| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612 | /* dposvxx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dposvxx_(char *fact, char *uplo, integer *n, integer *	nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 	char *equed, doublereal *s, doublereal *b, integer *ldb, doublereal *	x, integer *ldx, doublereal *rcond, doublereal *rpvgrw, doublereal *	berr, integer *n_err_bnds__, doublereal *err_bnds_norm__, doublereal *	err_bnds_comp__, integer *nparams, doublereal *params, doublereal *	work, integer *iwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 	    x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1;    doublereal d__1, d__2;    /* Local variables */    integer j;    doublereal amax, smin, smax;    extern doublereal _starpu_dla_porpvgrw__(char *, integer *, doublereal *, integer 	    *, doublereal *, integer *, doublereal *, ftnlen);    extern logical _starpu_lsame_(char *, char *);    doublereal scond;    logical equil, rcequ;    extern doublereal _starpu_dlamch_(char *);    logical nofact;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    doublereal bignum;    integer infequ;    extern /* Subroutine */ int _starpu_dlaqsy_(char *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, char *), _starpu_dpotrf_(char *, integer *, doublereal *, integer 	    *, integer *);    doublereal smlnum;    extern /* Subroutine */ int _starpu_dpotrs_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl2_(integer *, integer *, doublereal *, doublereal *, integer *), _starpu_dpoequb_(integer *, doublereal *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), _starpu_dporfsx_(	    char *, char *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 	     integer *, integer *);/*     -- LAPACK driver routine (version 3.2)                          -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- November 2008                                                -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*     Purpose *//*     ======= *//*     DPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T *//*     to compute the solution to a double precision system of linear equations *//*     A * X = B, where A is an N-by-N symmetric positive definite matrix *//*     and X and B are N-by-NRHS matrices. *//*     If requested, both normwise and maximum componentwise error bounds *//*     are returned. DPOSVXX will return a solution with a tiny *//*     guaranteed error (O(eps) where eps is the working machine *//*     precision) unless the matrix is very ill-conditioned, in which *//*     case a warning is returned. Relevant condition numbers also are *//*     calculated and returned. *//*     DPOSVXX accepts user-provided factorizations and equilibration *//*     factors; see the definitions of the FACT and EQUED options. *//*     Solving with refinement and using a factorization from a previous *//*     DPOSVXX call will also produce a solution with either O(eps) *//*     errors or warnings, but we cannot make that claim for general *//*     user-provided factorizations and equilibration factors if they *//*     differ from what DPOSVXX would itself produce. *//*     Description *//*     =========== *//*     The following steps are performed: *//*     1. If FACT = 'E', double precision scaling factors are computed to equilibrate *//*     the system: *//*       diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B *//*     Whether or not the system will be equilibrated depends on the *//*     scaling of the matrix A, but if equilibration is used, A is *//*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. *//*     2. If FACT = 'N' or 'E', the Cholesky decomposition is used to *//*     factor the matrix A (after equilibration if FACT = 'E') as *//*        A = U**T* U,  if UPLO = 'U', or *//*        A = L * L**T,  if UPLO = 'L', *//*     where U is an upper triangular matrix and L is a lower triangular *//*     matrix. *//*     3. If the leading i-by-i principal minor is not positive definite, *//*     then the routine returns with INFO = i. Otherwise, the factored *//*     form of A is used to estimate the condition number of the matrix *//*     A (see argument RCOND).  If the reciprocal of the condition number *//*     is less than machine precision, the routine still goes on to solve *//*     for X and compute error bounds as described below. *//*     4. The system of equations is solved for X using the factored form *//*     of A. *//*     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), *//*     the routine will use iterative refinement to try to get a small *//*     error and error bounds.  Refinement calculates the residual to at *//*     least twice the working precision. *//*     6. If equilibration was used, the matrix X is premultiplied by *//*     diag(S) so that it solves the original system before *//*     equilibration. *//*     Arguments *//*     ========= *//*     Some optional parameters are bundled in the PARAMS array.  These *//*     settings determine how refinement is performed, but often the *//*     defaults are acceptable.  