black_scholes.jl 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193
  1. import Libdl
  2. using StarPU
  3. @target STARPU_CPU+STARPU_CUDA
  4. @codelet function black_scholes(data ::Matrix{Float64}, res ::Matrix{Float64}) :: Float32
  5. widthn ::Int64 = width(data)
  6. # data[1,...] -> S
  7. # data[2,...] -> K
  8. # data[3,...] -> r
  9. # data[4,...] -> T
  10. # data[4,...] -> sig
  11. p ::Float64 = 0.2316419
  12. b1 ::Float64 = 0.31938153
  13. b2 ::Float64 = -0.356563782
  14. b3 ::Float64 = 1.781477937
  15. b4 ::Float64 = -1.821255978
  16. b5 ::Float64 = 1.330274428
  17. @parallel for i = 1:widthn
  18. d1 ::Float64 = (log(data[1,i] / data[2,i]) + (data[3,i] + pow(data[5,i], 2.0) * 0.5) * data[4,i]) / (data[5,i] * sqrt(data[4,i]))
  19. d2 ::Float64 = (log(data[1,i] / data[2,i]) + (data[3,i] - pow(data[5,i], 2.0) * 0.5) * data[4,i]) / (data[5,i] * sqrt(data[4,i]))
  20. f ::Float64 = 0
  21. ff ::Float64 = 0
  22. s1 ::Float64 = 0
  23. s2 ::Float64 = 0
  24. s3 ::Float64 = 0
  25. s4 ::Float64 = 0
  26. s5 ::Float64 = 0
  27. sz ::Float64 = 0
  28. ######## Compute normcdf of d1
  29. normd1p ::Float64 = 0
  30. normd1n ::Float64 = 0
  31. boold1 ::Int64 = (d1 >= 0) + (d1 <= 0)
  32. if (boold1 >= 2)
  33. normd1p = 0.5
  34. normd1n = 0.5
  35. else
  36. tmp1 ::Float64 = abs(d1)
  37. f = 1 / sqrt(2 * M_PI)
  38. ff = exp(-pow(tmp1, 2.0) / 2) * f
  39. s1 = b1 / (1 + p * tmp1)
  40. s2 = b2 / pow((1 + p * tmp1), 2.0)
  41. s3 = b3 / pow((1 + p * tmp1), 3.0)
  42. s4 = b4 / pow((1 + p * tmp1), 4.0)
  43. s5 = b5 / pow((1 + p * tmp1), 5.0)
  44. sz = ff * (s1 + s2 + s3 + s4 + s5)
  45. if (d1 > 0)
  46. normd1p = 1 - sz # normcdf(d1)
  47. normd1n = sz # normcdf(-d1)
  48. else
  49. normd1p = sz
  50. normd1n = 1 - sz
  51. end
  52. end
  53. ########
  54. ######## Compute normcdf of d2
  55. normd2p ::Float64 = 0
  56. normd2n ::Float64 = 0
  57. boold2 ::Int64 = (d2 >= 0) + (d2 <= 0)
  58. if (boold2 >= 2)
  59. normd2p = 0.5
  60. normd2n = 0.5
  61. else
  62. tmp2 ::Float64 = abs(d2)
  63. f = 1 / sqrt(2 * M_PI)
  64. ff = exp(-pow(tmp2, 2.0) / 2) * f
  65. s1 = b1 / (1 + p * tmp2)
  66. s2 = b2 / pow((1 + p * tmp2), 2.0)
  67. s3 = b3 / pow((1 + p * tmp2), 3.0)
  68. s4 = b4 / pow((1 + p * tmp2), 4.0)
  69. s5 = b5 / pow((1 + p * tmp2), 5.0)
  70. sz = ff * (s1 + s2 + s3 + s4 + s5)
  71. if (d2 > 0)
  72. normd2p = 1 - sz # normcdf(d2)
  73. normd2n = sz # normcdf(-d2)
  74. else
  75. normd2p = sz
  76. normd2n = 1 - sz
  77. end
  78. end
  79. # normd1p = (1 + erf(d1/sqrt(2.0)))/2.0
  80. # normd1n = (1 + erf(-d1/sqrt(2.0)))/2.0
  81. # normd2p = (1 + erf(d2/sqrt(2.0)))/2.0
  82. # normd2n = (1 + erf(-d2/sqrt(2.0)))/2.0
  83. res[1,i] = data[1,i] * (normd1p) - data[2,i]*exp(-data[3,i]*data[4,i]) * (normd2p) # S * N(d1) - r*exp(-r*T) * norm(d2)
  84. res[2,i] = -data[1,i] * (normd1n) + data[2,i]*exp(-data[3,i]*data[4,i]) * (normd2n) # -S * N(-d1) + r*exp(-r*T) * norm(-d2)
  85. end
  86. return 0
  87. end
  88. starpu_init()
  89. function black_scholes_starpu(data ::Matrix{Float64}, res ::Matrix{Float64}, nslices ::Int64)
  90. vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslices)
  91. @starpu_block let
  92. dat_handle, res_handle = starpu_data_register(data, res)
  93. starpu_data_partition(dat_handle, vert)
  94. starpu_data_partition(res_handle, vert)
  95. #Compute the price of call and put option in the res matrix
  96. @starpu_sync_tasks for task in (1:nslices)
  97. @starpu_async_cl black_scholes(dat_handle[task], res_handle[task]) [STARPU_RW, STARPU_RW]
  98. end
  99. end
  100. return 0
  101. end
  102. function init_data(data, data_nbr);
  103. for i in 1:data_nbr
  104. data[1,i] = rand(Float64) * 100
  105. data[2,i] = rand(Float64) * 100
  106. data[3,i] = rand(Float64)
  107. data[4,i] = rand(Float64) * 10
  108. data[5,i] = rand(Float64) * 10
  109. end
  110. return data
  111. end
  112. function median_times(data_nbr, nslices, nbr_tests)
  113. data ::Matrix{Float64} = zeros(5, data_nbr)
  114. # data[1,1] = 100.0
  115. # data[2,1] = 100.0
  116. # data[3,1] = 0.05
  117. # data[4,1] = 1.0
  118. # data[5,1] = 0.2
  119. res ::Matrix{Float64} = zeros(2, data_nbr)
  120. exec_times ::Vector{Float64} = [0. for i in 1:nbr_tests]
  121. for i = 1:nbr_tests
  122. init_data(data, data_nbr)
  123. tic()
  124. black_scholes_starpu(data, res, nslices);
  125. t = toq()
  126. exec_times[i] = t
  127. end
  128. sort!(exec_times)
  129. # println(data)
  130. # println(res)
  131. return exec_times[1 + div(nbr_tests - 1, 2)]
  132. end
  133. function display_times(start_nbr, step_nbr, stop_nbr, nslices, nbr_tests)
  134. i = 1
  135. open("black_scholes_times.dat", "w") do f
  136. for data_nbr in (start_nbr : step_nbr : stop_nbr)
  137. t = median_times(data_nbr, nslices, nbr_tests)
  138. println("Number of data:\n$data_nbr\nTimes:\njl: $t\nC: $(mtc[i])\nGen: $(mtcgen[i])")
  139. write(f, "$data_nbr $(t)\n")
  140. i = i + 1
  141. end
  142. end
  143. end