123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- /* StarPU --- Runtime system for heterogeneous multicore architectures.
- *
- * Copyright (C) 2010-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
- *
- * StarPU is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at
- * your option) any later version.
- *
- * StarPU is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- *
- * See the GNU Lesser General Public License in COPYING.LGPL for more details.
- */
- /* First draw a series of coordinates, then count how many fall inside the
- * circle quarter */
- #include "SobolQRNG/sobol_gpu.h"
- #include "pi.h"
- #define MAXNBLOCKS 128
- #define MAXTHREADSPERBLOCK 256
- static __global__ void monte_carlo(TYPE *random_numbers_x, TYPE *random_numbers_y,
- unsigned n, unsigned *output_cnt)
- {
- __shared__ unsigned scnt[MAXTHREADSPERBLOCK];
- /* Do we have a successful shot ? */
- const int tid = threadIdx.x + blockIdx.x*blockDim.x;
- const int nthreads = gridDim.x * blockDim.x;
- /* Blank the shared mem buffer */
- if (threadIdx.x < MAXTHREADSPERBLOCK)
- scnt[threadIdx.x] = 0;
- __syncthreads();
- int ind;
- for (ind = tid; ind < n; ind += nthreads)
- {
- TYPE x = random_numbers_x[ind];
- TYPE y = random_numbers_y[ind];
- TYPE dist = (x*x + y*y);
- unsigned success = (dist <= 1.0f)?1:0;
- scnt[threadIdx.x] += success;
- }
- __syncthreads();
- /* Perform a reduction to compute the sum on each thread within that block */
- /* NB: We assume that the number of threads per block is a power of 2 ! */
- unsigned s;
- for (s = blockDim.x/2; s!=0; s>>=1)
- {
- if (threadIdx.x < s)
- scnt[threadIdx.x] += scnt[threadIdx.x + s];
- __syncthreads();
- }
- /* report the number of successful shots in the block */
- if (threadIdx.x == 0)
- output_cnt[blockIdx.x] = scnt[0];
- __syncthreads();
- }
- static __global__ void sum_per_block_cnt(unsigned *output_cnt, unsigned *cnt)
- {
- __shared__ unsigned accumulator[MAXNBLOCKS];
- unsigned i;
- /* Load the values from global mem */
- for (i = 0; i < blockDim.x; i++)
- accumulator[i] = output_cnt[i];
- __syncthreads();
- /* Perform a reduction in shared memory */
- unsigned s;
- for (s = blockDim.x/2; s!=0; s>>=1)
- {
- if (threadIdx.x < s)
- accumulator[threadIdx.x] += accumulator[threadIdx.x + s];
- __syncthreads();
- }
- /* Save the result in global memory */
- if (threadIdx.x == 0)
- *cnt = accumulator[0];
- }
- extern "C" void cuda_kernel(void *descr[], void *cl_arg)
- {
- cudaError_t cures;
- unsigned *directions = (unsigned *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned long long *nshot_per_task = (unsigned long long *) cl_arg;
- unsigned nx = *nshot_per_task;
- /* Generate Random numbers */
- float *random_numbers;
- cudaMalloc((void **)&random_numbers, 2*nx*sizeof(float));
- STARPU_ASSERT(random_numbers);
- sobolGPU(2*nx/n_dimensions, n_dimensions, directions, random_numbers);
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- TYPE *random_numbers_x = &random_numbers[0];
- TYPE *random_numbers_y = &random_numbers[nx];
- unsigned *cnt = (unsigned *)STARPU_VECTOR_GET_PTR(descr[1]);
- /* How many blocks do we use ? */
- unsigned nblocks = 128; // TODO
- STARPU_ASSERT(nblocks <= MAXNBLOCKS);
- unsigned *per_block_cnt;
- cudaMalloc((void **)&per_block_cnt, nblocks*sizeof(unsigned));
- STARPU_ASSERT((nx % nblocks) == 0);
- /* How many threads per block ? At most 256, but no more threads than
- * there are entries to process per block. */
- unsigned nthread_per_block = STARPU_MIN(MAXTHREADSPERBLOCK, (nx / nblocks));
- /* each entry of per_block_cnt contains the number of successful shots
- * in the corresponding block. */
- monte_carlo<<<nblocks, nthread_per_block, 0, starpu_cuda_get_local_stream()>>>(random_numbers_x, random_numbers_y, nx, per_block_cnt);
- cures = cudaGetLastError();
- if (cures != cudaSuccess) STARPU_CUDA_REPORT_ERROR(cures);
- /* Note that we do not synchronize between kernel calls because there is an implicit serialization */
- /* compute the total number of successful shots by adding the elements
- * of the per_block_cnt array */
- sum_per_block_cnt<<<1, nblocks, 0, starpu_cuda_get_local_stream()>>>(per_block_cnt, cnt);
- cures = cudaGetLastError();
- if (cures != cudaSuccess) STARPU_CUDA_REPORT_ERROR(cures);
- cures = cudaStreamSynchronize(starpu_cuda_get_local_stream());
- if (cures)
- STARPU_CUDA_REPORT_ERROR(cures);
- cudaFree(per_block_cnt);
- cudaFree(random_numbers);
- }
|