starpu.texi 166 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @titlepage
  9. @title StarPU Handbook
  10. @subtitle for StarPU @value{VERSION}
  11. @page
  12. @vskip 0pt plus 1fill
  13. @comment For the @value{version-GCC} Version*
  14. @end titlepage
  15. @c @summarycontents
  16. @contents
  17. @page
  18. @node Top
  19. @top Preface
  20. @cindex Preface
  21. This manual documents the usage of StarPU version @value{VERSION}. It
  22. was last updated on @value{UPDATED}.
  23. @comment
  24. @comment When you add a new menu item, please keep the right hand
  25. @comment aligned to the same column. Do not use tabs. This provides
  26. @comment better formatting.
  27. @comment
  28. @menu
  29. * Introduction:: A basic introduction to using StarPU
  30. * Installing StarPU:: How to configure, build and install StarPU
  31. * Using StarPU:: How to run StarPU application
  32. * Basic Examples:: Basic examples of the use of StarPU
  33. * Performance optimization:: How to optimize performance with StarPU
  34. * Performance feedback:: Performance debugging tools
  35. * StarPU MPI support:: How to combine StarPU with MPI
  36. * Configuring StarPU:: How to configure StarPU
  37. * StarPU API:: The API to use StarPU
  38. * Advanced Topics:: Advanced use of StarPU
  39. * Full source code for the 'Scaling a Vector' example::
  40. * Function Index:: Index of C functions.
  41. @end menu
  42. @c ---------------------------------------------------------------------
  43. @c Introduction to StarPU
  44. @c ---------------------------------------------------------------------
  45. @node Introduction
  46. @chapter Introduction to StarPU
  47. @menu
  48. * Motivation:: Why StarPU ?
  49. * StarPU in a Nutshell:: The Fundamentals of StarPU
  50. @end menu
  51. @node Motivation
  52. @section Motivation
  53. @c complex machines with heterogeneous cores/devices
  54. The use of specialized hardware such as accelerators or coprocessors offers an
  55. interesting approach to overcome the physical limits encountered by processor
  56. architects. As a result, many machines are now equipped with one or several
  57. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  58. efforts have been devoted to offload computation onto such accelerators, very
  59. little attention as been paid to portability concerns on the one hand, and to the
  60. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  61. StarPU is a runtime system that offers support for heterogeneous multicore
  62. architectures, it not only offers a unified view of the computational resources
  63. (i.e. CPUs and accelerators at the same time), but it also takes care of
  64. efficiently mapping and executing tasks onto an heterogeneous machine while
  65. transparently handling low-level issues such as data transfers in a portable
  66. fashion.
  67. @c this leads to a complicated distributed memory design
  68. @c which is not (easily) manageable by hand
  69. @c added value/benefits of StarPU
  70. @c - portability
  71. @c - scheduling, perf. portability
  72. @node StarPU in a Nutshell
  73. @section StarPU in a Nutshell
  74. @menu
  75. * Codelet and Tasks::
  76. * StarPU Data Management Library::
  77. * Research Papers::
  78. @end menu
  79. From a programming point of view, StarPU is not a new language but a library
  80. that executes tasks explicitly submitted by the application. The data that a
  81. task manipulates are automatically transferred onto the accelerator so that the
  82. programmer does not have to take care of complex data movements. StarPU also
  83. takes particular care of scheduling those tasks efficiently and allows
  84. scheduling experts to implement custom scheduling policies in a portable
  85. fashion.
  86. @c explain the notion of codelet and task (i.e. g(A, B)
  87. @node Codelet and Tasks
  88. @subsection Codelet and Tasks
  89. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  90. computational kernel that can possibly be implemented on multiple architectures
  91. such as a CPU, a CUDA device or a Cell's SPU.
  92. @c TODO insert illustration f : f_spu, f_cpu, ...
  93. Another important data structure is the @b{task}. Executing a StarPU task
  94. consists in applying a codelet on a data set, on one of the architectures on
  95. which the codelet is implemented. In addition to the codelet that a task
  96. useuses, it also describes which data are accessed, and how they are
  97. accessed during the computation (read and/or write).
  98. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  99. operation. The task structure can also specify a @b{callback} function that is
  100. called once StarPU has properly executed the task. It also contains optional
  101. fields that the application may use to give hints to the scheduler (such as
  102. priority levels).
  103. A task may be identified by a unique 64-bit number chosen by the application
  104. which we refer as a @b{tag}.
  105. Task dependencies can be enforced either by the means of callback functions, by
  106. expressing dependencies between explicit tasks or by expressing dependencies
  107. between tags (which can thus correspond to tasks that have not been submitted
  108. yet).
  109. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  110. @c DSM
  111. @node StarPU Data Management Library
  112. @subsection StarPU Data Management Library
  113. Because StarPU schedules tasks at runtime, data transfers have to be
  114. done automatically and ``just-in-time'' between processing units,
  115. relieving the application programmer from explicit data transfers.
  116. Moreover, to avoid unnecessary transfers, StarPU keeps data
  117. where it was last needed, even if was modified there, and it
  118. allows multiple copies of the same data to reside at the same time on
  119. several processing units as long as it is not modified.
  120. @node Research Papers
  121. @subsection Research Papers
  122. Research papers about StarPU can be found at
  123. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  124. Notably a good overview in the research report
  125. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  126. @c ---------------------------------------------------------------------
  127. @c Installing StarPU
  128. @c ---------------------------------------------------------------------
  129. @node Installing StarPU
  130. @chapter Installing StarPU
  131. @menu
  132. * Downloading StarPU::
  133. * Configuration of StarPU::
  134. * Building and Installing StarPU::
  135. @end menu
  136. StarPU can be built and installed by the standard means of the GNU
  137. autotools. The following chapter is intended to briefly remind how these tools
  138. can be used to install StarPU.
  139. @node Downloading StarPU
  140. @section Downloading StarPU
  141. @menu
  142. * Getting Sources::
  143. * Optional dependencies::
  144. @end menu
  145. @node Getting Sources
  146. @subsection Getting Sources
  147. The simplest way to get StarPU sources is to download the latest official
  148. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  149. or the latest nightly snapshot from
  150. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  151. how to get the very latest version from the subversion repository itself, it
  152. should be needed only if you need the very latest changes (i.e. less than a
  153. day!)
  154. The source code is managed by a Subversion server hosted by the
  155. InriaGforge. To get the source code, you need:
  156. @itemize
  157. @item
  158. To install the client side of the software Subversion if it is
  159. not already available on your system. The software can be obtained from
  160. @indicateurl{http://subversion.tigris.org} . If you are running
  161. on Windows, you will probably prefer to use TortoiseSVN from
  162. @indicateurl{http://tortoisesvn.tigris.org/} .
  163. @item
  164. You can check out the project's SVN repository through anonymous
  165. access. This will provide you with a read access to the
  166. repository.
  167. If you need to have write access on the StarPU project, you can also choose to
  168. become a member of the project @code{starpu}. For this, you first need to get
  169. an account to the gForge server. You can then send a request to join the project
  170. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  171. @item
  172. More information on how to get a gForge account, to become a member of
  173. a project, or on any other related task can be obtained from the
  174. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  175. thing is to upload your public SSH key on the gForge server (see the
  176. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  177. instructions).
  178. @end itemize
  179. You can now check out the latest version from the Subversion server:
  180. @itemize
  181. @item
  182. using the anonymous access via svn:
  183. @example
  184. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  185. @end example
  186. @item
  187. using the anonymous access via https:
  188. @example
  189. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  190. @end example
  191. The password is @code{anonsvn}.
  192. @item
  193. using your gForge account
  194. @example
  195. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  196. @end example
  197. @end itemize
  198. The following step requires the availability of @code{autoconf} and
  199. @code{automake} to generate the @code{./configure} script. This is
  200. done by calling @code{./autogen.sh}. The required version for
  201. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  202. @example
  203. % ./autogen.sh
  204. @end example
  205. If the autotools are not available on your machine or not recent
  206. enough, you can choose to download the latest nightly tarball, which
  207. is provided with a @code{configure} script.
  208. @example
  209. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  210. @end example
  211. @node Optional dependencies
  212. @subsection Optional dependencies
  213. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  214. but strongly recommended. It allows to increase performance, and to
  215. perform some topology aware scheduling.
  216. @code{hwloc} is available in major distributions and for most OSes and can be
  217. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  218. @node Configuration of StarPU
  219. @section Configuration of StarPU
  220. @menu
  221. * Generating Makefiles and configuration scripts::
  222. * Running the configuration::
  223. @end menu
  224. @node Generating Makefiles and configuration scripts
  225. @subsection Generating Makefiles and configuration scripts
  226. This step is not necessary when using the tarball releases of StarPU. If you
  227. are using the source code from the svn repository, you first need to generate
  228. the configure scripts and the Makefiles.
  229. @example
  230. % ./autogen.sh
  231. @end example
  232. @node Running the configuration
  233. @subsection Running the configuration
  234. @example
  235. % ./configure
  236. @end example
  237. Details about options that are useful to give to @code{./configure} are given in
  238. @ref{Compilation configuration}.
  239. @node Building and Installing StarPU
  240. @section Building and Installing StarPU
  241. @menu
  242. * Building::
  243. * Sanity Checks::
  244. * Installing::
  245. @end menu
  246. @node Building
  247. @subsection Building
  248. @example
  249. % make
  250. @end example
  251. @node Sanity Checks
  252. @subsection Sanity Checks
  253. In order to make sure that StarPU is working properly on the system, it is also
  254. possible to run a test suite.
  255. @example
  256. % make check
  257. @end example
  258. @node Installing
  259. @subsection Installing
  260. In order to install StarPU at the location that was specified during
  261. configuration:
  262. @example
  263. % make install
  264. @end example
  265. @c ---------------------------------------------------------------------
  266. @c Using StarPU
  267. @c ---------------------------------------------------------------------
  268. @node Using StarPU
  269. @chapter Using StarPU
  270. @menu
  271. * Setting flags for compiling and linking applications::
  272. * Running a basic StarPU application::
  273. * Kernel threads started by StarPU::
  274. * Using accelerators::
  275. @end menu
  276. @node Setting flags for compiling and linking applications
  277. @section Setting flags for compiling and linking applications
  278. Compiling and linking an application against StarPU may require to use
  279. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  280. To this end, it is possible to use the @code{pkg-config} tool.
  281. If StarPU was not installed at some standard location, the path of StarPU's
  282. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  283. that @code{pkg-config} can find it. For example if StarPU was installed in
  284. @code{$prefix_dir}:
  285. @example
  286. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  287. @end example
  288. The flags required to compile or link against StarPU are then
  289. accessible with the following commands:
  290. @example
  291. % pkg-config --cflags libstarpu # options for the compiler
  292. % pkg-config --libs libstarpu # options for the linker
  293. @end example
  294. @node Running a basic StarPU application
  295. @section Running a basic StarPU application
  296. Basic examples using StarPU have been built in the directory
  297. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  298. example @code{vector_scal}.
  299. @example
  300. % $prefix_dir/lib/starpu/examples/vector_scal
  301. BEFORE : First element was 1.000000
  302. AFTER First element is 3.140000
  303. %
  304. @end example
  305. When StarPU is used for the first time, the directory
  306. @code{$HOME/.starpu/} is created, performance models will be stored in
  307. that directory.
  308. Please note that buses are benchmarked when StarPU is launched for the
  309. first time. This may take a few minutes, or less if @code{hwloc} is
  310. installed. This step is done only once per user and per machine.
  311. @node Kernel threads started by StarPU
  312. @section Kernel threads started by StarPU
  313. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  314. them per GPU. The application is not supposed to do computations in its own
  315. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  316. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  317. worker).
  318. @node Using accelerators
  319. @section Using accelerators
  320. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  321. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  322. This design choice was necessary as OpenCL and CUDA can not run at the
  323. same time on the same NVIDIA GPU, as there is currently no interoperability
  324. between them.
  325. Details on how to specify devices running OpenCL and the ones running
  326. CUDA are given in @ref{Enabling OpenCL}.
  327. @c ---------------------------------------------------------------------
  328. @c Basic Examples
  329. @c ---------------------------------------------------------------------
  330. @node Basic Examples
  331. @chapter Basic Examples
  332. @menu
  333. * Compiling and linking options::
  334. * Hello World:: Submitting Tasks
  335. * Scaling a Vector:: Manipulating Data
  336. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  337. * Task and Worker Profiling::
  338. * Partitioning Data:: Partitioning Data
  339. * Performance model example::
  340. * Theoretical lower bound on execution time::
  341. * Insert Task Utility::
  342. * More examples:: More examples shipped with StarPU
  343. @end menu
  344. @node Compiling and linking options
  345. @section Compiling and linking options
  346. Let's suppose StarPU has been installed in the directory
  347. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  348. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  349. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  350. libraries at runtime.
  351. @example
  352. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  353. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  354. @end example
  355. The Makefile could for instance contain the following lines to define which
  356. options must be given to the compiler and to the linker:
  357. @cartouche
  358. @example
  359. CFLAGS += $$(pkg-config --cflags libstarpu)
  360. LDFLAGS += $$(pkg-config --libs libstarpu)
  361. @end example
  362. @end cartouche
  363. @node Hello World
  364. @section Hello World
  365. @menu
  366. * Required Headers::
  367. * Defining a Codelet::
  368. * Submitting a Task::
  369. * Execution of Hello World::
  370. @end menu
  371. In this section, we show how to implement a simple program that submits a task to StarPU.
  372. @node Required Headers
  373. @subsection Required Headers
  374. The @code{starpu.h} header should be included in any code using StarPU.
  375. @cartouche
  376. @smallexample
  377. #include <starpu.h>
  378. @end smallexample
  379. @end cartouche
  380. @node Defining a Codelet
  381. @subsection Defining a Codelet
  382. @cartouche
  383. @smallexample
  384. struct params @{
  385. int i;
  386. float f;
  387. @};
  388. void cpu_func(void *buffers[], void *cl_arg)
  389. @{
  390. struct params *params = cl_arg;
  391. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  392. @}
  393. starpu_codelet cl =
  394. @{
  395. .where = STARPU_CPU,
  396. .cpu_func = cpu_func,
  397. .nbuffers = 0
  398. @};
  399. @end smallexample
  400. @end cartouche
  401. A codelet is a structure that represents a computational kernel. Such a codelet
  402. may contain an implementation of the same kernel on different architectures
  403. (e.g. CUDA, Cell's SPU, x86, ...).
  404. The @code{nbuffers} field specifies the number of data buffers that are
  405. manipulated by the codelet: here the codelet does not access or modify any data
  406. that is controlled by our data management library. Note that the argument
  407. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  408. structure) does not count as a buffer since it is not managed by our data
  409. management library, but just contain trivial parameters.
  410. @c TODO need a crossref to the proper description of "where" see bla for more ...
  411. We create a codelet which may only be executed on the CPUs. The @code{where}
  412. field is a bitmask that defines where the codelet may be executed. Here, the
  413. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  414. (@pxref{Codelets and Tasks} for more details on this field).
  415. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  416. which @emph{must} have the following prototype:
  417. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  418. In this example, we can ignore the first argument of this function which gives a
  419. description of the input and output buffers (e.g. the size and the location of
  420. the matrices) since there is none.
  421. The second argument is a pointer to a buffer passed as an
  422. argument to the codelet by the means of the @code{cl_arg} field of the
  423. @code{starpu_task} structure.
  424. @c TODO rewrite so that it is a little clearer ?
  425. Be aware that this may be a pointer to a
  426. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  427. if the codelet modifies this buffer, there is no guarantee that the initial
  428. buffer will be modified as well: this for instance implies that the buffer
  429. cannot be used as a synchronization medium. If synchronization is needed, data
  430. has to be registered to StarPU, see @ref{Scaling a Vector}.
  431. @node Submitting a Task
  432. @subsection Submitting a Task
  433. @cartouche
  434. @smallexample
  435. void callback_func(void *callback_arg)
  436. @{
  437. printf("Callback function (arg %x)\n", callback_arg);
  438. @}
  439. int main(int argc, char **argv)
  440. @{
  441. /* @b{initialize StarPU} */
  442. starpu_init(NULL);
  443. struct starpu_task *task = starpu_task_create();
  444. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  445. struct params params = @{ 1, 2.0f @};
  446. task->cl_arg = &params;
  447. task->cl_arg_size = sizeof(params);
  448. task->callback_func = callback_func;
  449. task->callback_arg = 0x42;
  450. /* @b{starpu_task_submit will be a blocking call} */
  451. task->synchronous = 1;
  452. /* @b{submit the task to StarPU} */
  453. starpu_task_submit(task);
  454. /* @b{terminate StarPU} */
  455. starpu_shutdown();
  456. return 0;
  457. @}
  458. @end smallexample
  459. @end cartouche
  460. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  461. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  462. be submitted after the termination of StarPU by a call to
  463. @code{starpu_shutdown}.
  464. In the example above, a task structure is allocated by a call to
  465. @code{starpu_task_create}. This function only allocates and fills the
  466. corresponding structure with the default settings (@pxref{starpu_task_create}),
  467. but it does not submit the task to StarPU.
  468. @c not really clear ;)
  469. The @code{cl} field is a pointer to the codelet which the task will
  470. execute: in other words, the codelet structure describes which computational
  471. kernel should be offloaded on the different architectures, and the task
  472. structure is a wrapper containing a codelet and the piece of data on which the
  473. codelet should operate.
