelets and Tasks
  2659. @menu
  2660. * struct starpu_codelet:: StarPU codelet structure
  2661. * struct starpu_task:: StarPU task structure
  2662. * starpu_task_init:: Initialize a Task
  2663. * starpu_task_create:: Allocate and Initialize a Task
  2664. * starpu_task_deinit:: Release all the resources used by a Task
  2665. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2666. * starpu_task_wait:: Wait for the termination of a Task
  2667. * starpu_task_submit:: Submit a Task
  2668. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2669. * starpu_get_current_task:: Return the task currently executed by the worker
  2670. * starpu_display_codelet_stats:: Display statistics
  2671. @end menu
  2672. @node struct starpu_codelet
  2673. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2674. @table @asis
  2675. @item @emph{Description}:
  2676. The codelet structure describes a kernel that is possibly implemented on various
  2677. targets. For compatibility, make sure to initialize the whole structure to zero.
  2678. @item @emph{Fields}:
  2679. @table @asis
  2680. @item @code{where}:
  2681. Indicates which types of processing units are able to execute the codelet.
  2682. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2683. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2684. indicates that it is only available on Cell SPUs.
  2685. @item @code{cpu_func} (optional):
  2686. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2687. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2688. argument being the array of data managed by the data management library, and
  2689. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2690. field of the @code{starpu_task} structure.
  2691. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2692. the @code{where} field, it must be non-null otherwise.
  2693. @item @code{cuda_func} (optional):
  2694. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2695. must be a host-function written in the CUDA runtime API}. Its prototype must
  2696. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2697. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2698. field, it must be non-null otherwise.
  2699. @item @code{opencl_func} (optional):
  2700. Is a function pointer to the OpenCL implementation of the codelet. Its
  2701. prototype must be:
  2702. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2703. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2704. @code{where} field, it must be non-null otherwise.
  2705. @item @code{gordon_func} (optional):
  2706. This is the index of the Cell SPU implementation within the Gordon library.
  2707. See Gordon documentation for more details on how to register a kernel and
  2708. retrieve its index.
  2709. @item @code{nbuffers}:
  2710. Specifies the number of arguments taken by the codelet. These arguments are
  2711. managed by the DSM and are accessed from the @code{void *buffers[]}
  2712. array. The constant argument passed with the @code{cl_arg} field of the
  2713. @code{starpu_task} structure is not counted in this number. This value should
  2714. not be above @code{STARPU_NMAXBUFS}.
  2715. @item @code{model} (optional):
  2716. This is a pointer to the task duration performance model associated to this
  2717. codelet. This optional field is ignored when set to @code{NULL}.
  2718. TODO
  2719. @item @code{power_model} (optional):
  2720. This is a pointer to the task power consumption performance model associated
  2721. to this codelet. This optional field is ignored when set to @code{NULL}.
  2722. In the case of parallel codelets, this has to account for all processing units
  2723. involved in the parallel execution.
  2724. TODO
  2725. @end table
  2726. @end table
  2727. @node struct starpu_task
  2728. @subsection @code{struct starpu_task} -- StarPU task structure
  2729. @table @asis
  2730. @item @emph{Description}:
  2731. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2732. processing units managed by StarPU. It instantiates a codelet. It can either be
  2733. allocated dynamically with the @code{starpu_task_create} method, or declared
  2734. statically. In the latter case, the programmer has to zero the
  2735. @code{starpu_task} structure and to fill the different fields properly. The
  2736. indicated default values correspond to the configuration of a task allocated
  2737. with @code{starpu_task_create}.
  2738. @item @emph{Fields}:
  2739. @table @asis
  2740. @item @code{cl}:
  2741. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2742. describes where the kernel should be executed, and supplies the appropriate
  2743. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2744. such empty tasks can be useful for synchronization purposes.
  2745. @item @code{buffers}:
  2746. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2747. different pieces of data accessed by the task, and how they should be accessed.
  2748. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2749. @code{handle} field specifies the handle of the piece of data, and the
  2750. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2751. of entries in this array must be specified in the @code{nbuffers} field of the
  2752. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2753. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2754. option when configuring StarPU.
  2755. @item @code{cl_arg} (optional) (default = NULL):
  2756. This pointer is passed to the codelet through the second argument
  2757. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2758. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2759. argument.
  2760. @item @code{cl_arg_size} (optional, Cell specific):
  2761. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2762. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2763. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2764. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2765. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2766. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2767. codelets.
  2768. @item @code{callback_func} (optional) (default = @code{NULL}):
  2769. This is a function pointer of prototype @code{void (*f)(void *)} which
  2770. specifies a possible callback. If this pointer is non-null, the callback
  2771. function is executed @emph{on the host} after the execution of the task. The
  2772. callback is passed the value contained in the @code{callback_arg} field. No
  2773. callback is executed if the field is set to @code{NULL}.
  2774. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2775. This is the pointer passed to the callback function. This field is ignored if
  2776. the @code{callback_func} is set to @code{NULL}.
  2777. @item @code{use_tag} (optional) (default = 0):
  2778. If set, this flag indicates that the task should be associated with the tag
  2779. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2780. with the task and to express task dependencies easily.
