123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- /* StarPU --- Runtime system for heterogeneous multicore architectures.
- *
- * Copyright (C) 2010-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
- *
- * StarPU is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at
- * your option) any later version.
- *
- * StarPU is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- *
- * See the GNU Lesser General Public License in COPYING.LGPL for more details.
- */
- /*
- * This examplifies how to use partitioning filters. We here just split a 4D
- * matrix into 4D slices (along the X axis), and run a dumb kernel on them.
- */
- #include <starpu.h>
- #define NX 6
- #define NY 5
- #define NZ 4
- #define NT 3
- #define PARTS 2
- #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
- void cpu_func(void *buffers[], void *cl_arg)
- {
- int i, j, k, l;
- int *factor = (int *) cl_arg;
- int *val = (int *)STARPU_TENSOR_GET_PTR(buffers[0]);
- int nx = (int)STARPU_TENSOR_GET_NX(buffers[0]);
- int ny = (int)STARPU_TENSOR_GET_NY(buffers[0]);
- int nz = (int)STARPU_TENSOR_GET_NZ(buffers[0]);
- int nt = (int)STARPU_TENSOR_GET_NT(buffers[0]);
- unsigned ldy = STARPU_TENSOR_GET_LDY(buffers[0]);
- unsigned ldz = STARPU_TENSOR_GET_LDZ(buffers[0]);
- unsigned ldt = STARPU_TENSOR_GET_LDT(buffers[0]);
- for(l=0; l<nt ; l++)
- {
- for(k=0; k<nz ; k++)
- {
- for(j=0; j<ny ; j++)
- {
- for(i=0; i<nx ; i++)
- val[(l*ldt)+(k*ldz)+(j*ldy)+i] = *factor;
- }
- }
- }
-
- }
- void print_tensor(int *tensor, int nx, int ny, int nz, int nt, unsigned ldy, unsigned ldz, unsigned ldt)
- {
- int i, j, k, l;
- FPRINTF(stderr, "tensor=%p nx=%d ny=%d nz=%d nt=%d ldy=%u ldz=%u ldt=%u\n", tensor, nx, ny, nz, nt, ldy, ldz, ldt);
- for(l=0 ; l<nt ; l++)
- {
- for(k=0 ; k<nz ; k++)
- {
- for(j=0 ; j<ny ; j++)
- {
- for(i=0 ; i<nx ; i++)
- {
- FPRINTF(stderr, "%2d ", tensor[(l*ldt)+(k*ldz)+(j*ldy)+i]);
- }
- FPRINTF(stderr,"\n");
- }
- FPRINTF(stderr,"\n");
- }
- FPRINTF(stderr,"\n");
- }
- FPRINTF(stderr,"\n");
- }
- void print_data(starpu_data_handle_t tensor_handle)
- {
- int *tensor = (int *)starpu_tensor_get_local_ptr(tensor_handle);
- int nx = starpu_tensor_get_nx(tensor_handle);
- int ny = starpu_tensor_get_ny(tensor_handle);
- int nz = starpu_tensor_get_nz(tensor_handle);
- int nt = starpu_tensor_get_nt(tensor_handle);
- unsigned ldy = starpu_tensor_get_local_ldy(tensor_handle);
- unsigned ldz = starpu_tensor_get_local_ldz(tensor_handle);
- unsigned ldt = starpu_tensor_get_local_ldt(tensor_handle);
- print_tensor(tensor, nx, ny, nz, nt, ldy, ldz, ldt);
- }
- int main(void)
- {
- int *tensor,n=0;
- int i, j, k, l;
- int ret;
- tensor = (int*)malloc(NX*NY*NZ*NT*sizeof(tensor[0]));
- assert(tensor);
- for(l=0 ; l<NT ; l++)
- {
- for(k=0 ; k<NZ ; k++)
- {
- for(j=0 ; j<NY ; j++)
- {
- for(i=0 ; i<NX ; i++)
- {
- tensor[(l*NX*NY*NZ)+(k*NX*NY)+(j*NX)+i] = n++;
- }
- }
- }
- }
- starpu_data_handle_t handle;
- struct starpu_codelet cl =
- {
- .cpu_funcs = {cpu_func},
- .cpu_funcs_name = {"cpu_func"},
- .nbuffers = 1,
- .modes = {STARPU_RW},
- .name = "tensor_scal"
- };
- ret = starpu_init(NULL);
- if (ret == -ENODEV)
- return 77;
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
-
- /* Declare data to StarPU */
- starpu_tensor_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)tensor, NX, NX*NY, NX*NY*NZ, NX, NY, NZ, NT, sizeof(int));
- FPRINTF(stderr, "IN Tensor\n");
- print_data(handle);
- /* Partition the tensor in PARTS sub-tensors */
- struct starpu_data_filter f =
- {
- .filter_func = starpu_tensor_filter_block,
- .nchildren = PARTS
- };
- starpu_data_partition(handle, &f);
- FPRINTF(stderr,"Nb of partitions : %d\n",starpu_data_get_nb_children(handle));
- for(i=0 ; i<starpu_data_get_nb_children(handle) ; i++)
- {
- starpu_data_handle_t stensor = starpu_data_get_sub_data(handle, 1, i);
- FPRINTF(stderr, "Sub tensor %d\n", i);
- print_data(stensor);
- }
- /* Submit a task on each sub-tensor */
- for(i=0 ; i<starpu_data_get_nb_children(handle) ; i++)
- {
- int multiplier=i;
- struct starpu_task *task = starpu_task_create();
- FPRINTF(stderr,"Dealing with sub-tensor %d\n", i);
- task->cl = &cl;
- task->synchronous = 1;
- task->callback_func = NULL;
- task->handles[0] = starpu_data_get_sub_data(handle, 1, i);
- task->cl_arg = &multiplier;
- task->cl_arg_size = sizeof(multiplier);
- ret = starpu_task_submit(task);
- if (ret)
- {
- FPRINTF(stderr, "Error when submitting task\n");
- exit(ret);
- }
- }
- /* Unpartition the data, unregister it from StarPU and shutdown */
- starpu_data_unpartition(handle, STARPU_MAIN_RAM);
- print_data(handle);
- starpu_data_unregister(handle);
- /* Print result tensor */
- FPRINTF(stderr, "OUT Tensor\n");
- print_tensor(tensor, NX, NY, NZ, NT, NX, NX*NY, NX*NY*NZ);
- free(tensor);
- starpu_shutdown();
- return 0;
- }
|