If the defaults are acceptable, users *//*     can pass NPARAMS = 0 which prevents the source code from accessing *//*     the PARAMS argument. *//*     FACT    (input) CHARACTER*1 *//*     Specifies whether or not the factored form of the matrix A is *//*     supplied on entry, and if not, whether the matrix A should be *//*     equilibrated before it is factored. *//*       = 'F':  On entry, AF contains the factored form of A. *//*               If EQUED is not 'N', the matrix A has been *//*               equilibrated with scaling factors given by S. *//*               A and AF are not modified. *//*       = 'N':  The matrix A will be copied to AF and factored. *//*       = 'E':  The matrix A will be equilibrated if necessary, then *//*               copied to AF and factored. *//*     UPLO    (input) CHARACTER*1 *//*       = 'U':  Upper triangle of A is stored; *//*       = 'L':  Lower triangle of A is stored. *//*     N       (input) INTEGER *//*     The number of linear equations, i.e., the order of the *//*     matrix A.  N >= 0. *//*     NRHS    (input) INTEGER *//*     The number of right hand sides, i.e., the number of columns *//*     of the matrices B and X.  NRHS >= 0. *//*     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*     On entry, the symmetric matrix A, except if FACT = 'F' and EQUED = *//*     'Y', then A must contain the equilibrated matrix *//*     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper *//*     triangular part of A contains the upper triangular part of the *//*     matrix A, and the strictly lower triangular part of A is not *//*     referenced.  If UPLO = 'L', the leading N-by-N lower triangular *//*     part of A contains the lower triangular part of the matrix A, and *//*     the strictly upper triangular part of A is not referenced.  A is *//*     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED = *//*     'N' on exit. *//*     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by *//*     diag(S)*A*diag(S). *//*     LDA     (input) INTEGER *//*     The leading dimension of the array A.  LDA >= max(1,N). *//*     AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N) *//*     If FACT = 'F', then AF is an input argument and on entry *//*     contains the triangular factor U or L from the Cholesky *//*     factorization A = U**T*U or A = L*L**T, in the same storage *//*     format as A.  If EQUED .ne. 'N', then AF is the factored *//*     form of the equilibrated matrix diag(S)*A*diag(S). *//*     If FACT = 'N', then AF is an output argument and on exit *//*     returns the triangular factor U or L from the Cholesky *//*     factorization A = U**T*U or A = L*L**T of the original *//*     matrix A. *//*     If FACT = 'E', then AF is an output argument and on exit *//*     returns the triangular factor U or L from the Cholesky *//*     factorization A = U**T*U or A = L*L**T of the equilibrated *//*     matrix A (see the description of A for the form of the *//*     equilibrated matrix). *//*     LDAF    (input) INTEGER *//*     The leading dimension of the array AF.  LDAF >= max(1,N). *//*     EQUED   (input or output) CHARACTER*1 *//*     Specifies the form of equilibration that was done. *//*       = 'N':  No equilibration (always true if FACT = 'N'). *//*       = 'Y':  Both row and column equilibration, i.e., A has been *//*               replaced by diag(S) * A * diag(S). *//*     EQUED is an input argument if FACT = 'F'; otherwise, it is an *//*     output argument. *//*     S       (input or output) DOUBLE PRECISION array, dimension (N) *//*     The row scale factors for A.  If EQUED = 'Y', A is multiplied on *//*     the left and right by diag(S).  S is an input argument if FACT = *//*     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED *//*     = 'Y', each element of S must be positive.  If S is output, each *//*     element of S is a power of the radix. If S is input, each element *//*     of S should be a power of the radix to ensure a reliable solution *//*     and error estimates. Scaling by powers of the radix does not cause *//*     rounding errors unless the result underflows or overflows. *//*     Rounding errors during scaling lead to refining with a matrix that *//*     is not equivalent to the input matrix, producing error estimates *//*     that may not be reliable. *//*     B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*     On entry, the N-by-NRHS right hand side matrix B. *//*     On exit, *//*     if EQUED = 'N', B is not modified; *//*     if EQUED = 'Y', B is overwritten by diag(S)*B; *//*     LDB     (input) INTEGER *//*     The leading dimension of the array B.  LDB >= max(1,N). *//*     X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*     If INFO = 0, the N-by-NRHS solution matrix X to the original *//*     system of equations.  Note that A and B are modified on exit if *//*     EQUED .ne. 'N', and the solution to the equilibrated system is *//*     inv(diag(S))*X. *//*     LDX     (input) INTEGER *//*     The leading dimension of the array X.  LDX >= max(1,N). *//*     RCOND   (output) DOUBLE PRECISION *//*     Reciprocal scaled condition number.  This is an estimate of the *//*     reciprocal Skeel condition number of the matrix A after *//*     equilibration (if done).  If this is less than the machine *//*     precision (in particular, if it is zero), the matrix is singular *//*     to working precision.  