  2781. @item @code{tag_id}:
  2782. This fields contains the tag associated to the task if the @code{use_tag} field
  2783. was set, it is ignored otherwise.
  2784. @item @code{synchronous}:
  2785. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2786. returns only when the task has been executed (or if no worker is able to
  2787. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2788. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2789. This field indicates a level of priority for the task. This is an integer value
  2790. that must be set between the return values of the
  2791. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2792. and that of the @code{starpu_sched_get_max_priority} for the most important
  2793. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2794. are provided for convenience and respectively returns value of
  2795. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2796. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2797. order to allow static task initialization. Scheduling strategies that take
  2798. priorities into account can use this parameter to take better scheduling
  2799. decisions, but the scheduling policy may also ignore it.
  2800. @item @code{execute_on_a_specific_worker} (default = 0):
  2801. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2802. task to the worker specified by the @code{workerid} field.
  2803. @item @code{workerid} (optional):
  2804. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2805. which is the identifier of the worker that should process this task (as
  2806. returned by @code{starpu_worker_get_id}). This field is ignored if
  2807. @code{execute_on_a_specific_worker} field is set to 0.
  2808. @item @code{detach} (optional) (default = 1):
  2809. If this flag is set, it is not possible to synchronize with the task
  2810. by the means of @code{starpu_task_wait} later on. Internal data structures
  2811. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2812. flag is not set.
  2813. @item @code{destroy} (optional) (default = 1):
  2814. If this flag is set, the task structure will automatically be freed, either
  2815. after the execution of the callback if the task is detached, or during
  2816. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2817. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2818. called explicitly. Setting this flag for a statically allocated task structure
  2819. will result in undefined behaviour.
  2820. @item @code{predicted} (output field):
  2821. Predicted duration of the task. This field is only set if the scheduling
  2822. strategy used performance models.
  2823. @end table
  2824. @end table
  2825. @node starpu_task_init
  2826. @subsection @code{starpu_task_init} -- Initialize a Task
  2827. @table @asis
  2828. @item @emph{Description}:
  2829. Initialize a task structure with default values. This function is implicitly
  2830. called by @code{starpu_task_create}. By default, tasks initialized with
  2831. @code{starpu_task_init} must be deinitialized explicitly with
  2832. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2833. constant @code{STARPU_TASK_INITIALIZER}.
  2834. @item @emph{Prototype}:
  2835. @code{void starpu_task_init(struct starpu_task *task);}
  2836. @end table
  2837. @node starpu_task_create
  2838. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2839. @table @asis
  2840. @item @emph{Description}:
  2841. Allocate a task structure and initialize it with default values. Tasks
  2842. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2843. task is terminated. If the destroy flag is explicitly unset, the resources used
  2844. by the task are freed by calling
  2845. @code{starpu_task_destroy}.
  2846. @item @emph{Prototype}:
  2847. @code{struct starpu_task *starpu_task_create(void);}
  2848. @end table
  2849. @node starpu_task_deinit
  2850. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2851. @table @asis
  2852. @item @emph{Description}:
  2853. Release all the structures automatically allocated to execute the task. This is
  2854. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2855. freed. This should be used for statically allocated tasks for instance.
  2856. @item @emph{Prototype}:
  2857. @code{void starpu_task_deinit(struct starpu_task *task);}
  2858. @end table
  2859. @node starpu_task_destroy
  2860. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2861. @table @asis
  2862. @item @emph{Description}:
  2863. Free the resource allocated during @code{starpu_task_create}. This function can be
  2864. called automatically after the execution of a task by setting the
  2865. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2866. Calling this function on a statically allocated task results in an undefined
  2867. behaviour.
  2868. @item @emph{Prototype}:
  2869. @code{void starpu_task_destroy(struct starpu_task *task);}
  2870. @end table
  2871. @node starpu_task_wait
  2872. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2873. @table @asis
  2874. @item @emph{Description}:
  2875. This function blocks until the task has been executed. It is not possible to
  2876. synchronize with a task more than once. It is not possible to wait for
  2877. synchronous or detached tasks.
  2878. @item @emph{Return value}:
  2879. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2880. indicates that the specified task was either synchronous or detached.
  2881. @item @emph{Prototype}:
  2882. @code{int starpu_task_wait(struct starpu_task *task);}
  2883. @end table
  2884. @node starpu_task_submit
  2885. @subsection @code{starpu_task_submit} -- Submit a Task
  2886. @table @asis
  2887. @item @emph{Description}:
  2888. This function submits a task to StarPU. Calling this function does
  2889. not mean that the task will be executed immediately as there can be data or task
  2890. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2891. scheduling this task with respect to such dependencies.
  2892. This function returns immediately if the @code{synchronous} field of the
  2893. @code{starpu_task} structure was set to 0, and block until the termination of
  2894. the task otherwise. It is also possible to synchronize the application with
  2895. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2896. function for instance.
  2897. @item @emph{Return value}:
  2898. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2899. means that there is no worker able to process this task (e.g. there is no GPU
  2900. available and this task is only implemented for CUDA devices).