  474. The optional @code{cl_arg} field is a pointer to a buffer (of size
  475. @code{cl_arg_size}) with some parameters for the kernel
  476. described by the codelet. For instance, if a codelet implements a computational
  477. kernel that multiplies its input vector by a constant, the constant could be
  478. specified by the means of this buffer, instead of registering it as a StarPU
  479. data. It must however be noted that StarPU avoids making copy whenever possible
  480. and rather passes the pointer as such, so the buffer which is pointed at must
  481. kept allocated until the task terminates, and if several tasks are submitted
  482. with various parameters, each of them must be given a pointer to their own
  483. buffer.
  484. Once a task has been executed, an optional callback function is be called.
  485. While the computational kernel could be offloaded on various architectures, the
  486. callback function is always executed on a CPU. The @code{callback_arg}
  487. pointer is passed as an argument of the callback. The prototype of a callback
  488. function must be:
  489. @code{void (*callback_function)(void *);}
  490. If the @code{synchronous} field is non-zero, task submission will be
  491. synchronous: the @code{starpu_task_submit} function will not return until the
  492. task was executed. Note that the @code{starpu_shutdown} method does not
  493. guarantee that asynchronous tasks have been executed before it returns,
  494. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  495. acquired (@code{starpu_data_acquire(vector_handle, STARPU_R);}), which will
  496. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  497. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  498. @code{starpu_data_set_sequential_consistency_flag}.
  499. @node Execution of Hello World
  500. @subsection Execution of Hello World
  501. @smallexample
  502. % make hello_world
  503. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  504. % ./hello_world
  505. Hello world (params = @{1, 2.000000@} )
  506. Callback function (arg 42)
  507. @end smallexample
  508. @node Scaling a Vector
  509. @section Manipulating Data: Scaling a Vector
  510. The previous example has shown how to submit tasks. In this section,
  511. we show how StarPU tasks can manipulate data. The full source code for
  512. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  513. @menu
  514. * Source code of Vector Scaling::
  515. * Execution of Vector Scaling::
  516. @end menu
  517. @node Source code of Vector Scaling
  518. @subsection Source code of Vector Scaling
  519. Programmers can describe the data layout of their application so that StarPU is
  520. responsible for enforcing data coherency and availability across the machine.
  521. Instead of handling complex (and non-portable) mechanisms to perform data
  522. movements, programmers only declare which piece of data is accessed and/or
  523. modified by a task, and StarPU makes sure that when a computational kernel
  524. starts somewhere (e.g. on a GPU), its data are available locally.
  525. Before submitting those tasks, the programmer first needs to declare the
  526. different pieces of data to StarPU using the @code{starpu_*_data_register}
  527. functions. To ease the development of applications for StarPU, it is possible
  528. to describe multiple types of data layout. A type of data layout is called an
  529. @b{interface}. There are different predefined interfaces available in StarPU:
  530. here we will consider the @b{vector interface}.
  531. The following lines show how to declare an array of @code{NX} elements of type
  532. @code{float} using the vector interface:
  533. @cartouche
  534. @smallexample
  535. float vector[NX];
  536. starpu_data_handle vector_handle;
  537. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  538. sizeof(vector[0]));
  539. @end smallexample
  540. @end cartouche
  541. The first argument, called the @b{data handle}, is an opaque pointer which
  542. designates the array in StarPU. This is also the structure which is used to
  543. describe which data is used by a task. The second argument is the node number
  544. where the data originally resides. Here it is 0 since the @code{vector} array is in
  545. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  546. the number of elements in the vector and the size of each element.
  547. The following shows how to construct a StarPU task that will manipulate the
  548. vector and a constant factor.
  549. @cartouche
  550. @smallexample
  551. float factor = 3.14;
  552. struct starpu_task *task = starpu_task_create();
  553. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  554. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  555. task->buffers[0].mode = STARPU_RW;
  556. task->cl_arg = &factor;
  557. task->cl_arg_size = sizeof(factor);
  558. task->synchronous = 1;
  559. starpu_task_submit(task);
  560. @end smallexample
  561. @end cartouche
  562. Since the factor is a mere constant float value parameter,
  563. it does not need a preliminary registration, and
  564. can just be passed through the @code{cl_arg} pointer like in the previous
  565. example. The vector parameter is described by its handle.
  566. There are two fields in each element of the @code{buffers} array.
  567. @code{handle} is the handle of the data, and @code{mode} specifies how the
  568. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  569. write-only and @code{STARPU_RW} for read and write access).
  570. The definition of the codelet can be written as follows:
  571. @cartouche
  572. @smallexample
  573. void scal_cpu_func(void *buffers[], void *cl_arg)
  574. @{
  575. unsigned i;
  576. float *factor = cl_arg;
  577. /* length of the vector */
  578. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  579. /* local copy of the vector pointer */
  580. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  581. for (i = 0; i < n; i++)
  582. val[i] *= *factor;
  583. @}
  584. starpu_codelet cl = @{
  585. .where = STARPU_CPU,
  586. .cpu_func = scal_cpu_func,
  587. .nbuffers = 1
  588. @};
  589. @end smallexample
  590. @end cartouche
  591. The first argument is an array that gives
  592. a description of all the buffers passed in the @code{task->buffers}@ array. The
  593. size of this array is given by the @code{nbuffers} field of the codelet
  594. structure. For the sake of genericity, this array contains pointers to the
  595. different interfaces describing each buffer. In the case of the @b{vector
  596. interface}, the location of the vector (resp. its length) is accessible in the
  597. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  598. read-write fashion, any modification will automatically affect future accesses
  599. to this vector made by other tasks.
  600. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  601. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  602. constant factor from this pointer.
  603. @node Execution of Vector Scaling
  604. @subsection Execution of Vector Scaling
  605. @smallexample
  606. % make vector_scal
  607. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  608. % ./vector_scal
  609. 0.000000 3.000000 6.000000 9.000000 12.000000
  610. @end smallexample
  611. @node Vector Scaling on an Hybrid CPU/GPU Machine
  612. @section Vector Scaling on an Hybrid CPU/GPU Machine
  613. Contrary to the previous examples, the task submitted in this example may not
  614. only be executed by the CPUs, but also by a CUDA device.
  615. @menu
  616. * Definition of the CUDA Kernel::
  617. * Definition of the OpenCL Kernel::
  618. * Definition of the Main Code::
  619. * Execution of Hybrid Vector Scaling::
  620. @end menu
  621. @node Definition of the CUDA Kernel
  622. @subsection Definition of the CUDA Kernel
  623. The CUDA implementation can be written as follows. It needs to be compiled with
  624. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  625. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  626. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  627. call.
  628. @cartouche
  629. @smallexample
  630. #include <starpu.h>
  631. static __global__ void vector_mult_cuda(float *val, unsigned n,
  632. float factor)
  633. @{
  634. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  635. if (i < n)
  636. val[i] *= factor;
  637. @}
  638. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  639. @{
  640. float *factor = (float *)_args;
  641. /* length of the vector */
  642. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  643. /* local copy of the vector pointer */
  644. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  645. unsigned threads_per_block = 64;
  646. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  647. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  648. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  649. @}
  650. @end smallexample
  651. @end cartouche
  652. @node Definition of the OpenCL Kernel
  653. @subsection Definition of the OpenCL Kernel
  654. The OpenCL implementation can be written as follows. StarPU provides
  655. tools to compile a OpenCL kernel stored in a file.
  656. @cartouche
  657. @smallexample
  658. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  659. @{
  660. const int i = get_global_id(0);
  661. if (i < nx) @{
  662. val[i] *= factor;
  663. @}
  664. @}
  665. @end smallexample
  666. @end cartouche
  667. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  668. a device pointer, so that it is passed as such to the OpenCL kernel.
  669. @cartouche
  670. @smallexample
  671. #include <starpu.h>
  672. @i{#include <starpu_opencl.h>}
  673. @i{extern struct starpu_opencl_program programs;}
  674. void scal_opencl_func(void *buffers[], void *_args)
  675. @{
  676. float *factor = _args;
  677. @i{ int id, devid, err;}
  678. @i{ cl_kernel kernel;}
  679. @i{ cl_command_queue queue;}
  680. @i{ cl_event event;}
  681. /* length of the vector */
  682. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  683. /* local copy of the vector pointer */
  684. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  685. @i{ id = starpu_worker_get_id();}
  686. @i{ devid = starpu_worker_get_devid(id);}
  687. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  688. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  689. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  690. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  691. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  692. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  693. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  694. @i{ @{}
  695. @i{ size_t global=1;}
  696. @i{ size_t local=1;}
  697. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  698. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  699. @i{ @}}
  700. @i{ clFinish(queue);}
  701. @i{ starpu_opencl_collect_stats(event);}
  702. @i{ clReleaseEvent(event);}
  703. @i{ starpu_opencl_release_kernel(kernel);}
  704. @}
  705. @end smallexample
  706. @end cartouche
  707. @node Definition of the Main Code
  708. @subsection Definition of the Main Code
  709. The CPU implementation is the same as in the previous section.
  710. Here is the source of the main application. You can notice the value of the
  711. field @code{where} for the codelet. We specify
  712. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  713. can be executed either on a CPU or on a CUDA or an OpenCL device.
  714. @cartouche
  715. @smallexample
  716. #include <starpu.h>
  717. #define NX 2048
  718. extern void scal_cuda_func(void *buffers[], void *_args);
  719. extern void scal_cpu_func(void *buffers[], void *_args);
  720. extern void scal_opencl_func(void *buffers[], void *_args);
  721. /* @b{Definition of the codelet} */
  722. static starpu_codelet cl = @{
  723. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  724. /* @b{on a CUDA device, or on an OpenCL device} */
  725. .cuda_func = scal_cuda_func;
  726. .cpu_func = scal_cpu_func;
  727. .opencl_func = scal_opencl_func;
  728. .nbuffers = 1;
  729. @}
  730. #ifdef STARPU_USE_OPENCL
  731. /* @b{The compiled version of the OpenCL program} */
  732. struct starpu_opencl_program programs;
  733. #endif
  734. int main(int argc, char **argv)
  735. @{
  736. float *vector;
  737. int i, ret;
  738. float factor=3.0;
  739. struct starpu_task *task;
  740. starpu_data_handle vector_handle;
  741. starpu_init(NULL); /* @b{Initialising StarPU} */
  742. #ifdef STARPU_USE_OPENCL
  743. starpu_opencl_load_opencl_from_file(
  744. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  745. &programs, NULL);
  746. #endif
  747. vector = malloc(NX*sizeof(vector[0]));
  748. assert(vector);
  749. for(i=0 ; i<NX ; i++) vector[i] = i;
  750. @end smallexample
  751. @end cartouche
  752. @cartouche
  753. @smallexample
  754. /* @b{Registering data within StarPU} */
  755. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  756. NX, sizeof(vector[0]));
  757. /* @b{Definition of the task} */
  758. task = starpu_task_create();
  759. task->cl = &cl;
  760. task->buffers[0].handle = vector_handle;
  761. task->buffers[0].mode = STARPU_RW;
  762. task->cl_arg = &factor;
  763. task->cl_arg_size = sizeof(factor);
  764. @end smallexample
  765. @end cartouche
  766. @cartouche
  767. @smallexample
  768. /* @b{Submitting the task} */
  769. ret = starpu_task_submit(task);
  770. if (ret == -ENODEV) @{
  771. fprintf(stderr, "No worker may execute this task\n");
  772. return 1;
  773. @}
  774. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  775. /* @b{Waiting for its termination} */
  776. starpu_task_wait_for_all();
  777. /* @b{Update the vector in RAM} */
  778. starpu_data_acquire(vector_handle, STARPU_R);
  779. @end smallexample
  780. @end cartouche
  781. @cartouche
  782. @smallexample
  783. /* @b{Access the data} */
  784. for(i=0 ; i<NX; i++) @{
  785. fprintf(stderr, "%f ", vector[i]);
  786. @}
  787. fprintf(stderr, "\n");
  788. /* @b{Release the data and shutdown StarPU} */
  789. starpu_data_release(vector_handle);
  790. starpu_shutdown();
  791. return 0;
  792. @}
  793. @end smallexample
  794. @end cartouche
  795. @node Execution of Hybrid Vector Scaling
  796. @subsection Execution of Hybrid Vector Scaling
  797. The Makefile given at the beginning of the section must be extended to
  798. give the rules to compile the CUDA source code. Note that the source
  799. file of the OpenCL kernel does not need to be compiled now, it will
  800. be compiled at run-time when calling the function
  801. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  802. @cartouche
  803. @smallexample
  804. CFLAGS += $(shell pkg-config --cflags libstarpu)
  805. LDFLAGS += $(shell pkg-config --libs libstarpu)
  806. CC = gcc
  807. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  808. %.o: %.cu
  809. nvcc $(CFLAGS) $< -c $@
  810. clean:
  811. rm -f vector_scal *.o
  812. @end smallexample
  813. @end cartouche
  814. @smallexample
  815. % make
  816. @end smallexample
  817. and to execute it, with the default configuration:
  818. @smallexample
  819. % ./vector_scal
  820. 0.000000 3.000000 6.000000 9.000000 12.000000
  821. @end smallexample
  822. or for example, by disabling CPU devices:
  823. @smallexample
  824. % STARPU_NCPUS=0 ./vector_scal
  825. 0.000000 3.000000 6.000000 9.000000 12.000000
  826. @end smallexample
  827. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  828. see @ref{Using accelerators}):
  829. @smallexample
  830. % STARPU_NCUDA=0 ./vector_scal
  831. 0.000000 3.000000 6.000000 9.000000 12.000000
  832. @end smallexample
  833. @node Task and Worker Profiling
  834. @section Task and Worker Profiling
  835. A full example showing how to use the profiling API is available in
  836. the StarPU sources in the directory @code{examples/profiling/}.
  837. @cartouche
  838. @smallexample
  839. struct starpu_task *task = starpu_task_create();
  840. task->cl = &cl;
  841. task->synchronous = 1;
  842. /* We will destroy the task structure by hand so that we can
  843. * query the profiling info before the task is destroyed. */
  844. task->destroy = 0;
  845. /* Submit and wait for completion (since synchronous was set to 1) */
  846. starpu_task_submit(task);
  847. /* The task is finished, get profiling information */
  848. struct starpu_task_profiling_info *info = task->profiling_info;
  849. /* How much time did it take before the task started ? */
  850. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  851. /* How long was the task execution ? */
  852. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  853. /* We don't need the task structure anymore */
  854. starpu_task_destroy(task);
  855. @end smallexample
  856. @end cartouche
  857. @cartouche
  858. @smallexample
  859. /* Display the occupancy of all workers during the test */
  860. int worker;
  861. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  862. @{
  863. struct starpu_worker_profiling_info worker_info;
  864. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  865. STARPU_ASSERT(!ret);
  866. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  867. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  868. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  869. float executing_ratio = 100.0*executing_time/total_time;
  870. float sleeping_ratio = 100.0*sleeping_time/total_time;
  871. char workername[128];
  872. starpu_worker_get_name(worker, workername, 128);
  873. fprintf(stderr, "Worker %s:\n", workername);
  874. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  875. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  876. executing_ratio);
  877. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  878. sleeping_ratio);
  879. @}
  880. @end smallexample
  881. @end cartouche
  882. @node Partitioning Data
  883. @section Partitioning Data
  884. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  885. @cartouche
  886. @smallexample
  887. int vector[NX];
  888. starpu_data_handle handle;
  889. /* Declare data to StarPU */
  890. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  891. /* Partition the vector in PARTS sub-vectors */
  892. starpu_filter f =
  893. @{
  894. .filter_func = starpu_block_filter_func_vector,
  895. .nchildren = PARTS,
  896. .get_nchildren = NULL,
  897. .get_child_ops = NULL
  898. @};
  899. starpu_data_partition(handle, &f);
  900. @end smallexample
  901. @end cartouche
  902. @cartouche
  903. @smallexample
  904. /* Submit a task on each sub-vector */
  905. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  906. /* Get subdata number i (there is only 1 dimension) */
  907. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  908. struct starpu_task *task = starpu_task_create();
  909. task->buffers[0].handle = sub_handle;
  910. task->buffers[0].mode = STARPU_RW;
  911. task->cl = &cl;
  912. task->synchronous = 1;
  913. task->cl_arg = &factor;
  914. task->cl_arg_size = sizeof(factor);
  915. starpu_task_submit(task);
  916. @}
  917. @end smallexample
  918. @end cartouche
  919. Partitioning can be applied several times, see
  920. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  921. @node Performance model example
  922. @section Performance model example
  923. To achieve good scheduling, StarPU scheduling policies need to be able to
  924. estimate in advance the duration of a task. This is done by giving to codelets a
  925. performance model. There are several kinds of performance models.
  926. @itemize
  927. @item
  928. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  929. see for instance
  930. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  931. @item
  932. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  933. given set of data input/output sizes, the performance will always be about the
  934. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  935. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  936. few different sets of data input/output sizes. StarPU will then keep record of
  937. the average time of previous executions on the various processing units, and use
  938. it as an estimation. History is done per task size, by using a hash of the input
  939. and ouput sizes as an index.
  940. It will also save it in @code{~/.starpu/sampling/codelets}
  941. for further executions, and can be observed by using the
  942. @code{starpu_perfmodel_display} command. The following is a small code example.
  943. @cartouche
  944. @smallexample
  945. static struct starpu_perfmodel_t mult_perf_model = @{
  946. .type = STARPU_HISTORY_BASED,
  947. .symbol = "mult_perf_model"
  948. @};
  949. starpu_codelet cl = @{
  950. .where = STARPU_CPU,
  951. .cpu_func = cpu_mult,
  952. .nbuffers = 3,
  953. /* for the scheduling policy to be able to use performance models */
  954. .model = &mult_perf_model
  955. @};
  956. @end smallexample
  957. @end cartouche
  958. @item
  959. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  960. type). This still assumes performance regularity, but can work with various data
  961. input sizes, by applying a*n^b+c regression over observed execution times.
