| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 | ################### Performance Model Version45##################### COMBs# number of combinations9##################### COMB_0# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)0##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cpu0_impl0 (Comb0)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	8.987520e+04   	9.682708e+02   	2.085105e+07   	1.874210e+12   	232d46431bb	1228800        	6.553600e+07   	3.465410e+03   	7.427679e+01   	2.737674e+06   	9.491521e+09   	790f0ac7beb	4915200        	5.242880e+08   	2.744657e+04   	5.713498e+02   	7.575252e+06   	2.080048e+11   	276##################### COMB_4# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 1##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda1_impl0 (Comb4)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	2.825219e+03   	1.227364e+02   	1.106356e+07   	3.131597e+10   	3916d46431bb	1228800        	6.553600e+07   	2.060677e+02   	2.909125e+01   	5.497887e+05   	1.155516e+08   	2668f0ac7beb	4915200        	5.242880e+08   	9.076961e+02   	5.977819e+01   	3.441076e+06   	3.136998e+09   	3791##################### COMB_2# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 3##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda3_impl0 (Comb2)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	2.823818e+03   	1.560928e+02   	1.063450e+07   	3.012164e+10   	3766d46431bb	1228800        	6.553600e+07   	1.632767e+02   	2.137437e+01   	5.224853e+05   	8.677162e+07   	3200f0ac7beb	4915200        	5.242880e+08   	9.226606e+02   	6.080500e+01   	3.410153e+06   	3.160079e+09   	3696##################### COMB_3# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 2##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda2_impl0 (Comb3)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	2.821988e+03   	1.631366e+02   	1.046111e+07   	2.961977e+10   	3707d46431bb	1228800        	6.553600e+07   	1.661504e+02   	2.199315e+01   	5.172263e+05   	8.744312e+07   	3113f0ac7beb	4915200        	5.242880e+08   	9.172785e+02   	5.967474e+01   	3.492079e+06   	3.216766e+09   	3807##################### COMB_1# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda0_impl0 (Comb1)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	2.817019e+03   	1.506473e+02   	1.119202e+07   	3.161828e+10   	3973d46431bb	1228800        	6.553600e+07   	2.042642e+02   	2.707555e+01   	5.498791e+05   	1.142941e+08   	2692f0ac7beb	4915200        	5.242880e+08   	9.044446e+02   	5.780357e+01   	3.477590e+06   	3.158134e+09   	3845##################### COMB_7# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 4##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda4_impl0 (Comb7)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	2.816710e+03   	1.414989e+02   	1.032888e+07   	2.916687e+10   	3667d46431bb	1228800        	6.553600e+07   	1.639497e+02   	2.257894e+01   	4.474187e+05   	7.474542e+07   	2729f0ac7beb	4915200        	5.242880e+08   	9.331501e+02   	5.611510e+01   	3.235231e+06   	3.029874e+09   	3467##################### COMB_5# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 6##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda6_impl0 (Comb5)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	2.815225e+03   	1.445443e+02   	1.009821e+07   	2.850368e+10   	3587d46431bb	1228800        	6.553600e+07   	1.659035e+02   	2.475202e+01   	4.006569e+05   	6.794997e+07   	2415f0ac7beb	4915200        	5.242880e+08   	9.137585e+02   	6.301297e+01   	3.125968e+06   	2.869963e+09   	3421##################### COMB_8# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 5##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda5_impl0 (Comb8)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	2.807699e+03   	1.292512e+02   	1.006279e+07   	2.831317e+10   	3584d46431bb	1228800        	6.553600e+07   	1.680450e+02   	2.634123e+01   	3.922170e+05   	6.752957e+07   	2334f0ac7beb	4915200        	5.242880e+08   	8.912551e+02   	5.629783e+01   	3.090873e+06   	2.765747e+09   	3468##################### COMB_6# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 7##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda7_impl0 (Comb6)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n24c84a50	11059200       	1.769472e+09   	2.827622e+03   	1.304764e+02   	1.027841e+07   	2.912533e+10   	3635d46431bb	1228800        	6.553600e+07   	1.666216e+02   	2.357918e+01   	4.083895e+05   	6.940921e+07   	2451f0ac7beb	4915200        	5.242880e+08   	9.077285e+02   	5.688987e+01   	3.089908e+06   	2.815814e+09   	3404
 |