Note that the error may still be small even *//*     if this number is very small and the matrix appears ill- *//*     conditioned. *//*     RPVGRW  (output) DOUBLE PRECISION *//*     Reciprocal pivot growth.  On exit, this contains the reciprocal *//*     pivot growth factor norm(A)/norm(U). The "max absolute element" *//*     norm is used.  If this is much less than 1, then the stability of *//*     the LU factorization of the (equilibrated) matrix A could be poor. *//*     This also means that the solution X, estimated condition numbers, *//*     and error bounds could be unreliable. If factorization fails with *//*     0<INFO<=N, then this contains the reciprocal pivot growth factor *//*     for the leading INFO columns of A. *//*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*     Componentwise relative backward error.  This is the *//*     componentwise relative backward error of each solution vector X(j) *//*     (i.e., the smallest relative change in any element of A or B that *//*     makes X(j) an exact solution). *//*     N_ERR_BNDS (input) INTEGER *//*     Number of error bounds to return for each right hand side *//*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and *//*     ERR_BNDS_COMP below. *//*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) *//*     For each right-hand side, this array contains information about *//*     various error bounds and condition numbers corresponding to the *//*     normwise relative error, which is defined as follows: *//*     Normwise relative error in the ith solution vector: *//*             max_j (abs(XTRUE(j,i) - X(j,i))) *//*            ------------------------------ *//*                  max_j abs(X(j,i)) *//*     The array is indexed by the type of error information as described *//*     below. There currently are up to three pieces of information *//*     returned. *//*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith *//*     right-hand side. *//*     The second index in ERR_BNDS_NORM(:,err) contains the following *//*     three fields: *//*     err = 1 "Trust/don't trust" boolean. Trust the answer if the *//*              reciprocal condition number is less than the threshold *//*              sqrt(n) * dlamch('Epsilon'). *//*     err = 2 "Guaranteed" error bound: The estimated forward error, *//*              almost certainly within a factor of 10 of the true error *//*              so long as the next entry is greater than the threshold *//*              sqrt(n) * dlamch('Epsilon'). This error bound should only *//*              be trusted if the previous boolean is true. *//*     err = 3  Reciprocal condition number: Estimated normwise *//*              reciprocal condition number.  Compared with the threshold *//*              sqrt(n) * dlamch('Epsilon') to determine if the error *//*              estimate is "guaranteed". These reciprocal condition *//*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *//*              appropriately scaled matrix Z. *//*              Let Z = S*A, where S scales each row by a power of the *//*              radix so all absolute row sums of Z are approximately 1. *//*     See Lapack Working Note 165 for further details and extra *//*     cautions. *//*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) *//*     For each right-hand side, this array contains information about *//*     various error bounds and condition numbers corresponding to the *//*     componentwise relative error, which is defined as follows: *//*     Componentwise relative error in the ith solution vector: *//*                    abs(XTRUE(j,i) - X(j,i)) *//*             max_j ---------------------- *//*                         abs(X(j,i)) *//*     The array is indexed by the right-hand side i (on which the *//*     componentwise relative error depends), and the type of error *//*     information as described below. There currently are up to three *//*     pieces of information returned for each right-hand side. If *//*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then *//*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most *//*     the first (:,N_ERR_BNDS) entries are returned. *//*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith *//*     right-hand side. *//*     The second index in ERR_BNDS_COMP(:,err) contains the following *//*     three fields: *//*     err = 1 "Trust/don't trust" boolean. Trust the answer if the *//*              reciprocal condition number is less than the threshold *//*              sqrt(n) * dlamch('Epsilon'). *//*     err = 2 "Guaranteed" error bound: The estimated forward error, *//*              almost certainly within a factor of 10 of the true error *//*              so long as the next entry is greater than the threshold *//*              sqrt(n) * dlamch('Epsilon'). This error bound should only *//*              be trusted if the previous boolean is true. *//*     err = 3  Reciprocal condition number: Estimated componentwise *//*              reciprocal condition number.  