  962. @end itemize
  963. How to use schedulers which can benefit from such performance model is explained
  964. in @ref{Task scheduling policy}.
  965. The same can be done for task power consumption estimation, by setting the
  966. @code{power_model} field the same way as the @code{model} field. Note: for
  967. now, the application has to give to the power consumption performance model
  968. a name which is different from the execution time performance model.
  969. @node Theoretical lower bound on execution time
  970. @section Theoretical lower bound on execution time
  971. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  972. bound for the execution time of a whole set of tasks. See for
  973. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  974. call @code{starpu_bound_start}, and after complete execution, call
  975. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  976. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  977. problem corresponding to the schedule of your tasks. Run it through
  978. @code{lp_solve} or any other linear programming solver, and that will give you a
  979. lower bound for the total execution time of your tasks. If StarPU was compiled
  980. with the glpk library installed, @code{starpu_bound_compute} can be used to
  981. solve it immediately and get the optimized minimum. Its @code{integer}
  982. parameter allows to decide whether integer resolution should be computed
  983. and returned.
  984. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  985. dependencies into account. It must be understood that the linear programming
  986. problem size is quadratic with the number of tasks and thus the time to solve it
  987. will be very long, it could be minutes for just a few dozen tasks. You should
  988. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  989. problem to MPS format and then use a better solver, @code{glpsol} might be
  990. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  991. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  992. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  993. of @code{lp_solve}. For instance, we often just use
  994. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  995. the @code{-gr} option can also be quite useful.
  996. Setting @code{deps} to 0 will only take into account the actual computations
  997. on processing units. It however still properly takes into account the varying
  998. performances of kernels and processing units, which is quite more accurate than
  999. just comparing StarPU performances with the fastest of the kernels being used.
  1000. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1001. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1002. tasks before less prioritized tasks, to check to which extend this results
  1003. to a less optimal solution. This increases even more computation time.
  1004. Note that for simplicity, all this however doesn't take into account data
  1005. transfers, which are assumed to be completely overlapped.
  1006. @node Insert Task Utility
  1007. @section Insert Task Utility
  1008. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1009. the creation and submission of tasks.
  1010. @deftypefun int starpu_insert_task (starpu_codelet *cl, ...)
  1011. Create and submit a task corresponding to @var{cl} with the following
  1012. arguments. The argument list must be zero-terminated.
  1013. The arguments following the codelets can be of the following types:
  1014. @itemize
  1015. @item
  1016. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1017. @item
  1018. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1019. the size of the constant;
  1020. @item
  1021. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1022. @item
  1023. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1024. argument to the callback function;
  1025. @item
  1026. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1027. @end itemize
  1028. Parameters to be passed to the codelet implementation are defined
  1029. through the type @code{STARPU_VALUE}. The function
  1030. @code{starpu_unpack_cl_args} must be called within the codelet
  1031. implementation to retrieve them.
  1032. @end deftypefun
  1033. Here the implementation of the codelet:
  1034. @smallexample
  1035. void func_cpu(void *descr[], void *_args)
  1036. @{
  1037. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1038. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1039. int ifactor;
  1040. float ffactor;
  1041. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1042. *x0 = *x0 * ifactor;
  1043. *x1 = *x1 * ffactor;
  1044. @}
  1045. starpu_codelet mycodelet = @{
  1046. .where = STARPU_CPU,
  1047. .cpu_func = func_cpu,
  1048. .nbuffers = 2
  1049. @};
  1050. @end smallexample
  1051. And the call to the @code{starpu_insert_task} wrapper:
  1052. @smallexample
  1053. starpu_insert_task(&mycodelet,
  1054. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1055. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1056. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1057. 0);
  1058. @end smallexample
  1059. The call to @code{starpu_insert_task} is equivalent to the following
  1060. code:
  1061. @smallexample
  1062. struct starpu_task *task = starpu_task_create();
  1063. task->cl = &mycodelet;
  1064. task->buffers[0].handle = data_handles[0];
  1065. task->buffers[0].mode = STARPU_RW;
  1066. task->buffers[1].handle = data_handles[1];
  1067. task->buffers[1].mode = STARPU_RW;
  1068. char *arg_buffer;
  1069. size_t arg_buffer_size;
  1070. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1071. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1072. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1073. 0);
  1074. task->cl_arg = arg_buffer;
  1075. task->cl_arg_size = arg_buffer_size;
  1076. int ret = starpu_task_submit(task);
  1077. @end smallexample
  1078. @node Debugging
  1079. @section Debugging
  1080. StarPU provides several tools to help debugging aplications. Execution traces
  1081. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1082. gdb helpers are also provided to show the whole StarPU state:
  1083. @smallexample
  1084. (gdb) source tools/gdbinit
  1085. (gdb) help starpu
  1086. @end smallexample
  1087. @node More examples
  1088. @section More examples
  1089. More examples are available in the StarPU sources in the @code{examples/}
  1090. directory. Simple examples include:
  1091. @table @asis
  1092. @item @code{incrementer/}:
  1093. Trivial incrementation test.
  1094. @item @code{basic_examples/}:
  1095. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1096. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1097. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1098. interface, and an example using the variable data interface.
  1099. @item @code{matvecmult/}:
  1100. OpenCL example from NVidia, adapted to StarPU.
  1101. @item @code{axpy/}:
  1102. AXPY CUBLAS operation adapted to StarPU.
  1103. @item @code{fortran/}:
  1104. Example of Fortran bindings.
  1105. @end table
  1106. More advanced examples include:
  1107. @table @asis
  1108. @item @code{filters/}:
  1109. Examples using filters, as shown in @ref{Partitioning Data}.
  1110. @item @code{lu/}:
  1111. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1112. @item @code{cholesky/}:
  1113. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1114. @end table
  1115. @c ---------------------------------------------------------------------
  1116. @c Performance options
  1117. @c ---------------------------------------------------------------------
  1118. @node Performance optimization
  1119. @chapter How to optimize performance with StarPU
  1120. TODO: improve!
  1121. @menu
  1122. * Data management::
  1123. * Task submission::
  1124. * Task priorities::
  1125. * Task scheduling policy::
  1126. * Task distribution vs Data transfer::
  1127. * Power-based scheduling::
  1128. * Profiling::
  1129. * CUDA-specific optimizations::
  1130. @end menu
  1131. Simply encapsulating application kernels into tasks already permits to
  1132. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1133. few additional changes are needed.
  1134. @node Data management
  1135. @section Data management
  1136. @c By default, StarPU does not enable data prefetching, because CUDA does
  1137. @c not announce when too many data transfers were scheduled and can thus block
  1138. @c unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1139. @c .
  1140. By default, StarPU leaves replicates of data wherever they were used, in case they
  1141. will be re-used by other tasks, thus saving the data transfer time. When some
  1142. task modifies some data, all the other replicates are invalidated, and only the
  1143. processing unit will have a valid replicate of the data. If the application knows
  1144. that this data will not be re-used by further tasks, it should advise StarPU to
  1145. immediately replicate it to a desired list of memory nodes (given through a
  1146. bitmask). This can be understood like the write-through mode of CPU caches.
  1147. @example
  1148. starpu_data_set_wt_mask(img_handle, 1<<0);
  1149. @end example
  1150. will for instance request to always transfer a replicate into the main memory (node
  1151. 0), as bit 0 of the write-through bitmask is being set.
  1152. When the application allocates data, whenever possible it should use the
  1153. @code{starpu_malloc} function, which will ask CUDA or
  1154. OpenCL to make the allocation itself and pin the corresponding allocated
  1155. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1156. transfer to overlap with computations.
  1157. @node Task submission
  1158. @section Task submission
  1159. To let StarPU make online optimizations, tasks should be submitted
  1160. asynchronously as much as possible. Ideally, all the tasks should be
  1161. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1162. @code{starpu_data_acquire} be done to wait for
  1163. termination. StarPU will then be able to rework the whole schedule, overlap
  1164. computation with communication, manage accelerator local memory usage, etc.
  1165. @node Task priorities
  1166. @section Task priorities
  1167. By default, StarPU will consider the tasks in the order they are submitted by
  1168. the application. If the application programmer knows that some tasks should
  1169. be performed in priority (for instance because their output is needed by many
  1170. other tasks and may thus be a bottleneck if not executed early enough), the
  1171. @code{priority} field of the task structure should be set to transmit the
  1172. priority information to StarPU.
  1173. @node Task scheduling policy
  1174. @section Task scheduling policy
  1175. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1176. because it provides correct load balance even if the application codelets do not
  1177. have performance models. If your application codelets have performance models
  1178. (@pxref{Performance model example} for examples showing how to do it),
  1179. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1180. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1181. the list of available schedulers.
  1182. @c TODO: give some details about each scheduler.
  1183. Most schedulers are based on an estimation of codelet duration on each kind
  1184. of processing unit. For this to be possible, the application programmer needs
  1185. to configure a performance model for the codelets of the application (see
  1186. @ref{Performance model example} for instance). History-based performance models
  1187. use on-line calibration. StarPU will automatically calibrate codelets
  1188. which have never been calibrated yet. To force continuing calibration, use
  1189. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1190. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1191. Note: due to CUDA limitations, to be able to measure kernel duration,
  1192. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1193. disables data transfer / computation overlapping, and should thus not be used
  1194. for eventual benchmarks. Note 2: history-based performance model get calibrated
  1195. only if a performance-model-based scheduler is chosen.
  1196. @node Task distribution vs Data transfer
  1197. @section Task distribution vs Data transfer
  1198. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1199. thus needs to find a balance between both. The target function that the
  1200. @code{dmda} scheduler of StarPU
  1201. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1202. @code{T_execution} is the estimated execution time of the codelet (usually
  1203. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1204. latter is however estimated based on bus calibration before execution start,
  1205. i.e. with an idle machine. You can force bus re-calibration by running
  1206. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1207. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1208. This is of course imprecise, but in practice, a rough estimation already gives
  1209. the good results that a precise estimation would give.
  1210. @node Power-based scheduling
  1211. @section Power-based scheduling
  1212. If the application can provide some power performance model (through
  1213. the @code{power_model} field of the codelet structure), StarPU will
  1214. take it into account when distributing tasks. The target function that
  1215. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1216. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1217. is the estimated task consumption in Joules. To tune this parameter, use
  1218. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1219. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1220. alpha and beta to zero permits to only take into account power consumption.
  1221. This is however not sufficient to correctly optimize power: the scheduler would
  1222. simply tend to run all computations on the most energy-conservative processing
  1223. unit. To account for the consumption of the whole machine (including idle
  1224. processing units), the idle power of the machine should be given by setting
  1225. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1226. be obtained from the machine power supplier.
  1227. The power actually consumed by the total execution can be displayed by setting
  1228. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1229. @node Profiling
  1230. @section Profiling
  1231. A quick view of how many tasks each worker has executed can be obtained by setting
  1232. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1233. execution did happen on accelerators without penalizing performance with
  1234. the profiling overhead.
  1235. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1236. calling @code{starpu_profiling_status_set} from the source code.
  1237. Statistics on the execution can then be obtained by using @code{export
  1238. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1239. More details on performance feedback are provided by the next chapter.
  1240. @node CUDA-specific optimizations
  1241. @section CUDA-specific optimizations
  1242. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1243. communications and the codelet computations if the application does not use a
  1244. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1245. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1246. operations. For instance:
  1247. @example
  1248. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1249. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1250. @end example
  1251. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1252. kernels. That will lower the potential for overlapping.
  1253. @c ---------------------------------------------------------------------
  1254. @c Performance feedback
  1255. @c ---------------------------------------------------------------------
  1256. @node Performance feedback
  1257. @chapter Performance feedback
  1258. @menu
  1259. * On-line:: On-line performance feedback
  1260. * Off-line:: Off-line performance feedback
  1261. * Codelet performance:: Performance of codelets
  1262. @end menu
  1263. @node On-line
  1264. @section On-line performance feedback
  1265. @menu
  1266. * Enabling monitoring:: Enabling on-line performance monitoring
  1267. * Task feedback:: Per-task feedback
  1268. * Codelet feedback:: Per-codelet feedback
  1269. * Worker feedback:: Per-worker feedback
  1270. * Bus feedback:: Bus-related feedback
  1271. @end menu
  1272. @node Enabling monitoring
  1273. @subsection Enabling on-line performance monitoring
  1274. In order to enable online performance monitoring, the application can call
  1275. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1276. detect whether monitoring is already enabled or not by calling
  1277. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1278. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1279. can also be set to 1 to achieve the same effect.
  1280. Likewise, performance monitoring is stopped by calling
  1281. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1282. does not reset the performance counters so that the application may consult
  1283. them later on.
  1284. More details about the performance monitoring API are available in section
  1285. @ref{Profiling API}.
  1286. @node Task feedback
  1287. @subsection Per-task feedback
  1288. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1289. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1290. structure when a task terminates.
  1291. This structure is automatically destroyed when the task structure is destroyed,
  1292. either automatically or by calling @code{starpu_task_destroy}.
  1293. The @code{starpu_task_profiling_info} structure indicates the date when the
  1294. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1295. terminated (@code{end_time}), relative to the initialization of
  1296. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1297. that has executed the task (@code{workerid}).
  1298. These date are stored as @code{timespec} structures which the user may convert
  1299. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1300. function.
  1301. It it worth noting that the application may directly access this structure from
  1302. the callback executed at the end of the task. The @code{starpu_task} structure
  1303. associated to the callback currently being executed is indeed accessible with
  1304. the @code{starpu_get_current_task()} function.
  1305. @node Codelet feedback
  1306. @subsection Per-codelet feedback
  1307. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1308. an array of counters. The i-th entry of the array is incremented every time a
  1309. task implementing the codelet is executed on the i-th worker.
  1310. This array is not reinitialized when profiling is enabled or disabled.
  1311. @node Worker feedback
  1312. @subsection Per-worker feedback
  1313. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1314. function is a @code{starpu_worker_profiling_info} structure that gives
  1315. statistics about the specified worker. This structure specifies when StarPU
  1316. started collecting profiling information for that worker (@code{start_time}),
  1317. the duration of the profiling measurement interval (@code{total_time}), the
  1318. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1319. because there is no task to execute at all (@code{sleeping_time}), and the
  1320. number of tasks that were executed while profiling was enabled.
  1321. These values give an estimation of the proportion of time spent do real work,
  1322. and the time spent either sleeping because there are not enough executable
  1323. tasks or simply wasted in pure StarPU overhead.
  1324. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1325. information associated to a worker.
  1326. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1327. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1328. generate a graphic showing the evolution of these values during the time, for
  1329. the different workers.
  1330. @node Bus feedback
  1331. @subsection Bus-related feedback
  1332. TODO
  1333. @c how to enable/disable performance monitoring
  1334. @c what kind of information do we get ?
  1335. @node Off-line
  1336. @section Off-line performance feedback
  1337. @menu
  1338. * Generating traces:: Generating traces with FxT
  1339. * Gantt diagram:: Creating a Gantt Diagram
  1340. * DAG:: Creating a DAG with graphviz
  1341. * starpu-top:: Monitoring activity
  1342. @end menu
  1343. @node Generating traces
  1344. @subsection Generating traces with FxT
  1345. StarPU can use the FxT library (see
  1346. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1347. with a limited runtime overhead.
  1348. You can either get the FxT library from CVS (autotools are required):
  1349. @example
  1350. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1351. % ./bootstrap
  1352. @end example
  1353. If autotools are not available on your machine, or if you prefer to do so,
  1354. FxT's code is also available as a tarball:
  1355. @example
  1356. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1357. @end example
  1358. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1359. done following the standard procedure:
  1360. @example
  1361. % ./configure --prefix=$FXTDIR
  1362. % make
  1363. % make install
  1364. @end example
  1365. In order to have StarPU to generate traces, StarPU should be configured with
  1366. the @code{--with-fxt} option:
  1367. @example
  1368. $ ./configure --with-fxt=$FXTDIR
  1369. @end example
  1370. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1371. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1372. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1373. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1374. @code{/tmp/} directory by default, or by the directory specified by
  1375. the @code{STARPU_FXT_PREFIX} environment variable.
  1376. @node Gantt diagram
  1377. @subsection Creating a Gantt Diagram
  1378. When the FxT trace file @code{filename} has been generated, it is possible to
  1379. generate a trace in the Paje format by calling:
  1380. @example
  1381. % starpu_fxt_tool -i filename
  1382. @end example
  1383. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1384. to 1 before application execution will make StarPU do it automatically at
  1385. application shutdown.
