123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691 |
- /* StarPU --- Runtime system for heterogeneous multicore architectures.
- *
- * Copyright (C) 2010-2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
- *
- * StarPU is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at
- * your option) any later version.
- *
- * StarPU is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- *
- * See the GNU Lesser General Public License in COPYING.LGPL for more details.
- */
- /*
- * Standard BLAS kernels used by CG
- */
- #include "cg.h"
- #include <math.h>
- #include <limits.h>
- #ifdef STARPU_USE_CUDA
- #include <starpu_cublas_v2.h>
- static const TYPE gp1 = 1.0;
- static const TYPE gm1 = -1.0;
- #endif
- #if 0
- static void print_vector_from_descr(unsigned nx, TYPE *v)
- {
- unsigned i;
- for (i = 0; i < nx; i++)
- {
- fprintf(stderr, "%2.2e ", v[i]);
- }
- fprintf(stderr, "\n");
- }
- static void print_matrix_from_descr(unsigned nx, unsigned ny, unsigned ld, TYPE *mat)
- {
- unsigned i, j;
- for (j = 0; j < nx; j++)
- {
- for (i = 0; i < ny; i++)
- {
- fprintf(stderr, "%2.2e ", mat[j+i*ld]);
- }
- fprintf(stderr, "\n");
- }
- }
- #endif
- static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
- {
- (void)task;
- (void)nimpl;
- enum starpu_worker_archtype type = starpu_worker_get_type(workerid);
- if (type == STARPU_CPU_WORKER || type == STARPU_OPENCL_WORKER || type == STARPU_MIC_WORKER)
- return 1;
- #ifdef STARPU_USE_CUDA
- #ifdef STARPU_SIMGRID
- /* We don't know, let's assume it can */
- return 1;
- #else
- /* Cuda device */
- const struct cudaDeviceProp *props;
- props = starpu_cuda_get_device_properties(workerid);
- if (props->major >= 2 || props->minor >= 3)
- /* At least compute capability 1.3, supports doubles */
- return 1;
- #endif
- #endif
- /* Old card, does not support doubles */
- return 0;
- }
- /*
- * Reduction accumulation methods
- */
- #ifdef STARPU_USE_CUDA
- static void accumulate_variable_cuda(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
- cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(), 1, &gp1, v_src, 1, v_dst, 1);
- if (status != CUBLAS_STATUS_SUCCESS)
- STARPU_CUBLAS_REPORT_ERROR(status);
- }
- #endif
- void accumulate_variable_cpu(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
- *v_dst = *v_dst + *v_src;
- }
- static struct starpu_perfmodel accumulate_variable_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "accumulate_variable"
- };
- struct starpu_codelet accumulate_variable_cl =
- {
- .can_execute = can_execute,
- .cpu_funcs = {accumulate_variable_cpu},
- .cpu_funcs_name = {"accumulate_variable_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {accumulate_variable_cuda},
- .cuda_flags = {STARPU_CUDA_ASYNC},
- #endif
- .modes = {STARPU_RW, STARPU_R},
- .nbuffers = 2,
- .model = &accumulate_variable_model
- };
- #ifdef STARPU_USE_CUDA
- static void accumulate_vector_cuda(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(), n, &gp1, v_src, 1, v_dst, 1);
- if (status != CUBLAS_STATUS_SUCCESS)
- STARPU_CUBLAS_REPORT_ERROR(status);
- }
- #endif
- void accumulate_vector_cpu(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- AXPY(n, (TYPE)1.0, v_src, 1, v_dst, 1);
- }
- static struct starpu_perfmodel accumulate_vector_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "accumulate_vector"
- };
- struct starpu_codelet accumulate_vector_cl =
- {
- .can_execute = can_execute,
- .cpu_funcs = {accumulate_vector_cpu},
- .cpu_funcs_name = {"accumulate_vector_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {accumulate_vector_cuda},
- .cuda_flags = {STARPU_CUDA_ASYNC},
- #endif
- .modes = {STARPU_RW, STARPU_R},
- .nbuffers = 2,
- .model = &accumulate_vector_model
- };
- /*
- * Reduction initialization methods
- */
- #ifdef STARPU_USE_CUDA
- extern void zero_vector(TYPE *x, unsigned nelems);
- static void bzero_variable_cuda(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- size_t size = STARPU_VARIABLE_GET_ELEMSIZE(descr[0]);
- cudaMemsetAsync(v, 0, size, starpu_cuda_get_local_stream());
