| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 | ################### Performance Model Version45##################### COMBs# number of combinations9##################### COMB_0# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)0##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cpu0_impl0 (Comb0)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	4.711469e+04   	4.337925e+02   	3.203799e+06   	1.509588e+11   	682c1922b7	819200         	3.287040e+07   	1.979166e+03   	8.798869e+01   	6.828124e+05   	1.354070e+09   	345d39bff17	3276800        	2.625536e+08   	1.482664e+04   	2.506296e+02   	2.298130e+06   	3.408328e+10   	155##################### COMB_4# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 1##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda1_impl0 (Comb4)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	6.573848e+03   	6.169449e+02   	1.360787e+06   	9.024393e+09   	2072c1922b7	819200         	3.287040e+07   	6.955196e+02   	8.976154e+01   	1.286711e+05   	9.098386e+07   	185d39bff17	3276800        	2.625536e+08   	2.647434e+03   	2.520462e+02   	4.685958e+05   	1.251821e+09   	177##################### COMB_2# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 3##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda3_impl0 (Comb2)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	6.555664e+03   	6.950469e+02   	1.252132e+06   	8.300825e+09   	1912c1922b7	819200         	3.287040e+07   	6.812499e+02   	8.342802e+01   	1.273937e+05   	8.808853e+07   	187d39bff17	3276800        	2.625536e+08   	2.596800e+03   	1.668067e+02   	5.894736e+05   	1.537061e+09   	227##################### COMB_3# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 2##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda2_impl0 (Comb3)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	6.446442e+03   	5.413553e+02   	1.276395e+06   	8.286236e+09   	1982c1922b7	819200         	3.287040e+07   	6.941204e+02   	8.002896e+01   	1.277182e+05   	8.983023e+07   	184d39bff17	3276800        	2.625536e+08   	2.630763e+03   	2.300111e+02   	4.603835e+05   	1.220418e+09   	175##################### COMB_1# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda0_impl0 (Comb1)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	6.554622e+03   	7.028631e+02   	1.238824e+06   	8.213390e+09   	1892c1922b7	819200         	3.287040e+07   	6.905951e+02   	7.284704e+01   	1.353566e+05   	9.451674e+07   	196d39bff17	3276800        	2.625536e+08   	2.623425e+03   	2.211699e+02   	4.905805e+05   	1.296149e+09   	187##################### COMB_7# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 4##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda4_impl0 (Comb7)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	6.504271e+03   	6.367049e+02   	9.951534e+05   	6.534773e+09   	1532c1922b7	819200         	3.287040e+07   	7.029111e+02   	9.289767e+01   	7.169693e+04   	5.127683e+07   	102d39bff17	3276800        	2.625536e+08   	2.684586e+03   	3.481310e+02   	4.080571e+05   	1.113886e+09   	152##################### COMB_8# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 5##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda5_impl0 (Comb8)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	6.618862e+03   	8.843940e+02   	8.405955e+05   	5.663119e+09   	1272c1922b7	819200         	3.287040e+07   	7.079333e+02   	9.356613e+01   	6.796160e+04   	4.895273e+07   	96d39bff17	3276800        	2.625536e+08   	2.800887e+03   	4.371231e+02   	3.221020e+05   	9.241450e+08   	115##################### COMB_5# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 6##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda6_impl0 (Comb5)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	6.576395e+03   	7.489644e+02   	8.878133e+05   	5.914339e+09   	1352c1922b7	819200         	3.287040e+07   	7.050156e+02   	1.025857e+02   	8.037177e+04   	5.786307e+07   	114d39bff17	3276800        	2.625536e+08   	2.645162e+03   	2.750078e+02   	4.205807e+05   	1.124529e+09   	159##################### COMB_6# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 7##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda7_impl0 (Comb6)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	7372800        	8.856576e+08   	6.544427e+03   	6.576164e+02   	9.358531e+05   	6.186464e+09   	1432c1922b7	819200         	3.287040e+07   	7.150712e+02   	1.054194e+02   	8.223319e+04   	6.008061e+07   	115d39bff17	3276800        	2.625536e+08   	2.613530e+03   	2.505172e+02   	3.972565e+05   	1.047781e+09   	152
 |