  1386. This will create a @code{paje.trace} file in the current directory that can be
  1387. inspected with the ViTE trace visualizing open-source tool. More information
  1388. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1389. possible to open the @code{paje.trace} file with ViTE by using the following
  1390. command:
  1391. @example
  1392. % vite paje.trace
  1393. @end example
  1394. @node DAG
  1395. @subsection Creating a DAG with graphviz
  1396. When the FxT trace file @code{filename} has been generated, it is possible to
  1397. generate a task graph in the DOT format by calling:
  1398. @example
  1399. $ starpu_fxt_tool -i filename
  1400. @end example
  1401. This will create a @code{dag.dot} file in the current directory. This file is a
  1402. task graph described using the DOT language. It is possible to get a
  1403. graphical output of the graph by using the graphviz library:
  1404. @example
  1405. $ dot -Tpdf dag.dot -o output.pdf
  1406. @end example
  1407. @node starpu-top
  1408. @subsection Monitoring activity
  1409. When the FxT trace file @code{filename} has been generated, it is possible to
  1410. generate a activity trace by calling:
  1411. @example
  1412. $ starpu_fxt_tool -i filename
  1413. @end example
  1414. This will create an @code{activity.data} file in the current
  1415. directory. A profile of the application showing the activity of StarPU
  1416. during the execution of the program can be generated:
  1417. @example
  1418. $ starpu_top.sh activity.data
  1419. @end example
  1420. This will create a file named @code{activity.eps} in the current directory.
  1421. This picture is composed of two parts.
  1422. The first part shows the activity of the different workers. The green sections
  1423. indicate which proportion of the time was spent executed kernels on the
  1424. processing unit. The red sections indicate the proportion of time spent in
  1425. StartPU: an important overhead may indicate that the granularity may be too
  1426. low, and that bigger tasks may be appropriate to use the processing unit more
  1427. efficiently. The black sections indicate that the processing unit was blocked
  1428. because there was no task to process: this may indicate a lack of parallelism
  1429. which may be alleviated by creating more tasks when it is possible.
  1430. The second part of the @code{activity.eps} picture is a graph showing the
  1431. evolution of the number of tasks available in the system during the execution.
  1432. Ready tasks are shown in black, and tasks that are submitted but not
  1433. schedulable yet are shown in grey.
  1434. @node Codelet performance
  1435. @section Performance of codelets
  1436. The performance model of codelets can be examined by using the
  1437. @code{starpu_perfmodel_display} tool:
  1438. @example
  1439. $ starpu_perfmodel_display -l
  1440. file: <malloc_pinned.hannibal>
  1441. file: <starpu_slu_lu_model_21.hannibal>
  1442. file: <starpu_slu_lu_model_11.hannibal>
  1443. file: <starpu_slu_lu_model_22.hannibal>
  1444. file: <starpu_slu_lu_model_12.hannibal>
  1445. @end example
  1446. Here, the codelets of the lu example are available. We can examine the
  1447. performance of the 22 kernel:
  1448. @example
  1449. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1450. performance model for cpu
  1451. # hash size mean dev n
  1452. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1453. performance model for cuda_0
  1454. # hash size mean dev n
  1455. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1456. performance model for cuda_1
  1457. # hash size mean dev n
  1458. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1459. performance model for cuda_2
  1460. # hash size mean dev n
  1461. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1462. @end example
  1463. We can see that for the given size, over a sample of a few hundreds of
  1464. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1465. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1466. CPUs.
  1467. @c ---------------------------------------------------------------------
  1468. @c MPI support
  1469. @c ---------------------------------------------------------------------
  1470. @node StarPU MPI support
  1471. @chapter StarPU MPI support
  1472. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1473. @c ---------------------------------------------------------------------
  1474. @c Configuration options
  1475. @c ---------------------------------------------------------------------
  1476. @node Configuring StarPU
  1477. @chapter Configuring StarPU
  1478. @menu
  1479. * Compilation configuration::
  1480. * Execution configuration through environment variables::
  1481. @end menu
  1482. @node Compilation configuration
  1483. @section Compilation configuration
  1484. The following arguments can be given to the @code{configure} script.
  1485. @menu
  1486. * Common configuration::
  1487. * Configuring workers::
  1488. * Advanced configuration::
  1489. @end menu
  1490. @node Common configuration
  1491. @subsection Common configuration
  1492. @menu
  1493. * --enable-debug::
  1494. * --enable-fast::
  1495. * --enable-verbose::
  1496. * --enable-coverage::
  1497. @end menu
  1498. @node --enable-debug
  1499. @subsubsection @code{--enable-debug}
  1500. @table @asis
  1501. @item @emph{Description}:
  1502. Enable debugging messages.
  1503. @end table
  1504. @node --enable-fast
  1505. @subsubsection @code{--enable-fast}
  1506. @table @asis
  1507. @item @emph{Description}:
  1508. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1509. @end table
  1510. @node --enable-verbose
  1511. @subsubsection @code{--enable-verbose}
  1512. @table @asis
  1513. @item @emph{Description}:
  1514. Augment the verbosity of the debugging messages. This can be disabled
  1515. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1516. any value.
  1517. @smallexample
  1518. % STARPU_SILENT=1 ./vector_scal
  1519. @end smallexample
  1520. @end table
  1521. @node --enable-coverage
  1522. @subsubsection @code{--enable-coverage}
  1523. @table @asis
  1524. @item @emph{Description}:
  1525. Enable flags for the @code{gcov} coverage tool.
  1526. @end table
  1527. @node Configuring workers
  1528. @subsection Configuring workers
  1529. @menu
  1530. * --enable-nmaxcpus::
  1531. * --disable-cpu::
  1532. * --enable-maxcudadev::
  1533. * --disable-cuda::
  1534. * --with-cuda-dir::
  1535. * --with-cuda-include-dir::
  1536. * --with-cuda-lib-dir::
  1537. * --enable-maxopencldev::
  1538. * --disable-opencl::
  1539. * --with-opencl-dir::
  1540. * --with-opencl-include-dir::
  1541. * --with-opencl-lib-dir::
  1542. * --enable-gordon::
  1543. * --with-gordon-dir::
  1544. @end menu
  1545. @node --enable-nmaxcpus
  1546. @subsubsection @code{--enable-nmaxcpus=<number>}
  1547. @table @asis
  1548. @item @emph{Description}:
  1549. Defines the maximum number of CPU cores that StarPU will support, then
  1550. available as the @code{STARPU_NMAXCPUS} macro.
  1551. @end table
  1552. @node --disable-cpu
  1553. @subsubsection @code{--disable-cpu}
  1554. @table @asis
  1555. @item @emph{Description}:
  1556. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1557. @end table
  1558. @node --enable-maxcudadev
  1559. @subsubsection @code{--enable-maxcudadev=<number>}
  1560. @table @asis
  1561. @item @emph{Description}:
  1562. Defines the maximum number of CUDA devices that StarPU will support, then
  1563. available as the @code{STARPU_MAXCUDADEVS} macro.
  1564. @end table
  1565. @node --disable-cuda
  1566. @subsubsection @code{--disable-cuda}
  1567. @table @asis
  1568. @item @emph{Description}:
  1569. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1570. @end table
  1571. @node --with-cuda-dir
  1572. @subsubsection @code{--with-cuda-dir=<path>}
  1573. @table @asis
  1574. @item @emph{Description}:
  1575. Specify the directory where CUDA is installed. This directory should notably contain
  1576. @code{include/cuda.h}.
  1577. @end table
  1578. @node --with-cuda-include-dir
  1579. @subsubsection @code{--with-cuda-include-dir=<path>}
  1580. @table @asis
  1581. @item @emph{Description}:
  1582. Specify the directory where CUDA headers are installed. This directory should
  1583. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1584. value given to @code{--with-cuda-dir}.
  1585. @end table
  1586. @node --with-cuda-lib-dir
  1587. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1588. @table @asis
  1589. @item @emph{Description}:
  1590. Specify the directory where the CUDA library is installed. This directory should
  1591. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1592. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1593. @end table
  1594. @node --enable-maxopencldev
  1595. @subsubsection @code{--enable-maxopencldev=<number>}
  1596. @table @asis
  1597. @item @emph{Description}:
  1598. Defines the maximum number of OpenCL devices that StarPU will support, then
  1599. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1600. @end table
  1601. @node --disable-opencl
  1602. @subsubsection @code{--disable-opencl}
  1603. @table @asis
  1604. @item @emph{Description}:
  1605. Disable the use of OpenCL, even if the SDK is detected.
  1606. @end table
  1607. @node --with-opencl-dir
  1608. @subsubsection @code{--with-opencl-dir=<path>}
  1609. @table @asis
  1610. @item @emph{Description}:
  1611. Specify the location of the OpenCL SDK. This directory should notably contain
  1612. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1613. @end table
  1614. @node --with-opencl-include-dir
  1615. @subsubsection @code{--with-opencl-include-dir=<path>}
  1616. @table @asis
  1617. @item @emph{Description}:
  1618. Specify the location of OpenCL headers. This directory should notably contain
  1619. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1620. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1621. @end table
  1622. @node --with-opencl-lib-dir
  1623. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1624. @table @asis
  1625. @item @emph{Description}:
  1626. Specify the location of the OpenCL library. This directory should notably
  1627. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1628. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1629. @end table
  1630. @node --enable-gordon
  1631. @subsubsection @code{--enable-gordon}
  1632. @table @asis
  1633. @item @emph{Description}:
  1634. Enable the use of the Gordon runtime for Cell SPUs.
  1635. @c TODO: rather default to enabled when detected
  1636. @end table
  1637. @node --with-gordon-dir
  1638. @subsubsection @code{--with-gordon-dir=<path>}
  1639. @table @asis
  1640. @item @emph{Description}:
  1641. Specify the location of the Gordon SDK.
  1642. @end table
  1643. @node Advanced configuration
  1644. @subsection Advanced configuration
  1645. @menu
  1646. * --enable-perf-debug::
  1647. * --enable-model-debug::
  1648. * --enable-stats::
  1649. * --enable-maxbuffers::
  1650. * --enable-allocation-cache::
  1651. * --enable-opengl-render::
  1652. * --enable-blas-lib::
  1653. * --with-magma::
  1654. * --with-fxt::
  1655. * --with-perf-model-dir::
  1656. * --with-mpicc::
  1657. * --with-goto-dir::
  1658. * --with-atlas-dir::
  1659. * --with-mkl-cflags::
  1660. * --with-mkl-ldflags::
  1661. @end menu
  1662. @node --enable-perf-debug
  1663. @subsubsection @code{--enable-perf-debug}
  1664. @table @asis
  1665. @item @emph{Description}:
  1666. Enable performance debugging.
  1667. @end table
  1668. @node --enable-model-debug
  1669. @subsubsection @code{--enable-model-debug}
  1670. @table @asis
  1671. @item @emph{Description}:
  1672. Enable performance model debugging.
  1673. @end table
  1674. @node --enable-stats
  1675. @subsubsection @code{--enable-stats}
  1676. @table @asis
  1677. @item @emph{Description}:
  1678. Enable statistics.
  1679. @end table
  1680. @node --enable-maxbuffers
  1681. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1682. @table @asis
  1683. @item @emph{Description}:
  1684. Define the maximum number of buffers that tasks will be able to take
  1685. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1686. @end table
  1687. @node --enable-allocation-cache
  1688. @subsubsection @code{--enable-allocation-cache}
  1689. @table @asis
  1690. @item @emph{Description}:
  1691. Enable the use of a data allocation cache to avoid the cost of it with
  1692. CUDA. Still experimental.
  1693. @end table
  1694. @node --enable-opengl-render
  1695. @subsubsection @code{--enable-opengl-render}
  1696. @table @asis
  1697. @item @emph{Description}:
  1698. Enable the use of OpenGL for the rendering of some examples.
  1699. @c TODO: rather default to enabled when detected
  1700. @end table
  1701. @node --enable-blas-lib
  1702. @subsubsection @code{--enable-blas-lib=<name>}
  1703. @table @asis
  1704. @item @emph{Description}:
  1705. Specify the blas library to be used by some of the examples. The
  1706. library has to be 'atlas' or 'goto'.
  1707. @end table
  1708. @node --with-magma
  1709. @subsubsection @code{--with-magma=<path>}
  1710. @table @asis
  1711. @item @emph{Description}:
  1712. Specify where magma is installed. This directory should notably contain
  1713. @code{include/magmablas.h}.
  1714. @end table
  1715. @node --with-fxt
  1716. @subsubsection @code{--with-fxt=<path>}
  1717. @table @asis
  1718. @item @emph{Description}:
  1719. Specify the location of FxT (for generating traces and rendering them
  1720. using ViTE). This directory should notably contain
  1721. @code{include/fxt/fxt.h}.
  1722. @c TODO add ref to other section
  1723. @end table
  1724. @node --with-perf-model-dir
  1725. @subsubsection @code{--with-perf-model-dir=<dir>}
  1726. @table @asis
  1727. @item @emph{Description}:
  1728. Specify where performance models should be stored (instead of defaulting to the
  1729. current user's home).
  1730. @end table
  1731. @node --with-mpicc
  1732. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1733. @table @asis
  1734. @item @emph{Description}:
  1735. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1736. @end table
  1737. @node --with-goto-dir
  1738. @subsubsection @code{--with-goto-dir=<dir>}
  1739. @table @asis
  1740. @item @emph{Description}:
  1741. Specify the location of GotoBLAS.
  1742. @end table
  1743. @node --with-atlas-dir
  1744. @subsubsection @code{--with-atlas-dir=<dir>}
  1745. @table @asis
  1746. @item @emph{Description}:
  1747. Specify the location of ATLAS. This directory should notably contain
  1748. @code{include/cblas.h}.
  1749. @end table
  1750. @node --with-mkl-cflags
  1751. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1752. @table @asis
  1753. @item @emph{Description}:
  1754. Specify the compilation flags for the MKL Library.
  1755. @end table
  1756. @node --with-mkl-ldflags
  1757. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1758. @table @asis
  1759. @item @emph{Description}:
  1760. Specify the linking flags for the MKL Library. Note that the
  1761. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1762. website provides a script to determine the linking flags.
  1763. @end table
  1764. @c ---------------------------------------------------------------------
  1765. @c Environment variables
  1766. @c ---------------------------------------------------------------------
  1767. @node Execution configuration through environment variables
  1768. @section Execution configuration through environment variables
  1769. @menu
  1770. * Workers:: Configuring workers
  1771. * Scheduling:: Configuring the Scheduling engine
  1772. * Misc:: Miscellaneous and debug
  1773. @end menu
  1774. Note: the values given in @code{starpu_conf} structure passed when
  1775. calling @code{starpu_init} will override the values of the environment
  1776. variables.
  1777. @node Workers
  1778. @subsection Configuring workers
  1779. @menu
  1780. * STARPU_NCPUS:: Number of CPU workers
  1781. * STARPU_NCUDA:: Number of CUDA workers
  1782. * STARPU_NOPENCL:: Number of OpenCL workers
  1783. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1784. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1785. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1786. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1787. @end menu
  1788. @node STARPU_NCPUS
  1789. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1790. @table @asis
  1791. @item @emph{Description}:
  1792. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  1793. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  1794. the accelerators.
  1795. @end table
  1796. @node STARPU_NCUDA
  1797. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1798. @table @asis
  1799. @item @emph{Description}:
  1800. Specify the number of CUDA devices that StarPU can use. If
  1801. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1802. possible to select which CUDA devices should be used by the means of the
  1803. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1804. create as many CUDA workers as there are CUDA devices.
  1805. @end table
  1806. @node STARPU_NOPENCL
  1807. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1808. @table @asis
  1809. @item @emph{Description}:
  1810. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1811. @end table
  1812. @node STARPU_NGORDON
  1813. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1814. @table @asis
  1815. @item @emph{Description}:
  1816. Specify the number of SPUs that StarPU can use.
  1817. @end table
  1818. @node STARPU_WORKERS_CPUID
  1819. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1820. @table @asis
  1821. @item @emph{Description}:
  1822. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1823. specifies on which logical CPU the different workers should be
  1824. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1825. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1826. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1827. determined by the OS, or provided by the @code{hwloc} library in case it is
  1828. available.
  1829. Note that the first workers correspond to the CUDA workers, then come the
  1830. OpenCL and the SPU, and finally the CPU workers. For example if
  1831. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1832. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1833. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1834. the logical CPUs #1 and #3 will be used by the CPU workers.
  1835. If the number of workers is larger than the array given in
  1836. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1837. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1838. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1839. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1840. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1841. @end table
  1842. @node STARPU_WORKERS_CUDAID
  1843. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1844. @table @asis
  1845. @item @emph{Description}:
  1846. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1847. possible to select which CUDA devices should be used by StarPU. On a machine
  1848. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1849. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1850. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1851. the one reported by CUDA).
  1852. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1853. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1854. @end table
  1855. @node STARPU_WORKERS_OPENCLID
  1856. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1857. @table @asis
  1858. @item @emph{Description}:
  1859. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1860. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1861. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1862. @end table
  1863. @node Scheduling
  1864. @subsection Configuring the Scheduling engine
  1865. @menu
  1866. * STARPU_SCHED:: Scheduling policy
  1867. * STARPU_CALIBRATE:: Calibrate performance models
  1868. * STARPU_PREFETCH:: Use data prefetch
  1869. * STARPU_SCHED_ALPHA:: Computation factor
  1870. * STARPU_SCHED_BETA:: Communication factor
  1871. @end menu
  1872. @node STARPU_SCHED
  1873. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1874. @table @asis
  1875. @item @emph{Description}:
  1876. This chooses between the different scheduling policies proposed by StarPU: work
  1877. random, stealing, greedy, with performance models, etc.
  1878. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1879. @end table
  1880. @node STARPU_CALIBRATE
  1881. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1882. @table @asis
  1883. @item @emph{Description}:
  1884. If this variable is set to 1, the performance models are calibrated during
  1885. the execution. If it is set to 2, the previous values are dropped to restart
  1886. calibration from scratch. Setting this variable to 0 disable calibration, this
  1887. is the default behaviour.
  1888. Note: this currently only applies to dm, dmda and heft scheduling policies.
  1889. @end table
  1890. @node STARPU_PREFETCH
  1891. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1892. @table @asis
  1893. @item @emph{Description}:
  1894. This variable indicates whether data prefetching should be enabled (0 means
  1895. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1896. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1897. advance, so that data is already present on the GPU when the task starts. As a
  1898. result, computation and data transfers are overlapped.