  2901. @item @emph{Prototype}:
  2902. @code{int starpu_task_submit(struct starpu_task *task);}
  2903. @end table
  2904. @node starpu_task_wait_for_all
  2905. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2906. @table @asis
  2907. @item @emph{Description}:
  2908. This function blocks until all the tasks that were submitted are terminated.
  2909. @item @emph{Prototype}:
  2910. @code{void starpu_task_wait_for_all(void);}
  2911. @end table
  2912. @node starpu_get_current_task
  2913. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2914. @table @asis
  2915. @item @emph{Description}:
  2916. This function returns the task currently executed by the worker, or
  2917. NULL if it is called either from a thread that is not a task or simply
  2918. because there is no task being executed at the moment.
  2919. @item @emph{Prototype}:
  2920. @code{struct starpu_task *starpu_get_current_task(void);}
  2921. @end table
  2922. @node starpu_display_codelet_stats
  2923. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2924. @table @asis
  2925. @item @emph{Description}:
  2926. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2927. @item @emph{Prototype}:
  2928. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2929. @end table
  2930. @c Callbacks : what can we put in callbacks ?
  2931. @node Explicit Dependencies
  2932. @section Explicit Dependencies
  2933. @menu
  2934. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2935. * starpu_tag_t:: Task logical identifier
  2936. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2937. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2938. * starpu_tag_wait:: Block until a Tag is terminated
  2939. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2940. * starpu_tag_remove:: Destroy a Tag
  2941. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2942. @end menu
  2943. @node starpu_task_declare_deps_array
  2944. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2945. @table @asis
  2946. @item @emph{Description}:
  2947. Declare task dependencies between a @code{task} and an array of tasks of length
  2948. @code{ndeps}. This function must be called prior to the submission of the task,
  2949. but it may called after the submission or the execution of the tasks in the
  2950. array provided the tasks are still valid (ie. they were not automatically
  2951. destroyed). Calling this function on a task that was already submitted or with
  2952. an entry of @code{task_array} that is not a valid task anymore results in an
  2953. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2954. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2955. same task, in this case, the dependencies are added. It is possible to have
  2956. redundancy in the task dependencies.
  2957. @item @emph{Prototype}:
  2958. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2959. @end table
  2960. @node starpu_tag_t
  2961. @subsection @code{starpu_tag_t} -- Task logical identifier
  2962. @table @asis
  2963. @item @emph{Description}:
  2964. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2965. dependencies between tasks by the means of those tags. To do so, fill the
  2966. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2967. be arbitrary) and set the @code{use_tag} field to 1.
  2968. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2969. not be started until the tasks which holds the declared dependency tags are
  2970. completed.
  2971. @end table
  2972. @node starpu_tag_declare_deps
  2973. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2974. @table @asis
  2975. @item @emph{Description}:
  2976. Specify the dependencies of the task identified by tag @code{id}. The first
  2977. argument specifies the tag which is configured, the second argument gives the
  2978. number of tag(s) on which @code{id} depends. The following arguments are the
  2979. tags which have to be terminated to unlock the task.
  2980. This function must be called before the associated task is submitted to StarPU
  2981. with @code{starpu_task_submit}.
  2982. @item @emph{Remark}
  2983. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2984. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2985. typically need to be explicitly casted. Using the
  2986. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2987. @item @emph{Prototype}:
  2988. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2989. @item @emph{Example}:
  2990. @cartouche
  2991. @example
  2992. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2993. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2994. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2995. @end example
  2996. @end cartouche
  2997. @end table
  2998. @node starpu_tag_declare_deps_array
  2999. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3000. @table @asis
  3001. @item @emph{Description}:
  3002. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3003. does not take a variable number of arguments but an array of tags of size
  3004. @code{ndeps}.
  3005. @item @emph{Prototype}:
  3006. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3007. @item @emph{Example}:
  3008. @cartouche
  3009. @example
  3010. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3011. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3012. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3013. @end example
  3014. @end cartouche
  3015. @end table
  3016. @node starpu_tag_wait
  3017. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3018. @table @asis
  3019. @item @emph{Description}:
  3020. This function blocks until the task associated to tag @code{id} has been
  3021. executed. This is a blocking call which must therefore not be called within
  3022. tasks or callbacks, but only from the application directly. It is possible to
  3023. synchronize with the same tag multiple times, as long as the
  3024. @code{starpu_tag_remove} function is not called. Note that it is still
  3025. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3026. data structure was freed (e.g. if the @code{destroy} flag of the
  3027. @code{starpu_task} was enabled).
  3028. @item @emph{Prototype}:
  3029. @code{void starpu_tag_wait(starpu_tag_t id);}
  3030. @end table
  3031. @node starpu_tag_wait_array
  3032. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3033. @table @asis
  3034. @item @emph{Description}:
  3035. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3036. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3037. terminated.
  3038. @item @emph{Prototype}:
  3039. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3040. @end table
  3041. @node starpu_tag_remove
  3042. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3043. @table @asis
  3044. @item @emph{Description}:
  3045. This function releases the resources associated to tag @code{id}. It can be
  3046. called once the corresponding task has been executed and when there is
  3047. no other tag that depend on this tag anymore.
