shadow3d.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. * Copyright (C) 2010 Mehdi Juhoor
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * This examplifies the use of the 3D matrix shadow filters: a source "matrix" of
  19. * NX*NY*NZ elements (plus SHADOW wrap-around elements) is partitioned into
  20. * matrices with some shadowing, and these are copied into a destination
  21. * "matrix2" of
  22. * NRPARTSX*NPARTSY*NPARTSZ*((NX/NPARTSX+2*SHADOWX)*(NY/NPARTSY+2*SHADOWY)*(NZ/NPARTSZ+2*SHADOWZ))
  23. * elements, partitioned in the traditionnal way, thus showing how shadowing
  24. * shows up.
  25. */
  26. #include <starpu.h>
  27. /* Shadow width */
  28. #define SHADOWX 2
  29. #define SHADOWY 3
  30. #define SHADOWZ 4
  31. #define NX 12
  32. #define NY 9
  33. #define NZ 6
  34. #define PARTSX 4
  35. #define PARTSY 3
  36. #define PARTSZ 2
  37. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  38. void cpu_func(void *buffers[], void *cl_arg)
  39. {
  40. (void)cl_arg;
  41. /* length of the shadowed source matrix */
  42. unsigned ldy = STARPU_BLOCK_GET_LDY(buffers[0]);
  43. unsigned ldz = STARPU_BLOCK_GET_LDZ(buffers[0]);
  44. unsigned x = STARPU_BLOCK_GET_NX(buffers[0]);
  45. unsigned y = STARPU_BLOCK_GET_NY(buffers[0]);
  46. unsigned z = STARPU_BLOCK_GET_NZ(buffers[0]);
  47. /* local copy of the shadowed source matrix pointer */
  48. int *val = (int *)STARPU_BLOCK_GET_PTR(buffers[0]);
  49. /* length of the destination matrix */
  50. unsigned ldy2 = STARPU_BLOCK_GET_LDY(buffers[1]);
  51. unsigned ldz2 = STARPU_BLOCK_GET_LDZ(buffers[1]);
  52. unsigned x2 = STARPU_BLOCK_GET_NX(buffers[1]);
  53. unsigned y2 = STARPU_BLOCK_GET_NY(buffers[1]);
  54. unsigned z2 = STARPU_BLOCK_GET_NZ(buffers[1]);
  55. /* local copy of the destination matrix pointer */
  56. int *val2 = (int *)STARPU_BLOCK_GET_PTR(buffers[1]);
  57. unsigned i, j, k;
  58. /* If things go right, sizes should match */
  59. STARPU_ASSERT(x == x2);
  60. STARPU_ASSERT(y == y2);
  61. STARPU_ASSERT(z == z2);
  62. for (k = 0; k < z; k++)
  63. for (j = 0; j < y; j++)
  64. for (i = 0; i < x; i++)
  65. val2[k*ldz2+j*ldy2+i] = val[k*ldz+j*ldy+i];
  66. }
  67. #ifdef STARPU_USE_CUDA
  68. void cuda_func(void *buffers[], void *cl_arg)
  69. {
  70. (void)cl_arg;
  71. /* length of the shadowed source matrix */
  72. unsigned ldy = STARPU_BLOCK_GET_LDY(buffers[0]);
  73. unsigned ldz = STARPU_BLOCK_GET_LDZ(buffers[0]);
  74. unsigned x = STARPU_BLOCK_GET_NX(buffers[0]);
  75. unsigned y = STARPU_BLOCK_GET_NY(buffers[0]);
  76. unsigned z = STARPU_BLOCK_GET_NZ(buffers[0]);
  77. /* local copy of the shadowed source matrix pointer */
  78. int *val = (int *)STARPU_BLOCK_GET_PTR(buffers[0]);
  79. /* length of the destination matrix */
  80. unsigned ldy2 = STARPU_BLOCK_GET_LDY(buffers[1]);
  81. unsigned ldz2 = STARPU_BLOCK_GET_LDZ(buffers[1]);