  1899. Note that prefetching is enabled by default in StarPU.
  1900. @end table
  1901. @node STARPU_SCHED_ALPHA
  1902. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1903. @table @asis
  1904. @item @emph{Description}:
  1905. To estimate the cost of a task StarPU takes into account the estimated
  1906. computation time (obtained thanks to performance models). The alpha factor is
  1907. the coefficient to be applied to it before adding it to the communication part.
  1908. @end table
  1909. @node STARPU_SCHED_BETA
  1910. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1911. @table @asis
  1912. @item @emph{Description}:
  1913. To estimate the cost of a task StarPU takes into account the estimated
  1914. data transfer time (obtained thanks to performance models). The beta factor is
  1915. the coefficient to be applied to it before adding it to the computation part.
  1916. @end table
  1917. @node Misc
  1918. @subsection Miscellaneous and debug
  1919. @menu
  1920. * STARPU_SILENT:: Disable verbose mode
  1921. * STARPU_LOGFILENAME:: Select debug file name
  1922. * STARPU_FXT_PREFIX:: FxT trace location
  1923. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1924. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  1925. @end menu
  1926. @node STARPU_SILENT
  1927. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1928. @table @asis
  1929. @item @emph{Description}:
  1930. This variable allows to disable verbose mode at runtime when StarPU
  1931. has been configured with the option @code{--enable-verbose}.
  1932. @end table
  1933. @node STARPU_LOGFILENAME
  1934. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1935. @table @asis
  1936. @item @emph{Description}:
  1937. This variable specifies in which file the debugging output should be saved to.
  1938. @end table
  1939. @node STARPU_FXT_PREFIX
  1940. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1941. @table @asis
  1942. @item @emph{Description}
  1943. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1944. @end table
  1945. @node STARPU_LIMIT_GPU_MEM
  1946. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1947. @table @asis
  1948. @item @emph{Description}
  1949. This variable specifies the maximum number of megabytes that should be
  1950. available to the application on each GPUs. In case this value is smaller than
  1951. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1952. on the device. This variable is intended to be used for experimental purposes
  1953. as it emulates devices that have a limited amount of memory.
  1954. @end table
  1955. @node STARPU_GENERATE_TRACE
  1956. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  1957. @table @asis
  1958. @item @emph{Description}
  1959. When set to 1, this variable indicates that StarPU should automatically
  1960. generate a Paje trace when starpu_shutdown is called.
  1961. @end table
  1962. @c ---------------------------------------------------------------------
  1963. @c StarPU API
  1964. @c ---------------------------------------------------------------------
  1965. @node StarPU API
  1966. @chapter StarPU API
  1967. @menu
  1968. * Initialization and Termination:: Initialization and Termination methods
  1969. * Workers' Properties:: Methods to enumerate workers' properties
  1970. * Data Library:: Methods to manipulate data
  1971. * Data Interfaces::
  1972. * Data Partition::
  1973. * Codelets and Tasks:: Methods to construct tasks
  1974. * Explicit Dependencies:: Explicit Dependencies
  1975. * Implicit Data Dependencies:: Implicit Data Dependencies
  1976. * Performance Model API::
  1977. * Profiling API:: Profiling API
  1978. * CUDA extensions:: CUDA extensions
  1979. * OpenCL extensions:: OpenCL extensions
  1980. * Cell extensions:: Cell extensions
  1981. * Miscellaneous helpers::
  1982. @end menu
  1983. @node Initialization and Termination
  1984. @section Initialization and Termination
  1985. @menu
  1986. * starpu_init:: Initialize StarPU
  1987. * struct starpu_conf:: StarPU runtime configuration
  1988. * starpu_conf_init:: Initialize starpu_conf structure
  1989. * starpu_shutdown:: Terminate StarPU
  1990. @end menu
  1991. @node starpu_init
  1992. @subsection @code{starpu_init} -- Initialize StarPU
  1993. @table @asis
  1994. @item @emph{Description}:
  1995. This is StarPU initialization method, which must be called prior to any other
  1996. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1997. policy, number of cores, ...) by passing a non-null argument. Default
  1998. configuration is used if the passed argument is @code{NULL}.
  1999. @item @emph{Return value}:
  2000. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2001. indicates that no worker was available (so that StarPU was not initialized).
  2002. @item @emph{Prototype}:
  2003. @code{int starpu_init(struct starpu_conf *conf);}
  2004. @end table
  2005. @node struct starpu_conf
  2006. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2007. @table @asis
  2008. @item @emph{Description}:
  2009. This structure is passed to the @code{starpu_init} function in order
  2010. to configure StarPU.
  2011. When the default value is used, StarPU automatically selects the number
  2012. of processing units and takes the default scheduling policy. This parameter
  2013. overwrites the equivalent environment variables.
  2014. @item @emph{Fields}:
  2015. @table @asis
  2016. @item @code{sched_policy_name} (default = NULL):
  2017. This is the name of the scheduling policy. This can also be specified with the
  2018. @code{STARPU_SCHED} environment variable.
  2019. @item @code{sched_policy} (default = NULL):
  2020. This is the definition of the scheduling policy. This field is ignored
  2021. if @code{sched_policy_name} is set.
  2022. @item @code{ncpus} (default = -1):
  2023. This is the number of CPU cores that StarPU can use. This can also be
  2024. specified with the @code{STARPU_NCPUS} environment variable.
  2025. @item @code{ncuda} (default = -1):
  2026. This is the number of CUDA devices that StarPU can use. This can also be
  2027. specified with the @code{STARPU_NCUDA} environment variable.
  2028. @item @code{nopencl} (default = -1):
  2029. This is the number of OpenCL devices that StarPU can use. This can also be
  2030. specified with the @code{STARPU_NOPENCL} environment variable.
  2031. @item @code{nspus} (default = -1):
  2032. This is the number of Cell SPUs that StarPU can use. This can also be
  2033. specified with the @code{STARPU_NGORDON} environment variable.
  2034. @item @code{use_explicit_workers_bindid} (default = 0)
  2035. If this flag is set, the @code{workers_bindid} array indicates where the
  2036. different workers are bound, otherwise StarPU automatically selects where to
  2037. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2038. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2039. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2040. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2041. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2042. where to bind the different workers. The i-th entry of the
  2043. @code{workers_bindid} indicates the logical identifier of the processor which
  2044. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2045. either determined by the OS, or provided by the @code{hwloc} library in case it
  2046. is available.
  2047. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2048. ignored.
  2049. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2050. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2051. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2052. CUDA devices in a round-robin fashion.
  2053. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2054. ignored.
  2055. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2056. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2057. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2058. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2059. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2060. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2061. OpenCL devices in a round-robin fashion.
  2062. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2063. @item @code{calibrate} (default = 0):
  2064. If this flag is set, StarPU will calibrate the performance models when
  2065. executing tasks. If this value is equal to -1, the default value is used. The
  2066. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2067. variable when it is set.
  2068. @end table
  2069. @end table
  2070. @node starpu_conf_init
  2071. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2072. @table @asis
  2073. This function initializes the @code{starpu_conf} structure passed as argument
  2074. with the default values. In case some configuration parameters are already
  2075. specified through environment variables, @code{starpu_conf_init} initializes
  2076. the fields of the structure according to the environment variables. For
  2077. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2078. @code{.ncuda} field of the structure passed as argument.
  2079. @item @emph{Return value}:
  2080. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2081. indicates that the argument was NULL.
  2082. @item @emph{Prototype}:
  2083. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2084. @end table
  2085. @node starpu_shutdown
  2086. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2087. @table @asis
  2088. @item @emph{Description}:
  2089. This is StarPU termination method. It must be called at the end of the
  2090. application: statistics and other post-mortem debugging information are not
  2091. guaranteed to be available until this method has been called.
  2092. @item @emph{Prototype}:
  2093. @code{void starpu_shutdown(void);}
  2094. @end table
  2095. @node Workers' Properties
  2096. @section Workers' Properties
  2097. @menu
  2098. * starpu_worker_get_count:: Get the number of processing units
  2099. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2100. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2101. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2102. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2103. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2104. * starpu_worker_get_id:: Get the identifier of the current worker
  2105. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2106. * starpu_worker_get_devid:: Get the device identifier of a worker
  2107. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2108. * starpu_worker_get_name:: Get the name of a worker
  2109. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2110. @end menu
  2111. @node starpu_worker_get_count
  2112. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2113. @table @asis
  2114. @item @emph{Description}:
  2115. This function returns the number of workers (i.e. processing units executing
  2116. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2117. @item @emph{Prototype}:
  2118. @code{unsigned starpu_worker_get_count(void);}
  2119. @end table
  2120. @node starpu_worker_get_count_by_type
  2121. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2122. @table @asis
  2123. @item @emph{Description}:
  2124. Returns the number of workers of the type indicated by the argument. A positive
  2125. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2126. the type is not valid otherwise.
  2127. @item @emph{Prototype}:
  2128. @code{int starpu_worker_get_count_by_type(enum starpu_archtype type);}
  2129. @end table
  2130. @node starpu_cpu_worker_get_count
  2131. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2132. @table @asis
  2133. @item @emph{Description}:
  2134. This function returns the number of CPUs controlled by StarPU. The returned
  2135. value should be at most @code{STARPU_NMAXCPUS}.
  2136. @item @emph{Prototype}:
  2137. @code{unsigned starpu_cpu_worker_get_count(void);}
  2138. @end table
  2139. @node starpu_cuda_worker_get_count
  2140. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2141. @table @asis
  2142. @item @emph{Description}:
  2143. This function returns the number of CUDA devices controlled by StarPU. The returned
  2144. value should be at most @code{STARPU_MAXCUDADEVS}.
  2145. @item @emph{Prototype}:
  2146. @code{unsigned starpu_cuda_worker_get_count(void);}
  2147. @end table
  2148. @node starpu_opencl_worker_get_count
  2149. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2150. @table @asis
  2151. @item @emph{Description}:
  2152. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2153. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2154. @item @emph{Prototype}:
  2155. @code{unsigned starpu_opencl_worker_get_count(void);}
  2156. @end table
  2157. @node starpu_spu_worker_get_count
  2158. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2159. @table @asis
  2160. @item @emph{Description}:
  2161. This function returns the number of Cell SPUs controlled by StarPU.
  2162. @item @emph{Prototype}:
  2163. @code{unsigned starpu_opencl_worker_get_count(void);}
  2164. @end table
  2165. @node starpu_worker_get_id
  2166. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2167. @table @asis
  2168. @item @emph{Description}:
  2169. This function returns the identifier of the worker associated to the calling
  2170. thread. The returned value is either -1 if the current context is not a StarPU
  2171. worker (i.e. when called from the application outside a task or a callback), or
  2172. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2173. @item @emph{Prototype}:
  2174. @code{int starpu_worker_get_id(void);}
  2175. @end table
  2176. @node starpu_worker_get_ids_by_type
  2177. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2178. @table @asis
  2179. @item @emph{Description}:
  2180. Fill the workerids array with the identifiers of the workers that have the type
  2181. indicated in the first argument. The maxsize argument indicates the size of the
  2182. workids array. The returned value gives the number of identifiers that were put
  2183. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2184. workers with the appropriate type: in that case, the array is filled with the
  2185. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2186. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2187. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2188. @item @emph{Prototype}:
  2189. @code{int starpu_worker_get_ids_by_type(enum starpu_archtype type, int *workerids, int maxsize);}
  2190. @end table
  2191. @node starpu_worker_get_devid
  2192. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2193. @table @asis
  2194. @item @emph{Description}:
  2195. This functions returns the device id of the worker associated to an identifier
  2196. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2197. CUDA worker, this device identifier is the logical device identifier exposed by
  2198. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2199. identifier of a CPU worker is the logical identifier of the core on which the
  2200. worker was bound; this identifier is either provided by the OS or by the
  2201. @code{hwloc} library in case it is available.
  2202. @item @emph{Prototype}:
  2203. @code{int starpu_worker_get_devid(int id);}
  2204. @end table
  2205. @node starpu_worker_get_type
  2206. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2207. @table @asis
  2208. @item @emph{Description}:
  2209. This function returns the type of worker associated to an identifier (as
  2210. returned by the @code{starpu_worker_get_id} function). The returned value
  2211. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2212. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2213. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2214. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2215. identifier is unspecified.
  2216. @item @emph{Prototype}:
  2217. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2218. @end table
  2219. @node starpu_worker_get_name
  2220. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2221. @table @asis
  2222. @item @emph{Description}:
  2223. StarPU associates a unique human readable string to each processing unit. This
  2224. function copies at most the @code{maxlen} first bytes of the unique string
  2225. associated to a worker identified by its identifier @code{id} into the
  2226. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2227. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2228. function on an invalid identifier results in an unspecified behaviour.
  2229. @item @emph{Prototype}:
  2230. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2231. @end table
  2232. @node starpu_worker_get_memory_node
  2233. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2234. @table @asis
  2235. @item @emph{Description}:
  2236. This function returns the identifier of the memory node associated to the
  2237. worker identified by @code{workerid}.
  2238. @item @emph{Prototype}:
  2239. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2240. @end table
  2241. @node Data Library
  2242. @section Data Library
  2243. This section describes the data management facilities provided by StarPU.
  2244. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2245. design their own data interfaces if required.
  2246. @menu
  2247. * starpu_malloc:: Allocate data and pin it
  2248. * starpu_access_mode:: Data access mode
  2249. * unsigned memory_node:: Memory node
  2250. * starpu_data_handle:: StarPU opaque data handle
  2251. * void *interface:: StarPU data interface
  2252. * starpu_data_register:: Register a piece of data to StarPU
  2253. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2254. * starpu_data_invalidate:: Invalidate all data replicates
  2255. * starpu_data_acquire:: Access registered data from the application
  2256. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2257. * starpu_data_release:: Release registered data from the application
  2258. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2259. @end menu
  2260. @node starpu_malloc
  2261. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2262. @table @asis
  2263. @item @emph{Description}:
  2264. This function allocates data of the given size. It will also try to pin it in
  2265. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2266. thus permit data transfer and computation overlapping. The allocated buffer must
  2267. be freed thanks to the @code{starpu_free} function.
  2268. @item @emph{Prototype}:
  2269. @code{int starpu_malloc(void **A, size_t dim);}
  2270. @end table
  2271. @node starpu_access_mode
  2272. @subsection @code{starpu_access_mode} -- Data access mode
  2273. This datatype describes a data access mode. The different available modes are:
  2274. @table @asis
  2275. @table @asis
  2276. @item @code{STARPU_R} read-only mode.
  2277. @item @code{STARPU_W} write-only mode.
  2278. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2279. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2280. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2281. @end table
  2282. @end table
  2283. @node unsigned memory_node
  2284. @subsection @code{unsigned memory_node} -- Memory node
  2285. @table @asis
  2286. @item @emph{Description}:
  2287. Every worker is associated to a memory node which is a logical abstraction of
  2288. the address space from which the processing unit gets its data. For instance,
  2289. the memory node associated to the different CPU workers represents main memory
  2290. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2291. Every memory node is identified by a logical index which is accessible from the
  2292. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2293. to StarPU, the specified memory node indicates where the piece of data
  2294. initially resides (we also call this memory node the home node of a piece of
  2295. data).
  2296. @end table
  2297. @node starpu_data_handle
  2298. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2299. @table @asis
  2300. @item @emph{Description}:
  2301. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2302. data. Once a piece of data has been registered to StarPU, it is associated to a
  2303. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2304. over the entire machine, so that we can maintain data consistency and locate
  2305. data replicates for instance.
  2306. @end table
  2307. @node void *interface
  2308. @subsection @code{void *interface} -- StarPU data interface
  2309. @table @asis
  2310. @item @emph{Description}:
  2311. Data management is done at a high-level in StarPU: rather than accessing a mere
  2312. list of contiguous buffers, the tasks may manipulate data that are described by
  2313. a high-level construct which we call data interface.
  2314. An example of data interface is the "vector" interface which describes a
  2315. contiguous data array on a spefic memory node. This interface is a simple
  2316. structure containing the number of elements in the array, the size of the
  2317. elements, and the address of the array in the appropriate address space (this
  2318. address may be invalid if there is no valid copy of the array in the memory
  2319. node). More informations on the data interfaces provided by StarPU are
  2320. given in @ref{Data Interfaces}.
  2321. When a piece of data managed by StarPU is used by a task, the task
  2322. implementation is given a pointer to an interface describing a valid copy of
  2323. the data that is accessible from the current processing unit.
  2324. @end table
  2325. @node starpu_data_register
  2326. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2327. @table @asis
  2328. @item @emph{Description}:
  2329. Register a piece of data into the handle located at the @code{handleptr}
  2330. address. The @code{interface} buffer contains the initial description of the
  2331. data in the home node. The @code{ops} argument is a pointer to a structure
  2332. describing the different methods used to manipulate this type of interface. See
  2333. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2334. If @code{home_node} is -1, StarPU will automatically
  2335. allocate the memory when it is used for the
  2336. first time in write-only mode. Once such data handle has been automatically
  2337. allocated, it is possible to access it using any access mode.
  2338. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2339. matrix) which can be registered by the means of helper functions (e.g.
  2340. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2341. @item @emph{Prototype}:
  2342. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2343. uint32_t home_node,
  2344. void *interface,
  2345. struct starpu_data_interface_ops_t *ops);}
  2346. @end table
  2347. @node starpu_data_unregister
  2348. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2349. @table @asis
  2350. @item @emph{Description}:
  2351. This function unregisters a data handle from StarPU. If the data was
  2352. automatically allocated by StarPU because the home node was -1, all
  2353. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2354. is put back into the home node in the buffer that was initially registered.