  3048. @item @emph{Prototype}:
  3049. @code{void starpu_tag_remove(starpu_tag_t id);}
  3050. @end table
  3051. @node starpu_tag_notify_from_apps
  3052. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3053. @table @asis
  3054. @item @emph{Description}:
  3055. This function explicitly unlocks tag @code{id}. It may be useful in the
  3056. case of applications which execute part of their computation outside StarPU
  3057. tasks (e.g. third-party libraries). It is also provided as a
  3058. convenient tool for the programmer, for instance to entirely construct the task
  3059. DAG before actually giving StarPU the opportunity to execute the tasks.
  3060. @item @emph{Prototype}:
  3061. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3062. @end table
  3063. @node Implicit Data Dependencies
  3064. @section Implicit Data Dependencies
  3065. @menu
  3066. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3067. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3068. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3069. @end menu
  3070. In this section, we describe how StarPU makes it possible to insert implicit
  3071. task dependencies in order to enforce sequential data consistency. When this
  3072. data consistency is enabled on a specific data handle, any data access will
  3073. appear as sequentially consistent from the application. For instance, if the
  3074. application submits two tasks that access the same piece of data in read-only
  3075. mode, and then a third task that access it in write mode, dependencies will be
  3076. added between the two first tasks and the third one. Implicit data dependencies
  3077. are also inserted in the case of data accesses from the application.
  3078. @node starpu_data_set_default_sequential_consistency_flag
  3079. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3080. @table @asis
  3081. @item @emph{Description}:
  3082. Set the default sequential consistency flag. If a non-zero value is passed, a
  3083. sequential data consistency will be enforced for all handles registered after
  3084. this function call, otherwise it is disabled. By default, StarPU enables
  3085. sequential data consistency. It is also possible to select the data consistency
  3086. mode of a specific data handle with the
  3087. @code{starpu_data_set_sequential_consistency_flag} function.
  3088. @item @emph{Prototype}:
  3089. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3090. @end table
  3091. @node starpu_data_get_default_sequential_consistency_flag
  3092. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3093. @table @asis
  3094. @item @emph{Description}:
  3095. This function returns the current default sequential consistency flag.
  3096. @item @emph{Prototype}:
  3097. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3098. @end table
  3099. @node starpu_data_set_sequential_consistency_flag
  3100. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3101. @table @asis
  3102. @item @emph{Description}:
  3103. Select the data consistency mode associated to a data handle. The consistency
  3104. mode set using this function has the priority over the default mode which can
  3105. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3106. @item @emph{Prototype}:
  3107. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3108. @end table
  3109. @node Performance Model API
  3110. @section Performance Model API
  3111. @menu
  3112. * starpu_load_history_debug::
  3113. * starpu_perfmodel_debugfilepath::
  3114. * starpu_perfmodel_get_arch_name::
  3115. * starpu_force_bus_sampling::
  3116. @end menu
  3117. @node starpu_load_history_debug
  3118. @subsection @code{starpu_load_history_debug}
  3119. @table @asis
  3120. @item @emph{Description}:
  3121. TODO
  3122. @item @emph{Prototype}:
  3123. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3124. @end table
  3125. @node starpu_perfmodel_debugfilepath
  3126. @subsection @code{starpu_perfmodel_debugfilepath}
  3127. @table @asis
  3128. @item @emph{Description}:
  3129. TODO
  3130. @item @emph{Prototype}:
  3131. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3132. @end table
  3133. @node starpu_perfmodel_get_arch_name
  3134. @subsection @code{starpu_perfmodel_get_arch_name}
  3135. @table @asis
  3136. @item @emph{Description}:
  3137. TODO
  3138. @item @emph{Prototype}:
  3139. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3140. @end table
  3141. @node starpu_force_bus_sampling
  3142. @subsection @code{starpu_force_bus_sampling}
  3143. @table @asis
  3144. @item @emph{Description}:
  3145. This forces sampling the bus performance model again.
  3146. @item @emph{Prototype}:
  3147. @code{void starpu_force_bus_sampling(void);}
  3148. @end table
  3149. @node Profiling API
  3150. @section Profiling API
  3151. @menu
  3152. * starpu_profiling_status_set:: starpu_profiling_status_set
  3153. * starpu_profiling_status_get:: starpu_profiling_status_get
  3154. * struct starpu_task_profiling_info:: task profiling information
  3155. * struct starpu_worker_profiling_info:: worker profiling information
  3156. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3157. * struct starpu_bus_profiling_info:: bus profiling information
  3158. * starpu_bus_get_count::
  3159. * starpu_bus_get_id::
  3160. * starpu_bus_get_src::
  3161. * starpu_bus_get_dst::
  3162. * starpu_timing_timespec_delay_us::
  3163. * starpu_timing_timespec_to_us::
  3164. * starpu_bus_profiling_helper_display_summary::
  3165. * starpu_worker_profiling_helper_display_summary::
  3166. @end menu
  3167. @node starpu_profiling_status_set
  3168. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3169. @table @asis
  3170. @item @emph{Description}:
  3171. Thie function sets the profiling status. Profiling is activated by passing
  3172. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3173. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3174. resets all profiling measurements. When profiling is enabled, the
  3175. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3176. to a valid @code{struct starpu_task_profiling_info} structure containing
  3177. information about the execution of the task.
