cg.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include <math.h>
  17. #include <assert.h>
  18. #include <starpu.h>
  19. #include <common/blas.h>
  20. #ifdef STARPU_USE_CUDA
  21. #include <cuda.h>
  22. #endif
  23. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  24. /*
  25. * Conjugate Gradient
  26. *
  27. * Input:
  28. * - matrix A
  29. * - vector b
  30. * - vector x (starting value)
  31. * - int i_max, error tolerance eps < 1.
  32. * Ouput:
  33. * - vector x
  34. *
  35. * Pseudo code:
  36. *
  37. * i <- 0
  38. * r <- b - Ax
  39. * d <- r
  40. * delta_new <- dot(r,r)
  41. * delta_0 <- delta_new
  42. *
  43. * while (i < i_max && delta_new > eps^2 delta_0)
  44. * {
  45. * q <- Ad
  46. * alpha <- delta_new/dot(d, q)
  47. * x <- x + alpha d
  48. *
  49. * If (i is divisible by 50)
  50. * r <- b - Ax
  51. * else
  52. * r <- r - alpha q
  53. *
  54. * delta_old <- delta_new
  55. * delta_new <- dot(r,r)
  56. * beta <- delta_new/delta_old
  57. * d <- r + beta d
  58. * i <- i + 1
  59. * }
  60. *
  61. * The dot() operations makes use of reduction to optimize parallelism.
  62. *
  63. */
  64. #include "cg.h"
  65. static int long long n = 4096;
  66. static int nblocks = 8;
  67. static int use_reduction = 1;
  68. static starpu_data_handle_t A_handle, b_handle, x_handle;
  69. static TYPE *A, *b, *x;
  70. #ifdef STARPU_QUICK_CHECK
  71. static int i_max = 5;
  72. #elif !defined(STARPU_LONG_CHECK)
  73. static int i_max = 100;
  74. #else
  75. static int i_max = 1000;
  76. #endif
  77. static double eps = (10e-14);
  78. static starpu_data_handle_t r_handle, d_handle, q_handle;
  79. static TYPE *r, *d, *q;
  80. static starpu_data_handle_t dtq_handle, rtr_handle;
  81. static TYPE dtq, rtr;
  82. extern struct starpu_codelet accumulate_variable_cl;
  83. extern struct starpu_codelet accumulate_vector_cl;
  84. extern struct starpu_codelet bzero_variable_cl;
  85. extern struct starpu_codelet bzero_vector_cl;
  86. /*
  87. * Generate Input data
  88. */
  89. static void generate_random_problem(void)
  90. {
  91. int i, j;
  92. starpu_malloc((void **)&A, n*n*sizeof(TYPE));
  93. starpu_malloc((void **)&b, n*sizeof(TYPE));
  94. starpu_malloc((void **)&x, n*sizeof(TYPE));
  95. assert(A && b && x);
  96. for (j = 0; j < n; j++)
  97. {
  98. b[j] = (TYPE)1.0;
  99. x[j] = (TYPE)0.0;
  100. /* We take Hilbert matrix that is not well conditionned but definite positive: H(i,j) = 1/(1+i+j) */
  101. for (i = 0; i < n; i++)
  102. {
  103. A[n*j + i] = (TYPE)(1.0/(1.0+i+j));
  104. }
  105. }
  106. /* Internal vectors */
  107. starpu_malloc((void **)&r, n*sizeof(TYPE));
  108. starpu_malloc((void **)&d, n*sizeof(TYPE));
  109. starpu_malloc((void **)&q, n*sizeof(TYPE));
  110. assert(r && d && q);
  111. memset(r, 0, n*sizeof(TYPE));
  112. memset(d, 0, n*sizeof(TYPE));
  113. memset(q, 0, n*sizeof(TYPE));
  114. }
  115. static void free_data(void)
  116. {
  117. starpu_free(A);
  118. starpu_free(b);