- }
- #endif
- void bzero_variable_cpu(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- *v = (TYPE)0.0;
- }
- static struct starpu_perfmodel bzero_variable_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "bzero_variable"
- };
- struct starpu_codelet bzero_variable_cl =
- {
- .can_execute = can_execute,
- .cpu_funcs = {bzero_variable_cpu},
- .cpu_funcs_name = {"bzero_variable_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {bzero_variable_cuda},
- .cuda_flags = {STARPU_CUDA_ASYNC},
- #endif
- .modes = {STARPU_W},
- .nbuffers = 1,
- .model = &bzero_variable_model
- };
- #ifdef STARPU_USE_CUDA
- static void bzero_vector_cuda(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- size_t elemsize = STARPU_VECTOR_GET_ELEMSIZE(descr[0]);
- cudaMemsetAsync(v, 0, n * elemsize, starpu_cuda_get_local_stream());
- }
- #endif
- void bzero_vector_cpu(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- memset(v, 0, n*sizeof(TYPE));
- }
- static struct starpu_perfmodel bzero_vector_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "bzero_vector"
- };
- struct starpu_codelet bzero_vector_cl =
- {
- .can_execute = can_execute,
- .cpu_funcs = {bzero_vector_cpu},
- .cpu_funcs_name = {"bzero_vector_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {bzero_vector_cuda},
- .cuda_flags = {STARPU_CUDA_ASYNC},
- #endif
- .modes = {STARPU_W},
- .nbuffers = 1,
- .model = &bzero_vector_model
- };
- /*
- * DOT kernel : s = dot(v1, v2)
- */
- #ifdef STARPU_USE_CUDA
- static void dot_kernel_cuda(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
- cublasHandle_t handle = starpu_cublas_get_local_handle();
- cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_DEVICE);
- cublasStatus_t status = cublasdot(handle,
- n, v1, 1, v2, 1, dot);
- if (status != CUBLAS_STATUS_SUCCESS)
- STARPU_CUBLAS_REPORT_ERROR(status);
- cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_HOST);
- }
- #endif
- void dot_kernel_cpu(void *descr[], void *cl_arg)
- {
- (void)cl_arg;
- TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
- TYPE local_dot;
- /* Note that we explicitely cast the result of the DOT kernel because
- * some BLAS library will return a double for sdot for instance. */
- local_dot = (TYPE)DOT(n, v1, 1, v2, 1);
- *dot = *dot + local_dot;
- }
- static struct starpu_perfmodel dot_kernel_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "dot_kernel"
- };
- static struct starpu_codelet dot_kernel_cl =
- {
- .can_execute = can_execute,
- .cpu_funcs = {dot_kernel_cpu},
- .cpu_funcs_name = {"dot_kernel_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {dot_kernel_cuda},
- #endif
- .cuda_flags = {STARPU_CUDA_ASYNC},
- .nbuffers = 3,
- .model = &dot_kernel_model
- };
- int dot_kernel(starpu_data_handle_t v1,
- starpu_data_handle_t v2,
- starpu_data_handle_t s,
- unsigned nblocks,
- int use_reduction)
- {
- int ret;
- /* Blank the accumulation variable */
- if (use_reduction)
- starpu_data_invalidate_submit(s);
- else
- {
- ret = starpu_task_insert(&bzero_variable_cl, STARPU_W, s, 0);
- if (ret == -ENODEV) return ret;
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
- }
- unsigned b;
- for (b = 0; b < nblocks; b++)
- {
- ret = starpu_task_insert(&dot_kernel_cl,
- use_reduction?STARPU_REDUX:STARPU_RW, s,
- STARPU_R, starpu_data_get_sub_data(v1, 1, b),
- STARPU_R, starpu_data_get_sub_data(v2, 1, b),
- STARPU_TAG_ONLY, (starpu_tag_t) b,
- 0);
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
- }
- return 0;
- }
- /*
- * SCAL kernel : v1 = p1 v1
- */
- #ifdef STARPU_USE_CUDA
- static void scal_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE p1;
- starpu_codelet_unpack_args(cl_arg, &p1);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- /* v1 = p1 v1 */
- TYPE alpha = p1;
- cublasStatus_t status = cublasscal(starpu_cublas_get_local_handle(), n, &alpha, v1, 1);
- if (status != CUBLAS_STATUS_SUCCESS)
- STARPU_CUBLAS_REPORT_ERROR(status);
- }
- #endif
- void scal_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE alpha;