  3178. @item @emph{Return value}:
  3179. Negative return values indicate an error, otherwise the previous status is
  3180. returned.
  3181. @item @emph{Prototype}:
  3182. @code{int starpu_profiling_status_set(int status);}
  3183. @end table
  3184. @node starpu_profiling_status_get
  3185. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3186. @table @asis
  3187. @item @emph{Description}:
  3188. Return the current profiling status or a negative value in case there was an error.
  3189. @item @emph{Prototype}:
  3190. @code{int starpu_profiling_status_get(void);}
  3191. @end table
  3192. @node struct starpu_task_profiling_info
  3193. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3194. @table @asis
  3195. @item @emph{Description}:
  3196. This structure contains information about the execution of a task. It is
  3197. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3198. structure if profiling was enabled.
  3199. @item @emph{Fields}:
  3200. @table @asis
  3201. @item @code{submit_time}:
  3202. Date of task submission (relative to the initialization of StarPU).
  3203. @item @code{start_time}:
  3204. Date of task execution beginning (relative to the initialization of StarPU).
  3205. @item @code{end_time}:
  3206. Date of task execution termination (relative to the initialization of StarPU).
  3207. @item @code{workerid}:
  3208. Identifier of the worker which has executed the task.
  3209. @end table
  3210. @end table
  3211. @node struct starpu_worker_profiling_info
  3212. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3213. @table @asis
  3214. @item @emph{Description}:
  3215. This structure contains the profiling information associated to a worker.
  3216. @item @emph{Fields}:
  3217. @table @asis
  3218. @item @code{start_time}:
  3219. Starting date for the reported profiling measurements.
  3220. @item @code{total_time}:
  3221. Duration of the profiling measurement interval.
  3222. @item @code{executing_time}:
  3223. Time spent by the worker to execute tasks during the profiling measurement interval.
  3224. @item @code{sleeping_time}:
  3225. Time spent idling by the worker during the profiling measurement interval.
  3226. @item @code{executed_tasks}:
  3227. Number of tasks executed by the worker during the profiling measurement interval.
  3228. @end table
  3229. @end table
  3230. @node starpu_worker_get_profiling_info
  3231. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3232. @table @asis
  3233. @item @emph{Description}:
  3234. Get the profiling info associated to the worker identified by @code{workerid},
  3235. and reset the profiling measurements. If the @code{worker_info} argument is
  3236. NULL, only reset the counters associated to worker @code{workerid}.
  3237. @item @emph{Return value}:
  3238. Upon successful completion, this function returns 0. Otherwise, a negative
  3239. value is returned.
  3240. @item @emph{Prototype}:
  3241. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3242. @end table
  3243. @node struct starpu_bus_profiling_info
  3244. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3245. @table @asis
  3246. @item @emph{Description}:
  3247. TODO
  3248. @item @emph{Fields}:
  3249. @table @asis
  3250. @item @code{start_time}:
  3251. TODO
  3252. @item @code{total_time}:
  3253. TODO
  3254. @item @code{transferred_bytes}:
  3255. TODO
  3256. @item @code{transfer_count}:
  3257. TODO
  3258. @end table
  3259. @end table
  3260. @node starpu_bus_get_count
  3261. @subsection @code{starpu_bus_get_count}
  3262. @table @asis
  3263. @item @emph{Description}:
  3264. TODO
  3265. @item @emph{Prototype}:
  3266. @code{int starpu_bus_get_count(void);}
  3267. @end table
  3268. @node starpu_bus_get_id
  3269. @subsection @code{starpu_bus_get_id}
  3270. @table @asis
  3271. @item @emph{Description}:
  3272. TODO
  3273. @item @emph{Prototype}:
  3274. @code{int starpu_bus_get_id(int src, int dst);}
  3275. @end table
  3276. @node starpu_bus_get_src
  3277. @subsection @code{starpu_bus_get_src}
  3278. @table @asis
  3279. @item @emph{Description}:
  3280. TODO
  3281. @item @emph{Prototype}:
  3282. @code{int starpu_bus_get_src(int busid);}
  3283. @end table
  3284. @node starpu_bus_get_dst
  3285. @subsection @code{starpu_bus_get_dst}
  3286. @table @asis
  3287. @item @emph{Description}:
  3288. TODO
  3289. @item @emph{Prototype}:
  3290. @code{int starpu_bus_get_dst(int busid);}
  3291. @end table
  3292. @node starpu_timing_timespec_delay_us
  3293. @subsection @code{starpu_timing_timespec_delay_us}
  3294. @table @asis
  3295. @item @emph{Description}:
  3296. TODO
  3297. @item @emph{Prototype}:
  3298. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3299. @end table
  3300. @node starpu_timing_timespec_to_us
  3301. @subsection @code{starpu_timing_timespec_to_us}
  3302. @table @asis
  3303. @item @emph{Description}:
  3304. TODO
  3305. @item @emph{Prototype}:
  3306. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3307. @end table
  3308. @node starpu_bus_profiling_helper_display_summary
  3309. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3310. @table @asis
  3311. @item @emph{Description}:
  3312. TODO
  3313. @item @emph{Prototype}:
  3314. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3315. @end table
  3316. @node starpu_worker_profiling_helper_display_summary
  3317. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3318. @table @asis
  3319. @item @emph{Description}:
  3320. TODO
  3321. @item @emph{Prototype}:
  3322. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3323. @end table
  3324. @node CUDA extensions
  3325. @section CUDA extensions
  3326. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3327. @menu
  3328. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3329. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3330. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3331. @end menu
  3332. @node starpu_cuda_get_local_stream
  3333. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3334. @table @asis
  3335. @item @emph{Description}:
  3336. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3337. function is only provided for convenience so that programmers can easily use
  3338. asynchronous operations within codelets without having to create a stream by
  3339. hand. Note that the application is not forced to use the stream provided by
  3340. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3341. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3342. the likelihood of having all transfers overlapped.