  119. starpu_free(x);
  120. starpu_free(r);
  121. starpu_free(d);
  122. starpu_free(q);
  123. }
  124. static void register_data(void)
  125. {
  126. starpu_matrix_data_register(&A_handle, STARPU_MAIN_RAM, (uintptr_t)A, n, n, n, sizeof(TYPE));
  127. starpu_vector_data_register(&b_handle, STARPU_MAIN_RAM, (uintptr_t)b, n, sizeof(TYPE));
  128. starpu_vector_data_register(&x_handle, STARPU_MAIN_RAM, (uintptr_t)x, n, sizeof(TYPE));
  129. starpu_vector_data_register(&r_handle, STARPU_MAIN_RAM, (uintptr_t)r, n, sizeof(TYPE));
  130. starpu_vector_data_register(&d_handle, STARPU_MAIN_RAM, (uintptr_t)d, n, sizeof(TYPE));
  131. starpu_vector_data_register(&q_handle, STARPU_MAIN_RAM, (uintptr_t)q, n, sizeof(TYPE));
  132. starpu_variable_data_register(&dtq_handle, STARPU_MAIN_RAM, (uintptr_t)&dtq, sizeof(TYPE));
  133. starpu_variable_data_register(&rtr_handle, STARPU_MAIN_RAM, (uintptr_t)&rtr, sizeof(TYPE));
  134. if (use_reduction)
  135. {
  136. starpu_data_set_reduction_methods(q_handle, &accumulate_vector_cl, &bzero_vector_cl);
  137. starpu_data_set_reduction_methods(r_handle, &accumulate_vector_cl, &bzero_vector_cl);
  138. starpu_data_set_reduction_methods(dtq_handle, &accumulate_variable_cl, &bzero_variable_cl);
  139. starpu_data_set_reduction_methods(rtr_handle, &accumulate_variable_cl, &bzero_variable_cl);
  140. }
  141. }
  142. static void unregister_data(void)
  143. {
  144. starpu_data_unpartition(A_handle, STARPU_MAIN_RAM);
  145. starpu_data_unpartition(b_handle, STARPU_MAIN_RAM);
  146. starpu_data_unpartition(x_handle, STARPU_MAIN_RAM);
  147. starpu_data_unpartition(r_handle, STARPU_MAIN_RAM);
  148. starpu_data_unpartition(d_handle, STARPU_MAIN_RAM);
  149. starpu_data_unpartition(q_handle, STARPU_MAIN_RAM);
  150. starpu_data_unregister(A_handle);
  151. starpu_data_unregister(b_handle);
  152. starpu_data_unregister(x_handle);
  153. starpu_data_unregister(r_handle);
  154. starpu_data_unregister(d_handle);
  155. starpu_data_unregister(q_handle);
  156. starpu_data_unregister(dtq_handle);
  157. starpu_data_unregister(rtr_handle);
  158. }
  159. /*
  160. * Data partitioning filters
  161. */
  162. struct starpu_data_filter vector_filter;
  163. struct starpu_data_filter matrix_filter_1;
  164. struct starpu_data_filter matrix_filter_2;
  165. static void partition_data(void)
  166. {
  167. assert(n % nblocks == 0);
  168. /*
  169. * Partition the A matrix
  170. */
  171. /* Partition into contiguous parts */
  172. matrix_filter_1.filter_func = starpu_matrix_filter_block;
  173. matrix_filter_1.nchildren = nblocks;
  174. /* Partition into non-contiguous parts */
  175. matrix_filter_2.filter_func = starpu_matrix_filter_vertical_block;
  176. matrix_filter_2.nchildren = nblocks;
  177. /* A is in FORTRAN ordering, starpu_data_get_sub_data(A_handle, 2, i,
  178. * j) designates the block in column i and row j. */
  179. starpu_data_map_filters(A_handle, 2, &matrix_filter_1, &matrix_filter_2);
  180. /*
  181. * Partition the vectors
