| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 | # StarPU --- Runtime system for heterogeneous multicore architectures.## Copyright (C) 2020       Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria## StarPU is free software; you can redistribute it and/or modify# it under the terms of the GNU Lesser General Public License as published by# the Free Software Foundation; either version 2.1 of the License, or (at# your option) any later version.## StarPU is distributed in the hope that it will be useful, but# WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.## See the GNU Lesser General Public License in COPYING.LGPL for more details.#include("mandelbrot.jl")function mandelbrot_with_starpu(A ::Matrix{Int64}, params ::Vector{Float64}, nslicesx ::Int64, nslicesy ::Int64) #mettre params en matrice. (pour que starpu le traite en matrice et non vecteur)    vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesy)    horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesx)    @starpu_block let	hA = starpu_data_register(A)        hP = starpu_data_register(params)	starpu_data_map_filters(hA, vert, horiz)        	@starpu_sync_tasks for tasky in (1:nslicesy)            for taskx in (1 : nslicesx)                @starpu_block let                    v = Int64[tasky, taskx] #C'est le x qu'on augmente en fonction du nombre de slicey. Si il y a trois colonnes, x sera coupé en 3. Donc on inverse dans v.                    hV = starpu_data_register(v)                    @starpu_async_cl cl(hA[tasky, taskx], hP, hV)	        end            end        end    end    return nothingendfunction mandelbrot_with_starpu_cpu(A ::Matrix{Int64}, params ::Vector{Float64}, nslicesx ::Int64, nslicesy ::Int64) #mettre params en matrice. (pour que starpu le traite en matrice et non vecteur)    vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesy)    horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesx)    @starpu_block let	hA = starpu_data_register(A)        hP = starpu_data_register(params)	starpu_data_map_filters(hA, vert, horiz)        	@starpu_sync_tasks for tasky in (1:nslicesy)            for taskx in (1 : nslicesx)                v = Int64[tasky, taskx] #C'est le x qu'on augmente en fonction du nombre de slicey. Si il y a trois colonnes, x sera coupé en 3. Donc on inverse dans v.                hV = starpu_data_register(v)                @starpu_async_cl clcpu(hA[tasky, taskx], hP, hV)	    end        end    end    return nothingendfunction mandelbrot_with_starpu_gpu(A ::Matrix{Int64}, params ::Vector{Float64}, nslicesx ::Int64, nslicesy ::Int64) #mettre params en matrice. (pour que starpu le traite en matrice et non vecteur)    vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)    horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)    @starpu_block let	hA = starpu_data_register(A)        hP = starpu_data_register(params)	starpu_data_map_filters(hA, vert, horiz)        	@starpu_sync_tasks for taskx in (1:nslicesx)            for tasky in (1 : nslicesy)                v = Int64[taskx, tasky] #C'est le x qu'on augmente en fonction du nombre de slicey. Si il y a trois colonnes, x sera coupé en 3. Donc on inverse dans v.                hV = starpu_data_register(v)                @starpu_async_cl clgpu(hA[taskx, tasky], hP, hV)	    end        end    end    return nothingendfunction init_zero(Pixels ::Matrix{Int64}, width ::Int64, height ::Int64)    for i in 1:height        for j in 1:width            Pixels[i,j] = 0        end    endendfunction graph_pixels(Pixels ::Matrix{Int64}, width ::Int64, height ::Int64, filename ::String)    open(filename, "w") do f        write(f, "P3\n$width $height\n255\n")        for i = 1:height            for j = 1:width                write(f, "$(Pixels[i,j]) 0 0 ")            end            write(f, "\n")        end    endendfunction median_times(nbr_tests ::Int64, cr ::Float64, ci ::Float64, dim ::Int64, nslices ::Int64)    exec_times_st ::Vector{Float64} = [0 for i = 1:nbr_tests]    exec_times_cpu ::Vector{Float64} = [0 for i = 1:nbr_tests]    exec_times_gpu ::Vector{Float64} = [0 for i = 1:nbr_tests]    exec_times_jl ::Vector{Float64} = [0 for i = 1:nbr_tests]        Pixels_st ::Matrix{Int64} = zeros(dim, dim)    Pixels_cpu ::Matrix{Int64} = copy(Pixels_st)    Pixels_gpu ::Matrix{Int64} = copy(Pixels_st)    Pixels_jl ::Matrix{Int64} = copy(Pixels_st)        max_iter ::Float64 = (dim/2) * 0.049715909 * log10(dim * 0.25296875)    params = [cr, ci, dim, dim, max_iter]    for i = 1:nbr_tests                tic()        mandelbrot_with_starpu(Pixels_st, params, nslices, nslices)        t = toq()                        exec_times_st[i] = t                # tic()        # mandelbrot_with_starpu_cpu(Pixels_cpu, params, nslices, nslices)        # t = toq()                # exec_times_cpu[i] = t                # tic()        # mandelbrot_with_starpu_gpu(Pixels_gpu, params, nslices, nslices)        # t = toq()                        # exec_times_gpu[i] = t        # tic()        # mandelbrotjl(Pixels_jl, cr, ci)        # t = toq()                        # exec_times_jl[i] = t     end    # graph_pixels(Pixels_st, dim, dim, "../PPM/mandelbrotst$(dim).ppm")    # graph_pixels(Pixels_cpu, dim, dim, "../PPM/mandelbrotcpu$(dim).ppm")    # graph_pixels(Pixels_gpu, dim, dim, "../PPM/mandelbrotgpu$(dim).ppm")    # graph_pixels(Pixels_jl, dim, dim, "../PPM/mandelbrotjl$(dim).ppm")    sort!(exec_times_st)    # sort!(exec_times_cpu)    # sort!(exec_times_gpu)    # sort!(exec_times_jl)        results ::Vector{Float64} = [exec_times_st[1 + div(nbr_tests-1, 2)]]    # results ::Vector{Float64} = [exec_times_st[1 + div(nbr_tests-1, 2)]]#, exec_times_cpu[1 + div(nbr_tests-1, 2)], exec_times_gpu[1 + div(nbr_tests-1, 2)]]#, exec_times_jl[1 + div(nbr_tests-1, 2)]]    return resultsendfunction display_time(cr ::Float64, ci ::Float64, start_dim ::Int64, step_dim ::Int64, stop_dim ::Int64, nslices ::Int64, nbr_tests ::Int64)    # mtc = map( (x->parse(Float64,x)), open("../DAT/mandelbrot_c.dat") do f    #             readlines(f)    #             end)    # mtgen = map( (x->parse(Float64,x)), open("../DAT/mandelbrot_with_generated_times.dat") do f    #             readlines(f)    #             end)    mtjl = map( (x->parse(Float64,x)), open("../DAT/mandelbrot_jl_times.dat") do f                    readlines(f)                    end)    # mtjlcpu = map( (x->parse(Float64,x)), open("../DAT/mandelbrot_jl_cpu.dat") do f    #             readlines(f)    #             end)    mtstruct = map( (x->parse(Float64,x)), open("../DAT/mandelbrot_c_struct_times.dat") do f                    readlines(f)                    end)    mtarray = map( (x->parse(Float64,x)), open("../DAT/mandelbrot_c_array_times.dat") do f                    readlines(f)                    end)    i = 1    # open("../DAT/mandelbrot.dat", "w") do f    # open("../DAT/mandelbrot_gen_times.dat", "w") do ft    open("../DAT/mandelbrot_speedups.dat", "w") do f        for dim in (start_dim : step_dim : stop_dim)            println("Dimension: $dim")                        res ::Vector{Float64} = median_times(nbr_tests, cr, ci, dim, nslices)            # println("C: $(mtc[i])")            # println("C with generated: $(mtgen[i])")            # println("Julia with starpu: $(res[1])")            # println("cpu: $(res[2])")            println("c_struct: $(mtstruct[i])")            println("c_array: $(mtarray[i])")            println("jl_st: $(res[1])")            # println("cpu: $(res[1])")            # write(ft, "$(dim) $(res[1]) $(mtgen[i])\n")            # write(f, "$(dim) $(res[4]/res[1]) $(res[4]/res[2]) $(res[4]/res[3]) $(res[4]/mtc[i])\n")            write(f, "$(dim) $(mtjl[i]/res[1]) $(mtjl[i]/mtstruct[i]) $(mtjl[i]/mtarray[i])\n")            # write(f, "$(res[1])\n")            i = i + 1        end    endend
 |