  3343. @item @emph{Prototype}:
  3344. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3345. @end table
  3346. @node starpu_helper_cublas_init
  3347. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3348. @table @asis
  3349. @item @emph{Description}:
  3350. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3351. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3352. controlled by StarPU. This call blocks until CUBLAS has been properly
  3353. initialized on every device.
  3354. @item @emph{Prototype}:
  3355. @code{void starpu_helper_cublas_init(void);}
  3356. @end table
  3357. @node starpu_helper_cublas_shutdown
  3358. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3359. @table @asis
  3360. @item @emph{Description}:
  3361. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3362. @item @emph{Prototype}:
  3363. @code{void starpu_helper_cublas_shutdown(void);}
  3364. @end table
  3365. @node OpenCL extensions
  3366. @section OpenCL extensions
  3367. @menu
  3368. * Enabling OpenCL:: Enabling OpenCL
  3369. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3370. * Loading OpenCL kernels:: Loading OpenCL kernels
  3371. * OpenCL statistics:: Collecting statistics from OpenCL
  3372. @end menu
  3373. @node Enabling OpenCL
  3374. @subsection Enabling OpenCL
  3375. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3376. enabled by default. To enable OpenCL, you need either to disable CUDA
  3377. when configuring StarPU:
  3378. @example
  3379. % ./configure --disable-cuda
  3380. @end example
  3381. or when running applications:
  3382. @example
  3383. % STARPU_NCUDA=0 ./application
  3384. @end example
  3385. OpenCL will automatically be started on any device not yet used by
  3386. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3387. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3388. so:
  3389. @example
  3390. % STARPU_NCUDA=2 ./application
  3391. @end example
  3392. @node Compiling OpenCL kernels
  3393. @subsection Compiling OpenCL kernels
  3394. Source codes for OpenCL kernels can be stored in a file or in a
  3395. string. StarPU provides functions to build the program executable for
  3396. each available OpenCL device as a @code{cl_program} object. This
  3397. program executable can then be loaded within a specific queue as
  3398. explained in the next section. These are only helpers, Applications
  3399. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3400. use (e.g. different programs on the different OpenCL devices, for
  3401. relocation purpose for instance).
  3402. @menu
  3403. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3404. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3405. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3406. @end menu
  3407. @node starpu_opencl_load_opencl_from_file
  3408. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3409. @table @asis
  3410. @item @emph{Description}:
  3411. TODO
  3412. @item @emph{Prototype}:
  3413. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3414. @end table
  3415. @node starpu_opencl_load_opencl_from_string
  3416. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3417. @table @asis
  3418. @item @emph{Description}:
  3419. TODO
  3420. @item @emph{Prototype}:
  3421. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3422. @end table
  3423. @node starpu_opencl_unload_opencl
  3424. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3425. @table @asis
  3426. @item @emph{Description}:
  3427. TODO
  3428. @item @emph{Prototype}:
  3429. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3430. @end table
  3431. @node Loading OpenCL kernels
  3432. @subsection Loading OpenCL kernels
  3433. @menu
  3434. * starpu_opencl_load_kernel:: Loading a kernel
  3435. * starpu_opencl_relase_kernel:: Releasing a kernel
  3436. @end menu
  3437. @node starpu_opencl_load_kernel
  3438. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3439. @table @asis
  3440. @item @emph{Description}:
  3441. TODO
  3442. @item @emph{Prototype}:
  3443. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3444. }
  3445. @end table
  3446. @node starpu_opencl_relase_kernel
  3447. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3448. @table @asis
  3449. @item @emph{Description}:
  3450. TODO
  3451. @item @emph{Prototype}:
  3452. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3453. @end table
  3454. @node OpenCL statistics
  3455. @subsection OpenCL statistics
  3456. @menu
  3457. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3458. @end menu
  3459. @node starpu_opencl_collect_stats
  3460. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3461. @table @asis
  3462. @item @emph{Description}:
  3463. After termination of the kernels, the OpenCL codelet should call this function
  3464. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3465. collect statistics about the kernel execution (used cycles, consumed power).