  182. */
  183. vector_filter.filter_func = starpu_vector_filter_block;
  184. vector_filter.nchildren = nblocks;
  185. starpu_data_partition(b_handle, &vector_filter);
  186. starpu_data_partition(x_handle, &vector_filter);
  187. starpu_data_partition(r_handle, &vector_filter);
  188. starpu_data_partition(d_handle, &vector_filter);
  189. starpu_data_partition(q_handle, &vector_filter);
  190. }
  191. /*
  192. * Debug
  193. */
  194. #if 0
  195. static void display_vector(starpu_data_handle_t handle, TYPE *ptr)
  196. {
  197. unsigned block_size = n / nblocks;
  198. unsigned b, ind;
  199. for (b = 0; b < nblocks; b++)
  200. {
  201. starpu_data_acquire(starpu_data_get_sub_data(handle, 1, b), STARPU_R);
  202. for (ind = 0; ind < block_size; ind++)
  203. {
  204. FPRINTF(stderr, "%2.2e ", ptr[b*block_size + ind]);
  205. }
  206. FPRINTF(stderr, "| ");
  207. starpu_data_release(starpu_data_get_sub_data(handle, 1, b));
  208. }
  209. FPRINTF(stderr, "\n");
  210. }
  211. static void display_matrix(void)
  212. {
  213. unsigned i, j;
  214. for (i = 0; i < n; i++)
  215. {
  216. for (j = 0; j < n; j++)
  217. {
  218. FPRINTF(stderr, "%2.2e ", A[j*n + i]);
  219. }
  220. FPRINTF(stderr, "\n");
  221. }
  222. }
  223. #endif
  224. /*
  225. * Main loop
  226. */
  227. static int cg(void)
  228. {
  229. double delta_new, delta_0;
  230. int i = 0;
  231. int ret;
  232. /* r <- b */
  233. ret = copy_handle(r_handle, b_handle, nblocks);
  234. if (ret == -ENODEV) return ret;
  235. /* r <- r - A x */
  236. ret = gemv_kernel(r_handle, A_handle, x_handle, 1.0, -1.0, nblocks, use_reduction);
  237. if (ret == -ENODEV) return ret;
  238. /* d <- r */
  239. ret = copy_handle(d_handle, r_handle, nblocks);
  240. if (ret == -ENODEV) return ret;
  241. /* delta_new = dot(r,r) */
  242. ret = dot_kernel(r_handle, r_handle, rtr_handle, nblocks, use_reduction);
  243. if (ret == -ENODEV) return ret;
  244. starpu_data_acquire(rtr_handle, STARPU_R);
  245. delta_new = rtr;
  246. delta_0 = delta_new;
  247. starpu_data_release(rtr_handle);
  248. FPRINTF(stderr, "*************** INITIAL ************ \n");
  249. FPRINTF(stderr, "Delta 0: %e\n", delta_new);
  250. double start;
  251. double end;
  252. start = starpu_timing_now();
  253. while ((i < i_max) && ((double)delta_new > (double)(eps*eps*delta_0)))
  254. {
  255. double delta_old;
  256. double alpha, beta;
  257. starpu_iteration_push(i);
  258. /* q <- A d */
  259. gemv_kernel(q_handle, A_handle, d_handle, 0.0, 1.0, nblocks, use_reduction);
  260. /* dtq <- dot(d,q) */
  261. dot_kernel(d_handle, q_handle, dtq_handle, nblocks, use_reduction);
  262. /* alpha = delta_new / dtq */
  263. starpu_data_acquire(dtq_handle, STARPU_R);
  264. alpha = delta_new/dtq;
  265. starpu_data_release(dtq_handle);
  266. /* x <- x + alpha d */
  267. axpy_kernel(x_handle, d_handle, alpha, nblocks);
  268. if ((i % 50) == 0)
  269. {
  270. /* r <- b */
  271. copy_handle(r_handle, b_handle, nblocks);