  2355. Using a data handle that has been unregistered from StarPU results in an
  2356. undefined behaviour.
  2357. @item @emph{Prototype}:
  2358. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2359. @end table
  2360. @node starpu_data_invalidate
  2361. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2362. @table @asis
  2363. @item @emph{Description}:
  2364. Destroy all replicates of the data handle. After data invalidation, the first
  2365. access to the handle must be performed in write-only mode. Accessing an
  2366. invalidated data in read-mode results in undefined behaviour.
  2367. @item @emph{Prototype}:
  2368. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2369. @end table
  2370. @c TODO create a specific sections about user interaction with the DSM ?
  2371. @node starpu_data_acquire
  2372. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2373. @table @asis
  2374. @item @emph{Description}:
  2375. The application must call this function prior to accessing registered data from
  2376. main memory outside tasks. StarPU ensures that the application will get an
  2377. up-to-date copy of the data in main memory located where the data was
  2378. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2379. be consistent with the access mode specified in the @code{mode} argument.
  2380. @code{starpu_data_release} must be called once the application does not need to
  2381. access the piece of data anymore. Note that implicit data
  2382. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2383. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2384. the data, unless that they have not been disabled explictly by calling
  2385. @code{starpu_data_set_default_sequential_consistency_flag} or
  2386. @code{starpu_data_set_sequential_consistency_flag}.
  2387. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2388. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2389. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2390. @item @emph{Prototype}:
  2391. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2392. @end table
  2393. @node starpu_data_acquire_cb
  2394. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2395. @table @asis
  2396. @item @emph{Description}:
  2397. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2398. @code{starpu_data_release}. When the data specified in the first argument is
  2399. available in the appropriate access mode, the callback function is executed.
  2400. The application may access the requested data during the execution of this
  2401. callback. The callback function must call @code{starpu_data_release} once the
  2402. application does not need to access the piece of data anymore.
  2403. Note that implicit data dependencies are also enforced by
  2404. @code{starpu_data_acquire_cb} in case they are enabled.
  2405. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2406. be called from task callbacks. Upon successful completion, this function
  2407. returns 0.
  2408. @item @emph{Prototype}:
  2409. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2410. @end table
  2411. @node starpu_data_release
  2412. @subsection @code{starpu_data_release} -- Release registered data from the application
  2413. @table @asis
  2414. @item @emph{Description}:
  2415. This function releases the piece of data acquired by the application either by
  2416. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2417. @item @emph{Prototype}:
  2418. @code{void starpu_data_release(starpu_data_handle handle);}
  2419. @end table
  2420. @node starpu_data_set_wt_mask
  2421. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2422. @table @asis
  2423. @item @emph{Description}:
  2424. This function sets the write-through mask of a given data, i.e. a bitmask of
  2425. nodes where the data should be always replicated after modification.
  2426. @item @emph{Prototype}:
  2427. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2428. @end table
  2429. @node Data Interfaces
  2430. @section Data Interfaces
  2431. @menu
  2432. * Variable Interface::
  2433. * Vector Interface::
  2434. * Matrix Interface::
  2435. * 3D Matrix Interface::
  2436. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2437. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2438. @end menu
  2439. @node Variable Interface
  2440. @subsection Variable Interface
  2441. @table @asis
  2442. @item @emph{Description}:
  2443. This variant of @code{starpu_data_register} uses the variable interface,
  2444. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2445. and @code{elemsize} is the size of the variable.
  2446. @item @emph{Prototype}:
  2447. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2448. uint32_t home_node,
  2449. uintptr_t ptr, size_t elemsize);}
  2450. @item @emph{Example}:
  2451. @cartouche
  2452. @smallexample
  2453. float var;
  2454. starpu_data_handle var_handle;
  2455. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2456. @end smallexample
  2457. @end cartouche
  2458. @end table
  2459. @node Vector Interface
  2460. @subsection Vector Interface
  2461. @table @asis
  2462. @item @emph{Description}:
  2463. This variant of @code{starpu_data_register} uses the vector interface,
  2464. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2465. element in the home node. @code{nx} is the number of elements in the vector.
  2466. @code{elemsize} is the size of each element.
  2467. @item @emph{Prototype}:
  2468. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2469. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2470. @item @emph{Example}:
  2471. @cartouche
  2472. @smallexample
  2473. float vector[NX];
  2474. starpu_data_handle vector_handle;
  2475. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2476. sizeof(vector[0]));
  2477. @end smallexample
  2478. @end cartouche
  2479. @end table
  2480. @node Matrix Interface
  2481. @subsection Matrix Interface
  2482. @table @asis
  2483. @item @emph{Description}:
  2484. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2485. matrices of elements. @code{ptr} is the address of the first element in the home
  2486. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2487. of elements in a row (this can be different from @code{ld} if there are extra
  2488. elements for alignment for instance). @code{ny} is the number of rows.
  2489. @code{elemsize} is the size of each element.
  2490. @item @emph{Prototype}:
  2491. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2492. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2493. uint32_t ny, size_t elemsize);}
  2494. @item @emph{Example}:
  2495. @cartouche
  2496. @smallexample
  2497. float *matrix;
  2498. starpu_data_handle matrix_handle;
  2499. matrix = (float*)malloc(width * height * sizeof(float));
  2500. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2501. width, width, height, sizeof(float));
  2502. @end smallexample
  2503. @end cartouche
  2504. @end table
  2505. @node 3D Matrix Interface
  2506. @subsection 3D Matrix Interface
  2507. @table @asis
  2508. @item @emph{Description}:
  2509. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2510. @code{ptr} is the address of the array of first element in the home node.
  2511. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2512. of rows between z planes. @code{nx} is the number of elements in a row (this
  2513. can be different from @code{ldy} if there are extra elements for alignment
  2514. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2515. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2516. each element.
  2517. @item @emph{Prototype}:
  2518. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2519. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2520. uint32_t ny, uint32_t nz, size_t elemsize);}
  2521. @item @emph{Example}:
  2522. @cartouche
  2523. @smallexample
  2524. float *block;
  2525. starpu_data_handle block_handle;
  2526. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2527. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2528. nx, nx*ny, nx, ny, nz, sizeof(float));
  2529. @end smallexample
  2530. @end cartouche
  2531. @end table
  2532. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2533. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2534. @table @asis
  2535. @item @emph{Description}:
  2536. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2537. TODO
  2538. @item @emph{Prototype}:
  2539. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2540. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2541. @item @emph{Example}:
  2542. @cartouche
  2543. @smallexample
  2544. @end smallexample
  2545. @end cartouche
  2546. @end table
  2547. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2548. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2549. @table @asis
  2550. @item @emph{Description}:
  2551. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2552. TODO
  2553. @item @emph{Prototype}:
  2554. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2555. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2556. @item @emph{Example}:
  2557. @cartouche
  2558. @smallexample
  2559. @end smallexample
  2560. @end cartouche
  2561. @end table
  2562. @node Data Partition
  2563. @section Data Partition
  2564. @menu
  2565. * struct starpu_data_filter:: StarPU filter structure
  2566. * starpu_data_partition:: Partition Data
  2567. * starpu_data_unpartition:: Unpartition Data
  2568. * starpu_data_get_nb_children::
  2569. * starpu_data_get_sub_data::
  2570. * Predefined filter functions::
  2571. @end menu
  2572. @node struct starpu_data_filter
  2573. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2574. @table @asis
  2575. @item @emph{Description}:
  2576. The filter structure describes a data partitioning operation, to be given to the
  2577. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2578. @item @emph{Fields}:
  2579. @table @asis
  2580. @item @code{filter_func}:
  2581. This function fills the @code{child_interface} structure with interface
  2582. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2583. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2584. @item @code{nchildren}:
  2585. This is the number of parts to partition the data into.
  2586. @item @code{get_nchildren}:
  2587. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2588. children depends on the actual data (e.g. the number of blocks in a sparse
  2589. matrix).
  2590. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2591. @item @code{get_child_ops}:
  2592. In case the resulting children use a different data interface, this function
  2593. returns which interface is used by child number @code{id}.
  2594. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2595. @item @code{filter_arg}:
  2596. Some filters take an addition parameter, but this is usually unused.
  2597. @item @code{filter_arg_ptr}:
  2598. Some filters take an additional array parameter like the sizes of the parts, but
  2599. this is usually unused.
  2600. @end table
  2601. @end table
  2602. @node starpu_data_partition
  2603. @subsection starpu_data_partition -- Partition Data
  2604. @table @asis
  2605. @item @emph{Description}:
  2606. This requests partitioning one StarPU data @code{initial_handle} into several
  2607. subdata according to the filter @code{f}
  2608. @item @emph{Prototype}:
  2609. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2610. @item @emph{Example}:
  2611. @cartouche
  2612. @smallexample
  2613. struct starpu_data_filter f = @{
  2614. .filter_func = starpu_vertical_block_filter_func,
  2615. .nchildren = nslicesx,
  2616. .get_nchildren = NULL,
  2617. .get_child_ops = NULL
  2618. @};
  2619. starpu_data_partition(A_handle, &f);
  2620. @end smallexample
  2621. @end cartouche
  2622. @end table
  2623. @node starpu_data_unpartition
  2624. @subsection starpu_data_unpartition -- Unpartition data
  2625. @table @asis
  2626. @item @emph{Description}:
  2627. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2628. collected back into one big piece in the @code{gathering_node} (usually 0).
  2629. @item @emph{Prototype}:
  2630. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2631. @item @emph{Example}:
  2632. @cartouche
  2633. @smallexample
  2634. starpu_data_unpartition(A_handle, 0);
  2635. @end smallexample
  2636. @end cartouche
  2637. @end table
  2638. @node starpu_data_get_nb_children
  2639. @subsection starpu_data_get_nb_children
  2640. @table @asis
  2641. @item @emph{Description}:
  2642. This function returns the number of children.
  2643. @item @emph{Return value}:
  2644. The number of children.
  2645. @item @emph{Prototype}:
  2646. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2647. @end table
  2648. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2649. @node starpu_data_get_sub_data
  2650. @subsection starpu_data_get_sub_data
  2651. @table @asis
  2652. @item @emph{Description}:
  2653. After partitioning a StarPU data by applying a filter,
  2654. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2655. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2656. is the number of filters to traverse (in case several filters have been applied,
  2657. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2658. parameters are the indexes.
  2659. @item @emph{Return value}:
  2660. A handle to the subdata.
  2661. @item @emph{Prototype}:
  2662. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2663. @item @emph{Example}:
  2664. @cartouche
  2665. @smallexample
  2666. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2667. @end smallexample
  2668. @end cartouche
  2669. @end table
  2670. @node Predefined filter functions
  2671. @subsection Predefined filter functions
  2672. @menu
  2673. * Partitioning BCSR Data::
  2674. * Partitioning BLAS interface::
  2675. * Partitioning Vector Data::
  2676. * Partitioning Block Data::
  2677. @end menu
  2678. This section gives a partial list of the predefined partitioning functions.
  2679. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2680. list can be found in @code{starpu_data_filters.h} .
  2681. @node Partitioning BCSR Data
  2682. @subsubsection Partitioning BCSR Data
  2683. @table @asis
  2684. @item @emph{Description}:
  2685. TODO
  2686. @item @emph{Prototype}:
  2687. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2688. @end table
  2689. @table @asis
  2690. @item @emph{Description}:
  2691. TODO
  2692. @item @emph{Prototype}:
  2693. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2694. @end table
  2695. @node Partitioning BLAS interface
  2696. @subsubsection Partitioning BLAS interface
  2697. @table @asis
  2698. @item @emph{Description}:
  2699. This partitions a dense Matrix into horizontal blocks.
  2700. @item @emph{Prototype}:
  2701. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2702. @end table
  2703. @table @asis
  2704. @item @emph{Description}:
  2705. This partitions a dense Matrix into vertical blocks.
  2706. @item @emph{Prototype}:
  2707. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2708. @end table
  2709. @node Partitioning Vector Data
  2710. @subsubsection Partitioning Vector Data
  2711. @table @asis
  2712. @item @emph{Description}:
  2713. This partitions a vector into blocks of the same size.
  2714. @item @emph{Prototype}:
  2715. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2716. @end table
  2717. @table @asis
  2718. @item @emph{Description}:
  2719. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2720. @item @emph{Prototype}:
  2721. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2722. @end table
  2723. @table @asis
  2724. @item @emph{Description}:
  2725. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2726. @item @emph{Prototype}:
  2727. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2728. @end table
  2729. @node Partitioning Block Data
  2730. @subsubsection Partitioning Block Data
  2731. @table @asis
  2732. @item @emph{Description}:
  2733. This partitions a 3D matrix along the X axis.
  2734. @item @emph{Prototype}:
  2735. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2736. @end table
  2737. @node Codelets and Tasks
  2738. @section Codelets and Tasks
  2739. @menu
  2740. * struct starpu_codelet:: StarPU codelet structure
  2741. * struct starpu_task:: StarPU task structure
  2742. * starpu_task_init:: Initialize a Task
  2743. * starpu_task_create:: Allocate and Initialize a Task
  2744. * starpu_task_deinit:: Release all the resources used by a Task
  2745. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2746. * starpu_task_wait:: Wait for the termination of a Task
  2747. * starpu_task_submit:: Submit a Task
  2748. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2749. * starpu_get_current_task:: Return the task currently executed by the worker
  2750. * starpu_display_codelet_stats:: Display statistics
  2751. @end menu
  2752. @node struct starpu_codelet
  2753. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2754. @table @asis
  2755. @item @emph{Description}:
  2756. The codelet structure describes a kernel that is possibly implemented on various
  2757. targets. For compatibility, make sure to initialize the whole structure to zero.
  2758. @item @emph{Fields}:
  2759. @table @asis
  2760. @item @code{where}:
  2761. Indicates which types of processing units are able to execute the codelet.
  2762. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2763. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2764. indicates that it is only available on Cell SPUs.
  2765. @item @code{cpu_func} (optional):
  2766. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2767. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2768. argument being the array of data managed by the data management library, and
  2769. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2770. field of the @code{starpu_task} structure.
  2771. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2772. the @code{where} field, it must be non-null otherwise.
  2773. @item @code{cuda_func} (optional):
  2774. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2775. must be a host-function written in the CUDA runtime API}. Its prototype must
  2776. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2777. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2778. field, it must be non-null otherwise.
  2779. @item @code{opencl_func} (optional):
  2780. Is a function pointer to the OpenCL implementation of the codelet. Its
  2781. prototype must be:
  2782. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2783. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2784. @code{where} field, it must be non-null otherwise.
  2785. @item @code{gordon_func} (optional):
  2786. This is the index of the Cell SPU implementation within the Gordon library.
  2787. See Gordon documentation for more details on how to register a kernel and
  2788. retrieve its index.
  2789. @item @code{nbuffers}:
  2790. Specifies the number of arguments taken by the codelet. These arguments are
  2791. managed by the DSM and are accessed from the @code{void *buffers[]}
  2792. array. The constant argument passed with the @code{cl_arg} field of the
  2793. @code{starpu_task} structure is not counted in this number. This value should
  2794. not be above @code{STARPU_NMAXBUFS}.
  2795. @item @code{model} (optional):
  2796. This is a pointer to the task duration performance model associated to this
  2797. codelet. This optional field is ignored when set to @code{NULL}.
  2798. TODO
  2799. @item @code{power_model} (optional):
  2800. This is a pointer to the task power consumption performance model associated
  2801. to this codelet. This optional field is ignored when set to @code{NULL}.
  2802. In the case of parallel codelets, this has to account for all processing units
  2803. involved in the parallel execution.
  2804. TODO
  2805. @end table
  2806. @end table
  2807. @node struct starpu_task
  2808. @subsection @code{struct starpu_task} -- StarPU task structure
  2809. @table @asis
  2810. @item @emph{Description}:
  2811. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2812. processing units managed by StarPU. It instantiates a codelet. It can either be
  2813. allocated dynamically with the @code{starpu_task_create} method, or declared
  2814. statically. In the latter case, the programmer has to zero the
  2815. @code{starpu_task} structure and to fill the different fields properly. The
  2816. indicated default values correspond to the configuration of a task allocated
  2817. with @code{starpu_task_create}.
  2818. @item @emph{Fields}:
  2819. @table @asis
  2820. @item @code{cl}:
  2821. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2822. describes where the kernel should be executed, and supplies the appropriate
  2823. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2824. such empty tasks can be useful for synchronization purposes.
  2825. @item @code{buffers}:
  2826. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2827. different pieces of data accessed by the task, and how they should be accessed.
  2828. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2829. @code{handle} field specifies the handle of the piece of data, and the
  2830. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2831. of entries in this array must be specified in the @code{nbuffers} field of the
  2832. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2833. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2834. option when configuring StarPU.
  2835. @item @code{cl_arg} (optional) (default = NULL):
  2836. This pointer is passed to the codelet through the second argument
  2837. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2838. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2839. argument.
  2840. @item @code{cl_arg_size} (optional, Cell specific):
  2841. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2842. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2843. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2844. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2845. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2846. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2847. codelets, where the @code{cl_arg} pointer is given as such.
  2848. @item @code{callback_func} (optional) (default = @code{NULL}):
  2849. This is a function pointer of prototype @code{void (*f)(void *)} which
  2850. specifies a possible callback. If this pointer is non-null, the callback
  2851. function is executed @emph{on the host} after the execution of the task. The
  2852. callback is passed the value contained in the @code{callback_arg} field. No
  2853. callback is executed if the field is set to @code{NULL}.
  2854. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2855. This is the pointer passed to the callback function. This field is ignored if
  2856. the @code{callback_func} is set to @code{NULL}.