  82. unsigned x2 = STARPU_BLOCK_GET_NX(buffers[1]);
  83. unsigned y2 = STARPU_BLOCK_GET_NY(buffers[1]);
  84. unsigned z2 = STARPU_BLOCK_GET_NZ(buffers[1]);
  85. /* local copy of the destination matrix pointer */
  86. int *val2 = (int *)STARPU_BLOCK_GET_PTR(buffers[1]);
  87. unsigned k;
  88. cudaError_t cures;
  89. /* If things go right, sizes should match */
  90. STARPU_ASSERT(x == x2);
  91. STARPU_ASSERT(y == y2);
  92. STARPU_ASSERT(z == z2);
  93. for (k = 0; k < z; k++)
  94. {
  95. cures = cudaMemcpy2DAsync(val2+k*ldz2, ldy2*sizeof(*val2), val+k*ldz, ldy*sizeof(*val),
  96. x*sizeof(*val), y, cudaMemcpyDeviceToDevice, starpu_cuda_get_local_stream());
  97. STARPU_ASSERT(!cures);
  98. }
  99. }
  100. #endif
  101. int main(void)
  102. {
  103. unsigned i, j, k, l, m, n;
  104. int matrix[NZ + 2*SHADOWZ][NY + 2*SHADOWY][NX + 2*SHADOWX];
  105. int matrix2[NZ + PARTSZ*2*SHADOWZ][NY + PARTSY*2*SHADOWY][NX + PARTSX*2*SHADOWX];
  106. starpu_data_handle_t handle, handle2;
  107. int ret;
  108. struct starpu_codelet cl =
  109. {
  110. .cpu_funcs = {cpu_func},
  111. .cpu_funcs_name = {"cpu_func"},
  112. #ifdef STARPU_USE_CUDA
  113. .cuda_funcs = {cuda_func},
  114. .cuda_flags = {STARPU_CUDA_ASYNC},
  115. #endif
  116. .nbuffers = 2,
  117. .modes = {STARPU_R, STARPU_W}
  118. };
  119. memset(matrix, -1, sizeof(matrix));
  120. for(k=1 ; k<=NZ ; k++)
  121. for(j=1 ; j<=NY ; j++)
  122. for(i=1 ; i<=NX ; i++)
  123. matrix[SHADOWZ+k-1][SHADOWY+j-1][SHADOWX+i-1] = i+j+k;
  124. /* Copy planes */
  125. for (k = SHADOWZ ; k<SHADOWZ+NZ ; k++)
  126. for (j = SHADOWY ; j<SHADOWY+NY ; j++)
  127. for(i=0 ; i<SHADOWX ; i++)
  128. {
  129. matrix[k][j][i] = matrix[k][j][i+NX];
  130. matrix[k][j][SHADOWX+NX+i] = matrix[k][j][SHADOWX+i];
  131. }
  132. for(k=SHADOWZ ; k<SHADOWZ+NZ ; k++)
  133. for(j=0 ; j<SHADOWY ; j++)
  134. for(i=SHADOWX ; i<SHADOWX+NX ; i++)
  135. {
  136. matrix[k][j][i] = matrix[k][j+NY][i];
  137. matrix[k][SHADOWY+NY+j][i] = matrix[k][SHADOWY+j][i];
  138. }
  139. for(k=0 ; k<SHADOWZ ; k++)
  140. for(j=SHADOWY ; j<SHADOWY+NY ; j++)
  141. for(i=SHADOWX ; i<SHADOWX+NX ; i++)
  142. {
  143. matrix[k][j][i] = matrix[k+NZ][j][i];
  144. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j][i];
  145. }
  146. /* Copy borders */
  147. for (k = SHADOWZ ; k<SHADOWZ+NZ ; k++)
  148. for(j=0 ; j<SHADOWY ; j++)
  149. for(i=0 ; i<SHADOWX ; i++)
  150. {
  151. matrix[k][j][i] = matrix[k][j+NY][i+NX];
  152. matrix[k][SHADOWY+NY+j][i] = matrix[k][SHADOWY+j][i+NX];
  153. matrix[k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[k][SHADOWY+j][SHADOWX+i];
  154. matrix[k][j][SHADOWX+NX+i] = matrix[k][j+NY][SHADOWX+i];
  155. }
  156. for(k=0 ; k<SHADOWZ ; k++)
  157. for (j = SHADOWY ; j<SHADOWY+NY ; j++)
  158. for(i=0 ; i<SHADOWX ; i++)
  159. {
  160. matrix[k][j][i] = matrix[k+NZ][j][i+NX];
  161. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j][i+NX];
