ftensor.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * This examplifies how to use partitioning filters. We here just split a 4D
  18. * matrix into 4D slices (along the X axis), and run a dumb kernel on them.
  19. */
  20. #include <starpu.h>
  21. #define NX 6
  22. #define NY 5
  23. #define NZ 4
  24. #define NT 3
  25. #define PARTS 2
  26. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  27. void cpu_func(void *buffers[], void *cl_arg)
  28. {
  29. int i, j, k, l;
  30. int *factor = (int *) cl_arg;
  31. int *val = (int *)STARPU_TENSOR_GET_PTR(buffers[0]);
  32. int nx = (int)STARPU_TENSOR_GET_NX(buffers[0]);
  33. int ny = (int)STARPU_TENSOR_GET_NY(buffers[0]);
  34. int nz = (int)STARPU_TENSOR_GET_NZ(buffers[0]);
  35. int nt = (int)STARPU_TENSOR_GET_NT(buffers[0]);
  36. unsigned ldy = STARPU_TENSOR_GET_LDY(buffers[0]);
  37. unsigned ldz = STARPU_TENSOR_GET_LDZ(buffers[0]);
  38. unsigned ldt = STARPU_TENSOR_GET_LDT(buffers[0]);
  39. for(l=0; l<nt ; l++)
  40. {
  41. for(k=0; k<nz ; k++)
  42. {
  43. for(j=0; j<ny ; j++)
  44. {
  45. for(i=0; i<nx ; i++)
  46. val[(l*ldt)+(k*ldz)+(j*ldy)+i] = *factor;
  47. }
  48. }
  49. }
  50. }
  51. void print_tensor(int *tensor, int nx, int ny, int nz, int nt, unsigned ldy, unsigned ldz, unsigned ldt)
  52. {
  53. int i, j, k, l;
  54. FPRINTF(stderr, "tensor=%p nx=%d ny=%d nz=%d nt=%d ldy=%u ldz=%u ldt=%u\n", tensor, nx, ny, nz, nt, ldy, ldz, ldt);
  55. for(l=0 ; l<nt ; l++)
  56. {
  57. for(k=0 ; k<nz ; k++)
  58. {
  59. for(j=0 ; j<ny ; j++)
  60. {
  61. for(i=0 ; i<nx ; i++)
  62. {
  63. FPRINTF(stderr, "%2d ", tensor[(l*ldt)+(k*ldz)+(j*ldy)+i]);
  64. }
  65. FPRINTF(stderr,"\n");
  66. }
  67. FPRINTF(stderr,"\n");
  68. }
  69. FPRINTF(stderr,"\n");
  70. }
  71. FPRINTF(stderr,"\n");
  72. }
  73. void print_data(starpu_data_handle_t tensor_handle)
  74. {
  75. int *tensor = (int *)starpu_tensor_get_local_ptr(tensor_handle);
  76. int nx = starpu_tensor_get_nx(tensor_handle);
  77. int ny = starpu_tensor_get_ny(tensor_handle);
  78. int nz = starpu_tensor_get_nz(tensor_handle);
  79. int nt = starpu_tensor_get_nt(tensor_handle);
  80. unsigned ldy = starpu_tensor_get_local_ldy(tensor_handle);
  81. unsigned ldz = starpu_tensor_get_local_ldz(tensor_handle);
  82. unsigned ldt = starpu_tensor_get_local_ldt(tensor_handle);
  83. print_tensor(tensor, nx, ny, nz, nt, ldy, ldz, ldt);
  84. }
  85. int main(void)
  86. {
  87. int *tensor,n=0;
  88. int i, j, k, l;
  89. int ret;
  90. tensor = (int*)malloc(NX*NY*NZ*NT*sizeof(tensor[0]));
  91. assert(tensor);
  92. for(l=0 ; l<NT ; l++)
  93. {
  94. for(k=0 ; k<NZ ; k++)
  95. {
  96. for(j=0 ; j<NY ; j++)
  97. {
  98. for(i=0 ; i<NX ; i++)
  99. {
  100. tensor[(l*NX*NY*NZ)+(k*NX*NY)+(j*NX)+i] = n++;
  101. }
  102. }
  103. }
  104. }
  105. starpu_data_handle_t handle;
  106. struct starpu_codelet cl =
  107. {
  108. .cpu_funcs = {cpu_func},
  109. .cpu_funcs_name = {"cpu_func"},
  110. .nbuffers = 1,
  111. .modes = {STARPU_RW},
  112. .name = "tensor_scal"
  113. };
  114. ret = starpu_init(NULL);
  115. if (ret == -ENODEV)
  116. return 77;
  117. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  118. /* Declare data to StarPU */
  119. starpu_tensor_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)tensor, NX, NX*NY, NX*NY*NZ, NX, NY, NZ, NT, sizeof(int));
  120. FPRINTF(stderr, "IN Tensor\n");
  121. print_data(handle);
  122. /* Partition the tensor in PARTS sub-tensors */
  123. struct starpu_data_filter f =
  124. {
  125. .filter_func = starpu_tensor_filter_block,
  126. .nchildren = PARTS
  127. };
  128. starpu_data_partition(handle, &f);
  129. FPRINTF(stderr,"Nb of partitions : %d\n",starpu_data_get_nb_children(handle));
  130. for(i=0 ; i<starpu_data_get_nb_children(handle) ; i++)
  131. {
  132. starpu_data_handle_t stensor = starpu_data_get_sub_data(handle, 1, i);
  133. FPRINTF(stderr, "Sub tensor %d\n", i);
  134. print_data(stensor);
  135. }
  136. /* Submit a task on each sub-tensor */
  137. for(i=0 ; i<starpu_data_get_nb_children(handle) ; i++)
  138. {
  139. int multiplier=i;
  140. struct starpu_task *task = starpu_task_create();
  141. FPRINTF(stderr,"Dealing with sub-tensor %d\n", i);
  142. task->cl = &cl;
  143. task->synchronous = 1;
  144. task->callback_func = NULL;
  145. task->handles[0] = starpu_data_get_sub_data(handle, 1, i);
  146. task->cl_arg = &multiplier;
  147. task->cl_arg_size = sizeof(multiplier);
  148. ret = starpu_task_submit(task);
  149. if (ret)
  150. {
  151. FPRINTF(stderr, "Error when submitting task\n");
  152. exit(ret);
  153. }
  154. }
  155. /* Unpartition the data, unregister it from StarPU and shutdown */
  156. starpu_data_unpartition(handle, STARPU_MAIN_RAM);
  157. print_data(handle);
  158. starpu_data_unregister(handle);
  159. /* Print result tensor */
  160. FPRINTF(stderr, "OUT Tensor\n");
  161. print_tensor(tensor, NX, NY, NZ, NT, NX, NX*NY, NX*NY*NZ);
  162. free(tensor);
  163. starpu_shutdown();
  164. return 0;
  165. }