  2857. @item @code{use_tag} (optional) (default = 0):
  2858. If set, this flag indicates that the task should be associated with the tag
  2859. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2860. with the task and to express task dependencies easily.
  2861. @item @code{tag_id}:
  2862. This fields contains the tag associated to the task if the @code{use_tag} field
  2863. was set, it is ignored otherwise.
  2864. @item @code{synchronous}:
  2865. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2866. returns only when the task has been executed (or if no worker is able to
  2867. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2868. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2869. This field indicates a level of priority for the task. This is an integer value
  2870. that must be set between the return values of the
  2871. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2872. and that of the @code{starpu_sched_get_max_priority} for the most important
  2873. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2874. are provided for convenience and respectively returns value of
  2875. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2876. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2877. order to allow static task initialization. Scheduling strategies that take
  2878. priorities into account can use this parameter to take better scheduling
  2879. decisions, but the scheduling policy may also ignore it.
  2880. @item @code{execute_on_a_specific_worker} (default = 0):
  2881. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2882. task to the worker specified by the @code{workerid} field.
  2883. @item @code{workerid} (optional):
  2884. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2885. which is the identifier of the worker that should process this task (as
  2886. returned by @code{starpu_worker_get_id}). This field is ignored if
  2887. @code{execute_on_a_specific_worker} field is set to 0.
  2888. @item @code{detach} (optional) (default = 1):
  2889. If this flag is set, it is not possible to synchronize with the task
  2890. by the means of @code{starpu_task_wait} later on. Internal data structures
  2891. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2892. flag is not set.
  2893. @item @code{destroy} (optional) (default = 1):
  2894. If this flag is set, the task structure will automatically be freed, either
  2895. after the execution of the callback if the task is detached, or during
  2896. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2897. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2898. called explicitly. Setting this flag for a statically allocated task structure
  2899. will result in undefined behaviour.
  2900. @item @code{predicted} (output field):
  2901. Predicted duration of the task. This field is only set if the scheduling
  2902. strategy used performance models.
  2903. @end table
  2904. @end table
  2905. @node starpu_task_init
  2906. @subsection @code{starpu_task_init} -- Initialize a Task
  2907. @table @asis
  2908. @item @emph{Description}:
  2909. Initialize a task structure with default values. This function is implicitly
  2910. called by @code{starpu_task_create}. By default, tasks initialized with
  2911. @code{starpu_task_init} must be deinitialized explicitly with
  2912. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2913. constant @code{STARPU_TASK_INITIALIZER}.
  2914. @item @emph{Prototype}:
  2915. @code{void starpu_task_init(struct starpu_task *task);}
  2916. @end table
  2917. @node starpu_task_create
  2918. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2919. @table @asis
  2920. @item @emph{Description}:
  2921. Allocate a task structure and initialize it with default values. Tasks
  2922. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2923. task is terminated. If the destroy flag is explicitly unset, the resources used
  2924. by the task are freed by calling
  2925. @code{starpu_task_destroy}.
  2926. @item @emph{Prototype}:
  2927. @code{struct starpu_task *starpu_task_create(void);}
  2928. @end table
  2929. @node starpu_task_deinit
  2930. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2931. @table @asis
  2932. @item @emph{Description}:
  2933. Release all the structures automatically allocated to execute the task. This is
  2934. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2935. freed. This should be used for statically allocated tasks for instance.
  2936. @item @emph{Prototype}:
  2937. @code{void starpu_task_deinit(struct starpu_task *task);}
  2938. @end table
  2939. @node starpu_task_destroy
  2940. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2941. @table @asis
  2942. @item @emph{Description}:
  2943. Free the resource allocated during @code{starpu_task_create}. This function can be
  2944. called automatically after the execution of a task by setting the
  2945. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2946. Calling this function on a statically allocated task results in an undefined
  2947. behaviour.
  2948. @item @emph{Prototype}:
  2949. @code{void starpu_task_destroy(struct starpu_task *task);}
  2950. @end table
  2951. @node starpu_task_wait
  2952. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2953. @table @asis
  2954. @item @emph{Description}:
  2955. This function blocks until the task has been executed. It is not possible to
  2956. synchronize with a task more than once. It is not possible to wait for
  2957. synchronous or detached tasks.
  2958. @item @emph{Return value}:
  2959. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2960. indicates that the specified task was either synchronous or detached.
  2961. @item @emph{Prototype}:
  2962. @code{int starpu_task_wait(struct starpu_task *task);}
  2963. @end table
  2964. @node starpu_task_submit
  2965. @subsection @code{starpu_task_submit} -- Submit a Task
  2966. @table @asis
  2967. @item @emph{Description}:
  2968. This function submits a task to StarPU. Calling this function does
  2969. not mean that the task will be executed immediately as there can be data or task
  2970. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2971. scheduling this task with respect to such dependencies.
  2972. This function returns immediately if the @code{synchronous} field of the
  2973. @code{starpu_task} structure was set to 0, and block until the termination of
  2974. the task otherwise. It is also possible to synchronize the application with
  2975. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2976. function for instance.
  2977. @item @emph{Return value}:
  2978. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2979. means that there is no worker able to process this task (e.g. there is no GPU
  2980. available and this task is only implemented for CUDA devices).
  2981. @item @emph{Prototype}:
  2982. @code{int starpu_task_submit(struct starpu_task *task);}
  2983. @end table
  2984. @node starpu_task_wait_for_all
  2985. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2986. @table @asis
  2987. @item @emph{Description}:
  2988. This function blocks until all the tasks that were submitted are terminated.
  2989. @item @emph{Prototype}:
  2990. @code{void starpu_task_wait_for_all(void);}
  2991. @end table
  2992. @node starpu_get_current_task
  2993. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2994. @table @asis
  2995. @item @emph{Description}:
  2996. This function returns the task currently executed by the worker, or
  2997. NULL if it is called either from a thread that is not a task or simply
  2998. because there is no task being executed at the moment.
  2999. @item @emph{Prototype}:
  3000. @code{struct starpu_task *starpu_get_current_task(void);}
  3001. @end table
  3002. @node starpu_display_codelet_stats
  3003. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  3004. @table @asis
  3005. @item @emph{Description}:
  3006. Output on @code{stderr} some statistics on the codelet @code{cl}.
  3007. @item @emph{Prototype}:
  3008. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  3009. @end table
  3010. @c Callbacks : what can we put in callbacks ?
  3011. @node Explicit Dependencies
  3012. @section Explicit Dependencies
  3013. @menu
  3014. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3015. * starpu_tag_t:: Task logical identifier
  3016. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3017. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3018. * starpu_tag_wait:: Block until a Tag is terminated
  3019. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3020. * starpu_tag_remove:: Destroy a Tag
  3021. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3022. @end menu
  3023. @node starpu_task_declare_deps_array
  3024. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3025. @table @asis
  3026. @item @emph{Description}:
  3027. Declare task dependencies between a @code{task} and an array of tasks of length
  3028. @code{ndeps}. This function must be called prior to the submission of the task,
  3029. but it may called after the submission or the execution of the tasks in the
  3030. array provided the tasks are still valid (ie. they were not automatically
  3031. destroyed). Calling this function on a task that was already submitted or with
  3032. an entry of @code{task_array} that is not a valid task anymore results in an
  3033. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  3034. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3035. same task, in this case, the dependencies are added. It is possible to have
  3036. redundancy in the task dependencies.
  3037. @item @emph{Prototype}:
  3038. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  3039. @end table
  3040. @node starpu_tag_t
  3041. @subsection @code{starpu_tag_t} -- Task logical identifier
  3042. @table @asis
  3043. @item @emph{Description}:
  3044. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3045. dependencies between tasks by the means of those tags. To do so, fill the
  3046. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3047. be arbitrary) and set the @code{use_tag} field to 1.
  3048. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3049. not be started until the tasks which holds the declared dependency tags are
  3050. completed.
  3051. @end table
  3052. @node starpu_tag_declare_deps
  3053. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3054. @table @asis
  3055. @item @emph{Description}:
  3056. Specify the dependencies of the task identified by tag @code{id}. The first
  3057. argument specifies the tag which is configured, the second argument gives the
  3058. number of tag(s) on which @code{id} depends. The following arguments are the
  3059. tags which have to be terminated to unlock the task.
  3060. This function must be called before the associated task is submitted to StarPU
  3061. with @code{starpu_task_submit}.
  3062. @item @emph{Remark}
  3063. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3064. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3065. typically need to be explicitly casted. Using the
  3066. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3067. @item @emph{Prototype}:
  3068. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3069. @item @emph{Example}:
  3070. @cartouche
  3071. @example
  3072. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3073. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3074. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3075. @end example
  3076. @end cartouche
  3077. @end table
  3078. @node starpu_tag_declare_deps_array
  3079. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3080. @table @asis
  3081. @item @emph{Description}:
  3082. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3083. does not take a variable number of arguments but an array of tags of size
  3084. @code{ndeps}.
  3085. @item @emph{Prototype}:
  3086. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3087. @item @emph{Example}:
  3088. @cartouche
  3089. @example
  3090. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3091. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3092. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3093. @end example
  3094. @end cartouche
  3095. @end table
  3096. @node starpu_tag_wait
  3097. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3098. @table @asis
  3099. @item @emph{Description}:
  3100. This function blocks until the task associated to tag @code{id} has been
  3101. executed. This is a blocking call which must therefore not be called within
  3102. tasks or callbacks, but only from the application directly. It is possible to
  3103. synchronize with the same tag multiple times, as long as the
  3104. @code{starpu_tag_remove} function is not called. Note that it is still
  3105. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3106. data structure was freed (e.g. if the @code{destroy} flag of the
  3107. @code{starpu_task} was enabled).
  3108. @item @emph{Prototype}:
  3109. @code{void starpu_tag_wait(starpu_tag_t id);}
  3110. @end table
  3111. @node starpu_tag_wait_array
  3112. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3113. @table @asis
  3114. @item @emph{Description}:
  3115. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3116. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3117. terminated.
  3118. @item @emph{Prototype}:
  3119. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3120. @end table
  3121. @node starpu_tag_remove
  3122. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3123. @table @asis
  3124. @item @emph{Description}:
  3125. This function releases the resources associated to tag @code{id}. It can be
  3126. called once the corresponding task has been executed and when there is
  3127. no other tag that depend on this tag anymore.
  3128. @item @emph{Prototype}:
  3129. @code{void starpu_tag_remove(starpu_tag_t id);}
  3130. @end table
  3131. @node starpu_tag_notify_from_apps
  3132. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3133. @table @asis
  3134. @item @emph{Description}:
  3135. This function explicitly unlocks tag @code{id}. It may be useful in the
  3136. case of applications which execute part of their computation outside StarPU
  3137. tasks (e.g. third-party libraries). It is also provided as a
  3138. convenient tool for the programmer, for instance to entirely construct the task
  3139. DAG before actually giving StarPU the opportunity to execute the tasks.
  3140. @item @emph{Prototype}:
  3141. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3142. @end table
  3143. @node Implicit Data Dependencies
  3144. @section Implicit Data Dependencies
  3145. @menu
  3146. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3147. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3148. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3149. @end menu
  3150. In this section, we describe how StarPU makes it possible to insert implicit
  3151. task dependencies in order to enforce sequential data consistency. When this
  3152. data consistency is enabled on a specific data handle, any data access will
  3153. appear as sequentially consistent from the application. For instance, if the
  3154. application submits two tasks that access the same piece of data in read-only
  3155. mode, and then a third task that access it in write mode, dependencies will be
  3156. added between the two first tasks and the third one. Implicit data dependencies
  3157. are also inserted in the case of data accesses from the application.
  3158. @node starpu_data_set_default_sequential_consistency_flag
  3159. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3160. @table @asis
  3161. @item @emph{Description}:
  3162. Set the default sequential consistency flag. If a non-zero value is passed, a
  3163. sequential data consistency will be enforced for all handles registered after
  3164. this function call, otherwise it is disabled. By default, StarPU enables
  3165. sequential data consistency. It is also possible to select the data consistency
  3166. mode of a specific data handle with the
  3167. @code{starpu_data_set_sequential_consistency_flag} function.
  3168. @item @emph{Prototype}:
  3169. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3170. @end table
  3171. @node starpu_data_get_default_sequential_consistency_flag
  3172. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3173. @table @asis
  3174. @item @emph{Description}:
  3175. This function returns the current default sequential consistency flag.
  3176. @item @emph{Prototype}:
  3177. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3178. @end table
  3179. @node starpu_data_set_sequential_consistency_flag
  3180. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3181. @table @asis
  3182. @item @emph{Description}:
  3183. Select the data consistency mode associated to a data handle. The consistency
  3184. mode set using this function has the priority over the default mode which can
  3185. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3186. @item @emph{Prototype}:
  3187. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3188. @end table
  3189. @node Performance Model API
  3190. @section Performance Model API
  3191. @menu
  3192. * starpu_load_history_debug::
  3193. * starpu_perfmodel_debugfilepath::
  3194. * starpu_perfmodel_get_arch_name::
  3195. * starpu_force_bus_sampling::
  3196. @end menu
  3197. @node starpu_load_history_debug
  3198. @subsection @code{starpu_load_history_debug}
  3199. @table @asis
  3200. @item @emph{Description}:
  3201. TODO
  3202. @item @emph{Prototype}:
  3203. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3204. @end table
  3205. @node starpu_perfmodel_debugfilepath
  3206. @subsection @code{starpu_perfmodel_debugfilepath}
  3207. @table @asis
  3208. @item @emph{Description}:
  3209. TODO
  3210. @item @emph{Prototype}:
  3211. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3212. @end table
  3213. @node starpu_perfmodel_get_arch_name
  3214. @subsection @code{starpu_perfmodel_get_arch_name}
  3215. @table @asis
  3216. @item @emph{Description}:
  3217. TODO
  3218. @item @emph{Prototype}:
  3219. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3220. @end table
  3221. @node starpu_force_bus_sampling
  3222. @subsection @code{starpu_force_bus_sampling}
  3223. @table @asis
  3224. @item @emph{Description}:
  3225. This forces sampling the bus performance model again.
  3226. @item @emph{Prototype}:
  3227. @code{void starpu_force_bus_sampling(void);}
  3228. @end table
  3229. @node Profiling API
  3230. @section Profiling API
  3231. @menu
  3232. * starpu_profiling_status_set:: starpu_profiling_status_set
  3233. * starpu_profiling_status_get:: starpu_profiling_status_get
  3234. * struct starpu_task_profiling_info:: task profiling information
  3235. * struct starpu_worker_profiling_info:: worker profiling information
  3236. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3237. * struct starpu_bus_profiling_info:: bus profiling information
  3238. * starpu_bus_get_count::
  3239. * starpu_bus_get_id::
  3240. * starpu_bus_get_src::
  3241. * starpu_bus_get_dst::
  3242. * starpu_timing_timespec_delay_us::
  3243. * starpu_timing_timespec_to_us::
  3244. * starpu_bus_profiling_helper_display_summary::
  3245. * starpu_worker_profiling_helper_display_summary::
  3246. @end menu
  3247. @node starpu_profiling_status_set
  3248. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3249. @table @asis
  3250. @item @emph{Description}:
  3251. Thie function sets the profiling status. Profiling is activated by passing
  3252. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3253. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3254. resets all profiling measurements. When profiling is enabled, the
  3255. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3256. to a valid @code{struct starpu_task_profiling_info} structure containing
  3257. information about the execution of the task.
  3258. @item @emph{Return value}:
  3259. Negative return values indicate an error, otherwise the previous status is
  3260. returned.
  3261. @item @emph{Prototype}:
  3262. @code{int starpu_profiling_status_set(int status);}
  3263. @end table
  3264. @node starpu_profiling_status_get
  3265. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3266. @table @asis
  3267. @item @emph{Description}:
  3268. Return the current profiling status or a negative value in case there was an error.
  3269. @item @emph{Prototype}:
  3270. @code{int starpu_profiling_status_get(void);}
  3271. @end table
  3272. @node struct starpu_task_profiling_info
  3273. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3274. @table @asis
  3275. @item @emph{Description}:
  3276. This structure contains information about the execution of a task. It is
  3277. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3278. structure if profiling was enabled.
  3279. @item @emph{Fields}:
  3280. @table @asis
  3281. @item @code{submit_time}:
  3282. Date of task submission (relative to the initialization of StarPU).
  3283. @item @code{start_time}:
  3284. Date of task execution beginning (relative to the initialization of StarPU).
  3285. @item @code{end_time}:
  3286. Date of task execution termination (relative to the initialization of StarPU).
  3287. @item @code{workerid}:
  3288. Identifier of the worker which has executed the task.
  3289. @end table
  3290. @end table
  3291. @node struct starpu_worker_profiling_info
  3292. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3293. @table @asis
  3294. @item @emph{Description}:
  3295. This structure contains the profiling information associated to a worker.
  3296. @item @emph{Fields}:
  3297. @table @asis
  3298. @item @code{start_time}:
  3299. Starting date for the reported profiling measurements.
  3300. @item @code{total_time}:
  3301. Duration of the profiling measurement interval.
  3302. @item @code{executing_time}:
  3303. Time spent by the worker to execute tasks during the profiling measurement interval.
  3304. @item @code{sleeping_time}:
  3305. Time spent idling by the worker during the profiling measurement interval.
  3306. @item @code{executed_tasks}:
  3307. Number of tasks executed by the worker during the profiling measurement interval.
  3308. @end table
  3309. @end table
  3310. @node starpu_worker_get_profiling_info
  3311. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3312. @table @asis
  3313. @item @emph{Description}:
  3314. Get the profiling info associated to the worker identified by @code{workerid},
  3315. and reset the profiling measurements. If the @code{worker_info} argument is
  3316. NULL, only reset the counters associated to worker @code{workerid}.
  3317. @item @emph{Return value}:
  3318. Upon successful completion, this function returns 0. Otherwise, a negative
  3319. value is returned.