  3466. @item @emph{Prototype}:
  3467. @code{int starpu_opencl_collect_stats(cl_event event);}
  3468. @end table
  3469. @node Cell extensions
  3470. @section Cell extensions
  3471. nothing yet.
  3472. @node Miscellaneous helpers
  3473. @section Miscellaneous helpers
  3474. @menu
  3475. * starpu_data_cpy:: Copy a data handle into another data handle
  3476. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3477. @end menu
  3478. @node starpu_data_cpy
  3479. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3480. @table @asis
  3481. @item @emph{Description}:
  3482. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3483. The @code{asynchronous} parameter indicates whether the function should
  3484. block or not. In the case of an asynchronous call, it is possible to
  3485. synchronize with the termination of this operation either by the means of
  3486. implicit dependencies (if enabled) or by calling
  3487. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3488. this callback function is executed after the handle has been copied, and it is
  3489. given the @code{callback_arg} pointer as argument.
  3490. @item @emph{Prototype}:
  3491. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3492. @end table
  3493. @node starpu_execute_on_each_worker
  3494. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3495. @table @asis
  3496. @item @emph{Description}:
  3497. When calling this method, the offloaded function specified by the first argument is
  3498. executed by every StarPU worker that may execute the function.
  3499. The second argument is passed to the offloaded function.
  3500. The last argument specifies on which types of processing units the function
  3501. should be executed. Similarly to the @code{where} field of the
  3502. @code{starpu_codelet} structure, it is possible to specify that the function
  3503. should be executed on every CUDA device and every CPU by passing
  3504. @code{STARPU_CPU|STARPU_CUDA}.
  3505. This function blocks until the function has been executed on every appropriate
  3506. processing units, so that it may not be called from a callback function for
  3507. instance.
  3508. @item @emph{Prototype}:
  3509. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3510. @end table
  3511. @c ---------------------------------------------------------------------
  3512. @c Advanced Topics
  3513. @c ---------------------------------------------------------------------
  3514. @node Advanced Topics
  3515. @chapter Advanced Topics
  3516. @menu
  3517. * Defining a new data interface::
  3518. * Defining a new scheduling policy::
  3519. @end menu
  3520. @node Defining a new data interface
  3521. @section Defining a new data interface
  3522. @menu
  3523. * struct starpu_data_interface_ops_t:: Per-interface methods
  3524. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3525. * An example of data interface:: An example of data interface
  3526. @end menu
  3527. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3528. @node struct starpu_data_interface_ops_t
  3529. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3530. @table @asis
  3531. @item @emph{Description}:
  3532. TODO describe all the different fields
  3533. @end table
  3534. @node struct starpu_data_copy_methods
  3535. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3536. @table @asis
  3537. @item @emph{Description}:
  3538. TODO describe all the different fields
  3539. @end table
  3540. @node An example of data interface
  3541. @subsection An example of data interface
  3542. @table @asis
  3543. TODO
  3544. @end table
  3545. @node Defining a new scheduling policy
  3546. @section Defining a new scheduling policy
  3547. TODO
  3548. A full example showing how to define a new scheduling policy is available in
  3549. the StarPU sources in the directory @code{examples/scheduler/}.
  3550. @menu
  3551. * struct starpu_sched_policy_s::
  3552. * starpu_worker_set_sched_condition::
  3553. * starpu_sched_set_min_priority:: Set the minimum priority level
  3554. * starpu_sched_set_max_priority:: Set the maximum priority level
  3555. * starpu_push_local_task:: Assign a task to a worker
  3556. * Source code::
  3557. @end menu
  3558. @node struct starpu_sched_policy_s
  3559. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3560. @table @asis
  3561. @item @emph{Description}:
  3562. This structure contains all the methods that implement a scheduling policy. An
  3563. application may specify which scheduling strategy in the @code{sched_policy}
  3564. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3565. function.
  3566. @item @emph{Fields}:
  3567. @table @asis
  3568. @item @code{init_sched}:
  3569. Initialize the scheduling policy.
  3570. @item @code{deinit_sched}:
  3571. Cleanup the scheduling policy.
  3572. @item @code{push_task}:
  3573. Insert a task into the scheduler.
  3574. @item @code{push_prio_task}:
  3575. Insert a priority task into the scheduler.
  3576. @item @code{push_prio_notify}:
  3577. Notify the scheduler that a task was pushed on the worker. This method is
  3578. called when a task that was explicitely assigned to a worker is scheduled. This
  3579. method therefore permits to keep the state of of the scheduler coherent even
  3580. when StarPU bypasses the scheduling strategy.
  3581. @item @code{pop_task}:
  3582. Get a task from the scheduler. The mutex associated to the worker is already
  3583. taken when this method is called. If this method is defined as @code{NULL}, the
  3584. worker will only execute tasks from its local queue. In this case, the
  3585. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3586. assign tasks to the different workers.
  3587. @item @code{pop_every_task}:
  3588. Remove all available tasks from the scheduler (tasks are chained by the means
  3589. of the prev and next fields of the starpu_task structure). The mutex associated
  3590. to the worker is already taken when this method is called.