  162. matrix[SHADOWZ+NZ+k][j][SHADOWX+NX+i] = matrix[SHADOWZ+k][j][SHADOWX+i];
  163. matrix[k][j][SHADOWX+NX+i] = matrix[k+NZ][j][SHADOWX+i];
  164. }
  165. for(k=0 ; k<SHADOWZ ; k++)
  166. for(j=0 ; j<SHADOWY ; j++)
  167. for(i=SHADOWX ; i<SHADOWX+NX ; i++)
  168. {
  169. matrix[k][j][i] = matrix[k+NZ][j+NY][i];
  170. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j+NY][i];
  171. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][i] = matrix[SHADOWZ+k][SHADOWY+j][i];
  172. matrix[k][SHADOWY+NY+j][i] = matrix[k+NZ][SHADOWY+j][i];
  173. }
  174. /* Copy corners */
  175. for(k=0 ; k<SHADOWZ ; k++)
  176. for(j=0 ; j<SHADOWY ; j++)
  177. for(i=0 ; i<SHADOWX ; i++)
  178. {
  179. matrix[k][j][i] = matrix[k+NZ][j+NY][i+NX];
  180. matrix[k][j][SHADOWX+NX+i] = matrix[k+NZ][j+NY][SHADOWX+i];
  181. matrix[k][SHADOWY+NY+j][i] = matrix[k+NZ][SHADOWY+j][i+NX];
  182. matrix[k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[k+NZ][SHADOWY+j][SHADOWX+i];
  183. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j+NY][i+NX];
  184. matrix[SHADOWZ+NZ+k][j][SHADOWX+NX+i] = matrix[SHADOWZ+k][j+NY][SHADOWX+i];
  185. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][i] = matrix[SHADOWZ+k][SHADOWY+j][i+NX];
  186. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[SHADOWZ+k][SHADOWY+j][SHADOWX+i];
  187. }
  188. FPRINTF(stderr,"IN Matrix:\n");
  189. for(k=0 ; k<NZ + 2*SHADOWZ ; k++)
  190. {
  191. for(j=0 ; j<NY + 2*SHADOWY ; j++)
  192. {
  193. for(i=0 ; i<NX + 2*SHADOWX ; i++)
  194. FPRINTF(stderr, "%5d ", matrix[k][j][i]);
  195. FPRINTF(stderr,"\n");
  196. }
  197. FPRINTF(stderr,"\n\n");
  198. }
  199. FPRINTF(stderr,"\n");
  200. ret = starpu_init(NULL);
  201. if (ret == -ENODEV)
  202. exit(77);
  203. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  204. /* Declare source matrix to StarPU */
  205. starpu_block_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix,
  206. NX + 2*SHADOWX, (NX + 2*SHADOWX) * (NY + 2*SHADOWY),
  207. NX + 2*SHADOWX, NY + 2*SHADOWY, NZ + 2*SHADOWZ,
  208. sizeof(matrix[0][0][0]));
  209. /* Declare destination matrix to StarPU */
  210. starpu_block_data_register(&handle2, STARPU_MAIN_RAM, (uintptr_t)matrix2,
  211. NX + PARTSX*2*SHADOWX, (NX + PARTSX*2*SHADOWX) * (NY + PARTSY*2*SHADOWY),
  212. NX + PARTSX*2*SHADOWX, NY + PARTSY*2*SHADOWY, NZ + PARTSZ*2*SHADOWZ,
  213. sizeof(matrix2[0][0][0]));
  214. /* Partition the source matrix in PARTSZ*PARTSY*PARTSX sub-matrices with shadows */
  215. /* NOTE: the resulting handles should only be used in read-only mode,
  216. * as StarPU will not know how the overlapping parts would have to be
  217. * combined. */
  218. struct starpu_data_filter fz =
  219. {
  220. .filter_func = starpu_block_filter_depth_block_shadow,
  221. .nchildren = PARTSZ,
  222. .filter_arg_ptr = (void*)(uintptr_t) SHADOWZ /* Shadow width */
  223. };