  3320. @item @emph{Prototype}:
  3321. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3322. @end table
  3323. @node struct starpu_bus_profiling_info
  3324. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3325. @table @asis
  3326. @item @emph{Description}:
  3327. TODO
  3328. @item @emph{Fields}:
  3329. @table @asis
  3330. @item @code{start_time}:
  3331. TODO
  3332. @item @code{total_time}:
  3333. TODO
  3334. @item @code{transferred_bytes}:
  3335. TODO
  3336. @item @code{transfer_count}:
  3337. TODO
  3338. @end table
  3339. @end table
  3340. @node starpu_bus_get_count
  3341. @subsection @code{starpu_bus_get_count}
  3342. @table @asis
  3343. @item @emph{Description}:
  3344. TODO
  3345. @item @emph{Prototype}:
  3346. @code{int starpu_bus_get_count(void);}
  3347. @end table
  3348. @node starpu_bus_get_id
  3349. @subsection @code{starpu_bus_get_id}
  3350. @table @asis
  3351. @item @emph{Description}:
  3352. TODO
  3353. @item @emph{Prototype}:
  3354. @code{int starpu_bus_get_id(int src, int dst);}
  3355. @end table
  3356. @node starpu_bus_get_src
  3357. @subsection @code{starpu_bus_get_src}
  3358. @table @asis
  3359. @item @emph{Description}:
  3360. TODO
  3361. @item @emph{Prototype}:
  3362. @code{int starpu_bus_get_src(int busid);}
  3363. @end table
  3364. @node starpu_bus_get_dst
  3365. @subsection @code{starpu_bus_get_dst}
  3366. @table @asis
  3367. @item @emph{Description}:
  3368. TODO
  3369. @item @emph{Prototype}:
  3370. @code{int starpu_bus_get_dst(int busid);}
  3371. @end table
  3372. @node starpu_timing_timespec_delay_us
  3373. @subsection @code{starpu_timing_timespec_delay_us}
  3374. @table @asis
  3375. @item @emph{Description}:
  3376. TODO
  3377. @item @emph{Prototype}:
  3378. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3379. @end table
  3380. @node starpu_timing_timespec_to_us
  3381. @subsection @code{starpu_timing_timespec_to_us}
  3382. @table @asis
  3383. @item @emph{Description}:
  3384. TODO
  3385. @item @emph{Prototype}:
  3386. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3387. @end table
  3388. @node starpu_bus_profiling_helper_display_summary
  3389. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3390. @table @asis
  3391. @item @emph{Description}:
  3392. TODO
  3393. @item @emph{Prototype}:
  3394. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3395. @end table
  3396. @node starpu_worker_profiling_helper_display_summary
  3397. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3398. @table @asis
  3399. @item @emph{Description}:
  3400. TODO
  3401. @item @emph{Prototype}:
  3402. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3403. @end table
  3404. @node CUDA extensions
  3405. @section CUDA extensions
  3406. @c void starpu_malloc(float **A, size_t dim);
  3407. @menu
  3408. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3409. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3410. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3411. @end menu
  3412. @node starpu_cuda_get_local_stream
  3413. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3414. @table @asis
  3415. @item @emph{Description}:
  3416. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3417. function is only provided for convenience so that programmers can easily use
  3418. asynchronous operations within codelets without having to create a stream by
  3419. hand. Note that the application is not forced to use the stream provided by
  3420. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3421. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3422. the likelihood of having all transfers overlapped.
  3423. @item @emph{Prototype}:
  3424. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3425. @end table
  3426. @node starpu_helper_cublas_init
  3427. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3428. @table @asis
  3429. @item @emph{Description}:
  3430. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3431. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3432. controlled by StarPU. This call blocks until CUBLAS has been properly
  3433. initialized on every device.
  3434. @item @emph{Prototype}:
  3435. @code{void starpu_helper_cublas_init(void);}
  3436. @end table
  3437. @node starpu_helper_cublas_shutdown
  3438. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3439. @table @asis
  3440. @item @emph{Description}:
  3441. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3442. @item @emph{Prototype}:
  3443. @code{void starpu_helper_cublas_shutdown(void);}
  3444. @end table
  3445. @node OpenCL extensions
  3446. @section OpenCL extensions
  3447. @menu
  3448. * Enabling OpenCL:: Enabling OpenCL
  3449. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3450. * Loading OpenCL kernels:: Loading OpenCL kernels
  3451. * OpenCL statistics:: Collecting statistics from OpenCL
  3452. @end menu
  3453. @node Enabling OpenCL
  3454. @subsection Enabling OpenCL
  3455. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3456. enabled by default. To enable OpenCL, you need either to disable CUDA
  3457. when configuring StarPU:
  3458. @example
  3459. % ./configure --disable-cuda
  3460. @end example
  3461. or when running applications:
  3462. @example
  3463. % STARPU_NCUDA=0 ./application
  3464. @end example
  3465. OpenCL will automatically be started on any device not yet used by
  3466. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3467. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3468. so:
  3469. @example
  3470. % STARPU_NCUDA=2 ./application
  3471. @end example
  3472. @node Compiling OpenCL kernels
  3473. @subsection Compiling OpenCL kernels
  3474. Source codes for OpenCL kernels can be stored in a file or in a
  3475. string. StarPU provides functions to build the program executable for
  3476. each available OpenCL device as a @code{cl_program} object. This
  3477. program executable can then be loaded within a specific queue as
  3478. explained in the next section. These are only helpers, Applications
  3479. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3480. use (e.g. different programs on the different OpenCL devices, for
  3481. relocation purpose for instance).
  3482. @menu
  3483. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3484. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3485. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3486. @end menu
  3487. @node starpu_opencl_load_opencl_from_file
  3488. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3489. @table @asis
  3490. @item @emph{Description}:
  3491. TODO
  3492. @item @emph{Prototype}:
  3493. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3494. @end table
  3495. @node starpu_opencl_load_opencl_from_string
  3496. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3497. @table @asis
  3498. @item @emph{Description}:
  3499. TODO
  3500. @item @emph{Prototype}:
  3501. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3502. @end table
  3503. @node starpu_opencl_unload_opencl
  3504. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3505. @table @asis
  3506. @item @emph{Description}:
  3507. TODO
  3508. @item @emph{Prototype}:
  3509. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3510. @end table
  3511. @node Loading OpenCL kernels
  3512. @subsection Loading OpenCL kernels
  3513. @menu
  3514. * starpu_opencl_load_kernel:: Loading a kernel
  3515. * starpu_opencl_relase_kernel:: Releasing a kernel
  3516. @end menu
  3517. @node starpu_opencl_load_kernel
  3518. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3519. @table @asis
  3520. @item @emph{Description}:
  3521. TODO
  3522. @item @emph{Prototype}:
  3523. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3524. }
  3525. @end table
  3526. @node starpu_opencl_relase_kernel
  3527. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3528. @table @asis
  3529. @item @emph{Description}:
  3530. TODO
  3531. @item @emph{Prototype}:
  3532. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3533. @end table
  3534. @node OpenCL statistics
  3535. @subsection OpenCL statistics
  3536. @menu
  3537. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3538. @end menu
  3539. @node starpu_opencl_collect_stats
  3540. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3541. @table @asis
  3542. @item @emph{Description}:
  3543. After termination of the kernels, the OpenCL codelet should call this function
  3544. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3545. collect statistics about the kernel execution (used cycles, consumed power).
  3546. @item @emph{Prototype}:
  3547. @code{int starpu_opencl_collect_stats(cl_event event);}
  3548. @end table
  3549. @node Cell extensions
  3550. @section Cell extensions
  3551. nothing yet.
  3552. @node Miscellaneous helpers
  3553. @section Miscellaneous helpers
  3554. @menu
  3555. * starpu_data_cpy:: Copy a data handle into another data handle
  3556. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3557. @end menu
  3558. @node starpu_data_cpy
  3559. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3560. @table @asis
  3561. @item @emph{Description}:
  3562. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3563. The @code{asynchronous} parameter indicates whether the function should
  3564. block or not. In the case of an asynchronous call, it is possible to
  3565. synchronize with the termination of this operation either by the means of
  3566. implicit dependencies (if enabled) or by calling
  3567. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3568. this callback function is executed after the handle has been copied, and it is
  3569. given the @code{callback_arg} pointer as argument.
  3570. @item @emph{Prototype}:
  3571. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3572. @end table
  3573. @node starpu_execute_on_each_worker
  3574. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3575. @table @asis
  3576. @item @emph{Description}:
  3577. When calling this method, the offloaded function specified by the first argument is
  3578. executed by every StarPU worker that may execute the function.
  3579. The second argument is passed to the offloaded function.
  3580. The last argument specifies on which types of processing units the function
  3581. should be executed. Similarly to the @code{where} field of the
  3582. @code{starpu_codelet} structure, it is possible to specify that the function
  3583. should be executed on every CUDA device and every CPU by passing
  3584. @code{STARPU_CPU|STARPU_CUDA}.
  3585. This function blocks until the function has been executed on every appropriate
  3586. processing units, so that it may not be called from a callback function for
  3587. instance.
  3588. @item @emph{Prototype}:
  3589. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3590. @end table
  3591. @c ---------------------------------------------------------------------
  3592. @c Advanced Topics
  3593. @c ---------------------------------------------------------------------
  3594. @node Advanced Topics
  3595. @chapter Advanced Topics
  3596. @menu
  3597. * Defining a new data interface::
  3598. * Defining a new scheduling policy::
  3599. @end menu
  3600. @node Defining a new data interface
  3601. @section Defining a new data interface
  3602. @menu
  3603. * struct starpu_data_interface_ops_t:: Per-interface methods
  3604. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3605. * An example of data interface:: An example of data interface
  3606. @end menu
  3607. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3608. @node struct starpu_data_interface_ops_t
  3609. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3610. @table @asis
  3611. @item @emph{Description}:
  3612. TODO describe all the different fields
  3613. @end table
  3614. @node struct starpu_data_copy_methods
  3615. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3616. @table @asis
  3617. @item @emph{Description}:
  3618. TODO describe all the different fields
  3619. @end table
  3620. @node An example of data interface
  3621. @subsection An example of data interface
  3622. @table @asis
  3623. TODO
  3624. @end table
  3625. @node Defining a new scheduling policy
  3626. @section Defining a new scheduling policy
  3627. TODO
  3628. A full example showing how to define a new scheduling policy is available in
  3629. the StarPU sources in the directory @code{examples/scheduler/}.
  3630. @menu
  3631. * struct starpu_sched_policy_s::
  3632. * starpu_worker_set_sched_condition::
  3633. * starpu_sched_set_min_priority:: Set the minimum priority level
  3634. * starpu_sched_set_max_priority:: Set the maximum priority level
  3635. * starpu_push_local_task:: Assign a task to a worker
  3636. * Source code::
  3637. @end menu
  3638. @node struct starpu_sched_policy_s
  3639. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3640. @table @asis
  3641. @item @emph{Description}:
  3642. This structure contains all the methods that implement a scheduling policy. An
  3643. application may specify which scheduling strategy in the @code{sched_policy}
  3644. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3645. function.
  3646. @item @emph{Fields}:
  3647. @table @asis
  3648. @item @code{init_sched}:
  3649. Initialize the scheduling policy.
  3650. @item @code{deinit_sched}:
  3651. Cleanup the scheduling policy.
  3652. @item @code{push_task}:
  3653. Insert a task into the scheduler.
  3654. @item @code{push_prio_task}:
  3655. Insert a priority task into the scheduler.
  3656. @item @code{push_prio_notify}:
  3657. Notify the scheduler that a task was pushed on the worker. This method is
  3658. called when a task that was explicitely assigned to a worker is scheduled. This
  3659. method therefore permits to keep the state of of the scheduler coherent even
  3660. when StarPU bypasses the scheduling strategy.
  3661. @item @code{pop_task}:
  3662. Get a task from the scheduler. The mutex associated to the worker is already
  3663. taken when this method is called. If this method is defined as @code{NULL}, the
  3664. worker will only execute tasks from its local queue. In this case, the
  3665. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3666. assign tasks to the different workers.
  3667. @item @code{pop_every_task}:
  3668. Remove all available tasks from the scheduler (tasks are chained by the means
  3669. of the prev and next fields of the starpu_task structure). The mutex associated
  3670. to the worker is already taken when this method is called.
  3671. @item @code{post_exec_hook} (optionnal):
  3672. This method is called every time a task has been executed.
  3673. @item @code{policy_name}:
  3674. Name of the policy (optionnal).
  3675. @item @code{policy_description}:
  3676. Description of the policy (optionnal).
  3677. @end table
  3678. @end table
  3679. @node starpu_worker_set_sched_condition
  3680. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3681. @table @asis
  3682. @item @emph{Description}:
  3683. When there is no available task for a worker, StarPU blocks this worker on a
  3684. condition variable. This function specifies which condition variable (and the
  3685. associated mutex) should be used to block (and to wake up) a worker. Note that
  3686. multiple workers may use the same condition variable. For instance, in the case
  3687. of a scheduling strategy with a single task queue, the same condition variable
  3688. would be used to block and wake up all workers.
  3689. The initialization method of a scheduling strategy (@code{init_sched}) must
  3690. call this function once per worker.
  3691. @item @emph{Prototype}:
  3692. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3693. @end table
  3694. @node starpu_sched_set_min_priority
  3695. @subsection @code{starpu_sched_set_min_priority}
  3696. @table @asis
  3697. @item @emph{Description}:
  3698. Defines the minimum priority level supported by the scheduling policy. The
  3699. default minimum priority level is the same as the default priority level which
  3700. is 0 by convention. The application may access that value by calling the
  3701. @code{starpu_sched_get_min_priority} function. This function should only be
  3702. called from the initialization method of the scheduling policy, and should not
  3703. be used directly from the application.
  3704. @item @emph{Prototype}:
  3705. @code{void starpu_sched_set_min_priority(int min_prio);}
  3706. @end table
  3707. @node starpu_sched_set_max_priority
  3708. @subsection @code{starpu_sched_set_max_priority}
  3709. @table @asis
  3710. @item @emph{Description}:
  3711. Defines the maximum priority level supported by the scheduling policy. The
  3712. default maximum priority level is 1. The application may access that value by
  3713. calling the @code{starpu_sched_get_max_priority} function. This function should
  3714. only be called from the initialization method of the scheduling policy, and
  3715. should not be used directly from the application.
  3716. @item @emph{Prototype}:
  3717. @code{void starpu_sched_set_min_priority(int max_prio);}
  3718. @end table
  3719. @node starpu_push_local_task
  3720. @subsection @code{starpu_push_local_task}
  3721. @table @asis
  3722. @item @emph{Description}:
  3723. The scheduling policy may put tasks directly into a worker's local queue so
  3724. that it is not always necessary to create its own queue when the local queue
  3725. is sufficient. If "back" not null, the task is put at the back of the queue
  3726. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3727. a FIFO ordering.
  3728. @item @emph{Prototype}:
  3729. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3730. @end table
  3731. @node Source code
  3732. @subsection Source code
  3733. @cartouche
  3734. @smallexample
  3735. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3736. .init_sched = init_dummy_sched,
  3737. .deinit_sched = deinit_dummy_sched,
  3738. .push_task = push_task_dummy,
  3739. .push_prio_task = NULL,
  3740. .pop_task = pop_task_dummy,
  3741. .post_exec_hook = NULL,
  3742. .pop_every_task = NULL,
  3743. .policy_name = "dummy",
  3744. .policy_description = "dummy scheduling strategy"
  3745. @};
  3746. @end smallexample
  3747. @end cartouche
  3748. @c ---------------------------------------------------------------------
  3749. @c Appendices
  3750. @c ---------------------------------------------------------------------
  3751. @c ---------------------------------------------------------------------
  3752. @c Full source code for the 'Scaling a Vector' example
  3753. @c ---------------------------------------------------------------------
  3754. @node Full source code for the 'Scaling a Vector' example
  3755. @appendix Full source code for the 'Scaling a Vector' example
  3756. @menu
  3757. * Main application::
  3758. * CPU Kernel::
  3759. * CUDA Kernel::
  3760. * OpenCL Kernel::
  3761. @end menu
  3762. @node Main application
  3763. @section Main application
  3764. @smallexample
  3765. @include vector_scal_c.texi
  3766. @end smallexample
  3767. @node CPU Kernel
  3768. @section CPU Kernel
  3769. @smallexample
  3770. @include vector_scal_cpu.texi
  3771. @end smallexample
  3772. @node CUDA Kernel
  3773. @section CUDA Kernel
  3774. @smallexample
  3775. @include vector_scal_cuda.texi
  3776. @end smallexample
  3777. @node OpenCL Kernel
  3778. @section OpenCL Kernel
  3779. @menu
  3780. * Invoking the kernel::
  3781. * Source of the kernel::
  3782. @end menu
  3783. @node Invoking the kernel
  3784. @subsection Invoking the kernel
  3785. @smallexample
  3786. @include vector_scal_opencl.texi
  3787. @end smallexample
  3788. @node Source of the kernel
  3789. @subsection Source of the kernel
  3790. @smallexample
  3791. @include vector_scal_opencl_codelet.texi
  3792. @end smallexample
  3793. @c
  3794. @c Indices.
  3795. @c
  3796. @node Function Index
  3797. @unnumbered Function Index
  3798. @printindex fn
  3799. @bye