  3591. @item @code{post_exec_hook} (optionnal):
  3592. This method is called every time a task has been executed.
  3593. @item @code{policy_name}:
  3594. Name of the policy (optionnal).
  3595. @item @code{policy_description}:
  3596. Description of the policy (optionnal).
  3597. @end table
  3598. @end table
  3599. @node starpu_worker_set_sched_condition
  3600. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3601. @table @asis
  3602. @item @emph{Description}:
  3603. When there is no available task for a worker, StarPU blocks this worker on a
  3604. condition variable. This function specifies which condition variable (and the
  3605. associated mutex) should be used to block (and to wake up) a worker. Note that
  3606. multiple workers may use the same condition variable. For instance, in the case
  3607. of a scheduling strategy with a single task queue, the same condition variable
  3608. would be used to block and wake up all workers.
  3609. The initialization method of a scheduling strategy (@code{init_sched}) must
  3610. call this function once per worker.
  3611. @item @emph{Prototype}:
  3612. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3613. @end table
  3614. @node starpu_sched_set_min_priority
  3615. @subsection @code{starpu_sched_set_min_priority}
  3616. @table @asis
  3617. @item @emph{Description}:
  3618. Defines the minimum priority level supported by the scheduling policy. The
  3619. default minimum priority level is the same as the default priority level which
  3620. is 0 by convention. The application may access that value by calling the
  3621. @code{starpu_sched_get_min_priority} function. This function should only be
  3622. called from the initialization method of the scheduling policy, and should not
  3623. be used directly from the application.
  3624. @item @emph{Prototype}:
  3625. @code{void starpu_sched_set_min_priority(int min_prio);}
  3626. @end table
  3627. @node starpu_sched_set_max_priority
  3628. @subsection @code{starpu_sched_set_max_priority}
  3629. @table @asis
  3630. @item @emph{Description}:
  3631. Defines the maximum priority level supported by the scheduling policy. The
  3632. default maximum priority level is 1. The application may access that value by
  3633. calling the @code{starpu_sched_get_max_priority} function. This function should
  3634. only be called from the initialization method of the scheduling policy, and
  3635. should not be used directly from the application.
  3636. @item @emph{Prototype}:
  3637. @code{void starpu_sched_set_min_priority(int max_prio);}
  3638. @end table
  3639. @node starpu_push_local_task
  3640. @subsection @code{starpu_push_local_task}
  3641. @table @asis
  3642. @item @emph{Description}:
  3643. The scheduling policy may put tasks directly into a worker's local queue so
  3644. that it is not always necessary to create its own queue when the local queue
  3645. is sufficient. If "back" not null, the task is put at the back of the queue
  3646. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3647. a FIFO ordering.
  3648. @item @emph{Prototype}:
  3649. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3650. @end table
  3651. @node Source code
  3652. @subsection Source code
  3653. @cartouche
  3654. @smallexample
  3655. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3656. .init_sched = init_dummy_sched,
  3657. .deinit_sched = deinit_dummy_sched,
  3658. .push_task = push_task_dummy,
  3659. .push_prio_task = NULL,
  3660. .pop_task = pop_task_dummy,
  3661. .post_exec_hook = NULL,
  3662. .pop_every_task = NULL,
  3663. .policy_name = "dummy",
  3664. .policy_description = "dummy scheduling strategy"
  3665. @};
  3666. @end smallexample
  3667. @end cartouche
  3668. @c ---------------------------------------------------------------------
  3669. @c Appendices
  3670. @c ---------------------------------------------------------------------
  3671. @c ---------------------------------------------------------------------
  3672. @c Full source code for the 'Scaling a Vector' example
  3673. @c ---------------------------------------------------------------------
  3674. @node Full source code for the 'Scaling a Vector' example
  3675. @appendix Full source code for the 'Scaling a Vector' example
  3676. @menu
  3677. * Main application::
  3678. * CPU Kernel::
  3679. * CUDA Kernel::
  3680. * OpenCL Kernel::
  3681. @end menu
  3682. @node Main application
  3683. @section Main application
  3684. @smallexample
  3685. @include vector_scal_c.texi
  3686. @end smallexample
  3687. @node CPU Kernel
  3688. @section CPU Kernel
  3689. @smallexample
  3690. @include vector_scal_cpu.texi
  3691. @end smallexample
  3692. @node CUDA Kernel
  3693. @section CUDA Kernel
  3694. @smallexample
  3695. @include vector_scal_cuda.texi
  3696. @end smallexample
  3697. @node OpenCL Kernel
  3698. @section OpenCL Kernel
  3699. @menu
  3700. * Invoking the kernel::
  3701. * Source of the kernel::
  3702. @end menu
  3703. @node Invoking the kernel
  3704. @subsection Invoking the kernel
  3705. @smallexample
  3706. @include vector_scal_opencl.texi
  3707. @end smallexample
  3708. @node Source of the kernel
  3709. @subsection Source of the kernel
  3710. @smallexample
  3711. @include vector_scal_opencl_codelet.texi
  3712. @end smallexample
  3713. @bye