  224. struct starpu_data_filter fy =
  225. {
  226. .filter_func = starpu_block_filter_vertical_block_shadow,
  227. .nchildren = PARTSY,
  228. .filter_arg_ptr = (void*)(uintptr_t) SHADOWY /* Shadow width */
  229. };
  230. struct starpu_data_filter fx =
  231. {
  232. .filter_func = starpu_block_filter_block_shadow,
  233. .nchildren = PARTSX,
  234. .filter_arg_ptr = (void*)(uintptr_t) SHADOWX /* Shadow width */
  235. };
  236. starpu_data_map_filters(handle, 3, &fz, &fy, &fx);
  237. /* Partition the destination matrix in PARTSZ*PARTSY*PARTSX sub-matrices */
  238. struct starpu_data_filter fz2 =
  239. {
  240. .filter_func = starpu_block_filter_depth_block,
  241. .nchildren = PARTSZ,
  242. };
  243. struct starpu_data_filter fy2 =
  244. {
  245. .filter_func = starpu_block_filter_vertical_block,
  246. .nchildren = PARTSY,
  247. };
  248. struct starpu_data_filter fx2 =
  249. {
  250. .filter_func = starpu_block_filter_block,
  251. .nchildren = PARTSX,
  252. };
  253. starpu_data_map_filters(handle2, 3, &fz2, &fy2, &fx2);
  254. /* Submit a task on each sub-matrix */
  255. for (k=0; k<PARTSZ; k++)
  256. {
  257. for (j=0; j<PARTSY; j++)
  258. {
  259. for (i=0; i<PARTSX; i++)
  260. {
  261. starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 3, k, j, i);
  262. starpu_data_handle_t sub_handle2 = starpu_data_get_sub_data(handle2, 3, k, j, i);
  263. struct starpu_task *task = starpu_task_create();
  264. task->handles[0] = sub_handle;
  265. task->handles[1] = sub_handle2;
  266. task->cl = &cl;
  267. task->synchronous = 1;
  268. ret = starpu_task_submit(task);
  269. if (ret == -ENODEV) goto enodev;
  270. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  271. }
  272. }
  273. }
  274. starpu_data_unpartition(handle, STARPU_MAIN_RAM);
  275. starpu_data_unpartition(handle2, STARPU_MAIN_RAM);
  276. starpu_data_unregister(handle);
  277. starpu_data_unregister(handle2);
  278. starpu_shutdown();
  279. FPRINTF(stderr,"OUT Matrix:\n");
  280. for(k=0 ; k<NZ + PARTSZ*2*SHADOWZ ; k++)
  281. {
  282. for(j=0 ; j<NY + PARTSY*2*SHADOWY ; j++)
  283. {
  284. for(i=0 ; i<NX + PARTSX*2*SHADOWX ; i++)
  285. {
  286. FPRINTF(stderr, "%5d ", matrix2[k][j][i]);
  287. }
  288. FPRINTF(stderr,"\n");
  289. }
  290. FPRINTF(stderr,"\n\n");
  291. }
  292. FPRINTF(stderr,"\n");
  293. for(k=0 ; k<PARTSZ ; k++)
  294. for(j=0 ; j<PARTSY ; j++)
  295. for(i=0 ; i<PARTSX ; i++)
  296. for (n=0 ; n<NZ/PARTSZ + 2*SHADOWZ ; n++)
  297. for (m=0 ; m<NY/PARTSY + 2*SHADOWY ; m++)
  298. for (l=0 ; l<NX/PARTSX + 2*SHADOWX ; l++)
  299. STARPU_ASSERT(matrix2[k*(NZ/PARTSZ+2*SHADOWZ)+n][j*(NY/PARTSY+2*SHADOWY)+m][i*(NX/PARTSX+2*SHADOWX)+l] ==
  300. matrix[k*(NZ/PARTSZ)+n][j*(NY/PARTSY)+m][i*(NX/PARTSX)+l]);
  301. return 0;
  302. enodev:
  303. FPRINTF(stderr, "WARNING: No one can execute this task\n");
  304. starpu_shutdown();
  305. return 77;
  306. }