  272. /* r <- r - A x */
  273. gemv_kernel(r_handle, A_handle, x_handle, 1.0, -1.0, nblocks, use_reduction);
  274. }
  275. else
  276. {
  277. /* r <- r - alpha q */
  278. axpy_kernel(r_handle, q_handle, -alpha, nblocks);
  279. }
  280. /* delta_new = dot(r,r) */
  281. dot_kernel(r_handle, r_handle, rtr_handle, nblocks, use_reduction);
  282. starpu_data_acquire(rtr_handle, STARPU_R);
  283. delta_old = delta_new;
  284. delta_new = rtr;
  285. beta = delta_new / delta_old;
  286. starpu_data_release(rtr_handle);
  287. /* d <- beta d + r */
  288. scal_axpy_kernel(d_handle, beta, r_handle, 1.0, nblocks);
  289. if ((i % 10) == 0)
  290. {
  291. /* We here take the error as ||r||_2 / (n||b||_2) */
  292. double error = sqrt(delta_new/delta_0)/(1.0*n);
  293. FPRINTF(stderr, "*****************************************\n");
  294. FPRINTF(stderr, "iter %d DELTA %e - %e\n", i, delta_new, error);
  295. }
  296. starpu_iteration_pop();
  297. i++;
  298. }
  299. end = starpu_timing_now();
  300. double timing = end - start;
  301. FPRINTF(stderr, "Total timing : %2.2f seconds\n", timing/10e6);
  302. FPRINTF(stderr, "Seconds per iteration : %2.2e\n", timing/10e6/i);
  303. return 0;
  304. }
  305. static int check(void)
  306. {
  307. return 0;
  308. }
  309. static void parse_args(int argc, char **argv)
  310. {
  311. int i;
  312. for (i = 1; i < argc; i++)
  313. {
  314. if (strcmp(argv[i], "-n") == 0)
  315. {
  316. n = (int long long)atoi(argv[++i]);
  317. continue;
  318. }
  319. if (strcmp(argv[i], "-maxiter") == 0)
  320. {
  321. i_max = atoi(argv[++i]);
  322. if (i_max <= 0)
  323. {
  324. FPRINTF(stderr, "the number of iterations must be positive, not %d\n", i_max);
  325. exit(EXIT_FAILURE);
  326. }
  327. continue;
  328. }
  329. if (strcmp(argv[i], "-nblocks") == 0)
  330. {
  331. nblocks = atoi(argv[++i]);
  332. continue;
  333. }
  334. if (strcmp(argv[i], "-no-reduction") == 0)
  335. {
  336. use_reduction = 0;
  337. continue;
  338. }
  339. if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-help") == 0)
  340. {
  341. FPRINTF(stderr, "usage: %s [-h] [-nblocks #blocks] [-n problem_size] [-no-reduction] [-maxiter i]\n", argv[0]);
  342. exit(-1);
  343. }
  344. }
  345. }
  346. int main(int argc, char **argv)
  347. {
  348. int ret;
  349. /* Not supported yet */
  350. if (starpu_get_env_number_default("STARPU_GLOBAL_ARBITER", 0) > 0)
  351. return 77;
  352. parse_args(argc, argv);
  353. ret = starpu_init(NULL);
  354. if (ret == -ENODEV)
  355. return 77;
  356. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  357. starpu_cublas_init();
  358. generate_random_problem();
  359. register_data();
  360. partition_data();
  361. ret = cg();
  362. if (ret == -ENODEV)
  363. {
  364. ret = 77;
  365. goto enodev;
  366. }
  367. ret = check();
  368. starpu_task_wait_for_all();
  369. enodev:
  370. unregister_data();
  371. free_data();
  372. starpu_cublas_shutdown();
  373. starpu_shutdown();
  374. return ret;
  375. }