- starpu_codelet_unpack_args(cl_arg, &alpha);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- /* v1 = alpha v1 */
- SCAL(n, alpha, v1, 1);
- }
- static struct starpu_perfmodel scal_kernel_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "scal_kernel"
- };
- static struct starpu_codelet scal_kernel_cl =
- {
- .can_execute = can_execute,
- .cpu_funcs = {scal_kernel_cpu},
- .cpu_funcs_name = {"scal_kernel_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {scal_kernel_cuda},
- .cuda_flags = {STARPU_CUDA_ASYNC},
- #endif
- .nbuffers = 1,
- .model = &scal_kernel_model
- };
- /*
- * GEMV kernel : v1 = p1 * v1 + p2 * M v2
- */
- #ifdef STARPU_USE_CUDA
- static void gemv_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
- TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
- unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
- unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
- unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
- TYPE alpha, beta;
- starpu_codelet_unpack_args(cl_arg, &beta, &alpha);
- /* Compute v1 = alpha M v2 + beta v1 */
- cublasStatus_t status = cublasgemv(starpu_cublas_get_local_handle(),
- CUBLAS_OP_N, nx, ny, &alpha, M, ld, v2, 1, &beta, v1, 1);
- if (status != CUBLAS_STATUS_SUCCESS)
- STARPU_CUBLAS_REPORT_ERROR(status);
- }
- #endif
- void gemv_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
- TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
- unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
- unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
- unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
- TYPE alpha, beta;
- starpu_codelet_unpack_args(cl_arg, &beta, &alpha);
- int worker_size = starpu_combined_worker_get_size();
- if (worker_size > 1)
- {
- /* Parallel CPU task */
- unsigned rank = starpu_combined_worker_get_rank();
- unsigned block_size = (ny + worker_size - 1)/worker_size;
- unsigned new_nx = STARPU_MIN(nx, block_size*(rank+1)) - block_size*rank;
- nx = new_nx;
- v1 = &v1[block_size*rank];
- M = &M[block_size*rank];
- }
- /* Compute v1 = alpha M v2 + beta v1 */
- GEMV("N", nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);
- }
- static struct starpu_perfmodel gemv_kernel_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "gemv_kernel"
- };
- static struct starpu_codelet gemv_kernel_cl =
- {
- .can_execute = can_execute,
- .type = STARPU_SPMD,
- .max_parallelism = INT_MAX,
- .cpu_funcs = {gemv_kernel_cpu},
- .cpu_funcs_name = {"gemv_kernel_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {gemv_kernel_cuda},
- .cuda_flags = {STARPU_CUDA_ASYNC},
- #endif
- .nbuffers = 3,
- .model = &gemv_kernel_model
- };
- int gemv_kernel(starpu_data_handle_t v1,
- starpu_data_handle_t matrix,
- starpu_data_handle_t v2,
- TYPE p1, TYPE p2,
- unsigned nblocks,
- int use_reduction)
- {
- unsigned b1, b2;
- int ret;
- for (b2 = 0; b2 < nblocks; b2++)
- {
- ret = starpu_task_insert(&scal_kernel_cl,
- STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
- STARPU_VALUE, &p1, sizeof(p1),
- STARPU_TAG_ONLY, (starpu_tag_t) b2,
- 0);
- if (ret == -ENODEV) return ret;
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
- }
- for (b2 = 0; b2 < nblocks; b2++)
- {
- for (b1 = 0; b1 < nblocks; b1++)
- {
- TYPE one = 1.0;
- ret = starpu_task_insert(&gemv_kernel_cl,
- use_reduction?STARPU_REDUX:STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
- STARPU_R, starpu_data_get_sub_data(matrix, 2, b2, b1),
- STARPU_R, starpu_data_get_sub_data(v2, 1, b1),
- STARPU_VALUE, &one, sizeof(one),
- STARPU_VALUE, &p2, sizeof(p2),
- STARPU_TAG_ONLY, ((starpu_tag_t)b2) * nblocks + b1,
- 0);
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
- }
- }
- return 0;
- }
- /*
- * AXPY + SCAL kernel : v1 = p1 * v1 + p2 * v2
- */
- #ifdef STARPU_USE_CUDA
- static void scal_axpy_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE p1, p2;
- starpu_codelet_unpack_args(cl_arg, &p1, &p2);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- /* Compute v1 = p1 * v1 + p2 * v2.
- * v1 = p1 v1
- * v1 = v1 + p2 v2
- */
- cublasStatus_t status;
- status = cublasscal(starpu_cublas_get_local_handle(), n, &p1, v1, 1);
- if (status != CUBLAS_STATUS_SUCCESS)
- STARPU_CUBLAS_REPORT_ERROR(status);
- status = cublasaxpy(starpu_cublas_get_local_handle(), n, &p2, v2, 1, v1, 1);
- if (status != CUBLAS_STATUS_SUCCESS)
- STARPU_CUBLAS_REPORT_ERROR(status);
- }
- #endif
- void scal_axpy_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE p1, p2;
- starpu_codelet_unpack_args(cl_arg, &p1, &p2);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
- /* Compute v1 = p1 * v1 + p2 * v2.
- * v1 = p1 v1
- * v1 = v1 + p2 v2
- */
- SCAL(nx, p1, v1, 1);
- AXPY(nx, p2, v2, 1, v1, 1);
- }
- static struct starpu_perfmodel scal_axpy_kernel_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "scal_axpy_kernel"
- };
- static struct starpu_codelet scal_axpy_kernel_cl =
- {
- .can_execute = can_execute,
- .cpu_funcs = {scal_axpy_kernel_cpu},
- .cpu_funcs_name = {"scal_axpy_kernel_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {scal_axpy_kernel_cuda},
- .cuda_flags = {STARPU_CUDA_ASYNC},
- #endif
- .nbuffers = 2,
- .model = &scal_axpy_kernel_model
- };
- int scal_axpy_kernel(starpu_data_handle_t v1, TYPE p1,
- starpu_data_handle_t v2, TYPE p2,
- unsigned nblocks)
- {
- unsigned b;
- for (b = 0; b < nblocks; b++)
- {
- int ret;
- ret = starpu_task_insert(&scal_axpy_kernel_cl,
- STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
- STARPU_R, starpu_data_get_sub_data(v2, 1, b),
- STARPU_VALUE, &p1, sizeof(p1),
- STARPU_VALUE, &p2, sizeof(p2),
- STARPU_TAG_ONLY, (starpu_tag_t) b,
- 0);
- if (ret == -ENODEV) return ret;
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
- }
- return 0;
- }
- /*
- * AXPY kernel : v1 = v1 + p1 * v2
- */
- #ifdef STARPU_USE_CUDA
- static void axpy_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE p1;
- starpu_codelet_unpack_args(cl_arg, &p1);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- /* Compute v1 = v1 + p1 * v2.
- */
- cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(),
- n, &p1, v2, 1, v1, 1);
- if (status != CUBLAS_STATUS_SUCCESS)
- STARPU_CUBLAS_REPORT_ERROR(status);
- }
- #endif
- void axpy_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE p1;
- starpu_codelet_unpack_args(cl_arg, &p1);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
- /* Compute v1 = p1 * v1 + p2 * v2.
- */
- AXPY(nx, p1, v2, 1, v1, 1);
- }
- static struct starpu_perfmodel axpy_kernel_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "axpy_kernel"
- };
- static struct starpu_codelet axpy_kernel_cl =
- {
- .can_execute = can_execute,
- .cpu_funcs = {axpy_kernel_cpu},
- .cpu_funcs_name = {"axpy_kernel_cpu"},
- #ifdef STARPU_USE_CUDA
- .cuda_funcs = {axpy_kernel_cuda},
- .cuda_flags = {STARPU_CUDA_ASYNC},
- #endif
- .nbuffers = 2,
- .model = &axpy_kernel_model
- };
- int axpy_kernel(starpu_data_handle_t v1,
- starpu_data_handle_t v2, TYPE p1,
- unsigned nblocks)
- {
- unsigned b;
- for (b = 0; b < nblocks; b++)
- {
- int ret;
- ret = starpu_task_insert(&axpy_kernel_cl,
- STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
- STARPU_R, starpu_data_get_sub_data(v2, 1, b),
- STARPU_VALUE, &p1, sizeof(p1),
- STARPU_TAG_ONLY, (starpu_tag_t) b,
- 0);
- if (ret == -ENODEV) return ret;
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
- }
- return 0;
- }
- int copy_handle(starpu_data_handle_t dst, starpu_data_handle_t src, unsigned nblocks)
- {
- unsigned b;
- for (b = 0; b < nblocks; b++)
- starpu_data_cpy(starpu_data_get_sub_data(dst, 1, b), starpu_data_get_sub_data(src, 1, b), 1, NULL, NULL);
- return 0;
- }
|