Compared with the threshold *//*              sqrt(n) * dlamch('Epsilon') to determine if the error *//*              estimate is "guaranteed". These reciprocal condition *//*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *//*              appropriately scaled matrix Z. *//*              Let Z = S*(A*diag(x)), where x is the solution for the *//*              current right-hand side and S scales each row of *//*              A*diag(x) by a power of the radix so all absolute row *//*              sums of Z are approximately 1. *//*     See Lapack Working Note 165 for further details and extra *//*     cautions. *//*     NPARAMS (input) INTEGER *//*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the *//*     PARAMS array is never referenced and default values are used. *//*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS *//*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then *//*     that entry will be filled with default value used for that *//*     parameter.  Only positions up to NPARAMS are accessed; defaults *//*     are used for higher-numbered parameters. *//*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *//*            refinement or not. *//*         Default: 1.0D+0 *//*            = 0.0 : No refinement is performed, and no error bounds are *//*                    computed. *//*            = 1.0 : Use the extra-precise refinement algorithm. *//*              (other values are reserved for future use) *//*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual *//*            computations allowed for refinement. *//*         Default: 10 *//*         Aggressive: Set to 100 to permit convergence using approximate *//*                     factorizations or factorizations other than LU. If *//*                     the factorization uses a technique other than *//*                     Gaussian elimination, the guarantees in *//*                     err_bnds_norm and err_bnds_comp may no longer be *//*                     trustworthy. *//*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code *//*            will attempt to find a solution with small componentwise *//*            relative error in the double-precision algorithm.  Positive *//*            is true, 0.0 is false. *//*         Default: 1.0 (attempt componentwise convergence) *//*     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) *//*     IWORK   (workspace) INTEGER array, dimension (N) *//*     INFO    (output) INTEGER *//*       = 0:  Successful exit. The solution to every right-hand side is *//*         guaranteed. *//*       < 0:  If INFO = -i, the i-th argument had an illegal value *//*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization *//*         has been completed, but the factor U is exactly singular, so *//*         the solution and error bounds could not be computed. RCOND = 0 *//*         is returned. *//*       = N+J: The solution corresponding to the Jth right-hand side is *//*         not guaranteed. The solutions corresponding to other right- *//*         hand sides K with K > J may not be guaranteed as well, but *//*         only the first such right-hand side is reported. If a small *//*         componentwise error is not requested (PARAMS(3) = 0.0) then *//*         the Jth right-hand side is the first with a normwise error *//*         bound that is not guaranteed (the smallest J such *//*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) *//*         the Jth right-hand side is the first with either a normwise or *//*         componentwise error bound that is not guaranteed (the smallest *//*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or *//*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of *//*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information *//*         about all of the right-hand sides check ERR_BNDS_NORM or *//*         ERR_BNDS_COMP. *//*     ================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    err_bnds_comp_dim1 = *nrhs;    err_bnds_comp_offset = 1 + err_bnds_comp_dim1;    err_bnds_comp__ -= err_bnds_comp_offset;    err_bnds_norm_dim1 = *nrhs;    err_bnds_norm_offset = 1 + err_bnds_norm_dim1;    err_bnds_norm__ -= err_bnds_norm_offset;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    af_dim1 = *ldaf;    af_offset = 1 + af_dim1;    af -= af_offset;    --s;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --berr;    --params;    --work;    --iwork;    /* Function Body */    *info = 0;    nofact = _starpu_lsame_(fact, "N");    equil = _starpu_lsame_(fact, "E");    smlnum = _starpu_dlamch_("Safe minimum");    bignum = 1. / smlnum;    if (nofact || equil) {	*(unsigned char *)equed = 'N';	rcequ = FALSE_;    } else {	rcequ = _starpu_lsame_(equed, "Y");    }/*     Default is failure.  If an input parameter is wrong or *//*     factorization fails, make everything look horrible.  Only the *//*     pivot growth is set here, the rest is initialized in DPORFSX. */    *rpvgrw = 0.;/*     Test the input parameters.  PARAMS is not tested until DPORFSX. */    if (! nofact && ! equil && ! _starpu_lsame_(fact, "F")) {	*info = -1;    } else if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, 	    "L")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (*lda < max(1,*n)) {	*info = -6;    } else if (*ldaf < max(1,*n)) {	*info = -8;    } else if (_starpu_lsame_(fact, "F") && ! (rcequ || _starpu_lsame_(	    equed, "N"))) {	*info = -9;    } else {	if (rcequ) {	    smin = bignum;	    smax = 0.;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {/* Computing MIN */		d__1 = smin, d__2 = s[j];		smin = min(d__1,d__2);/* Computing MAX */		d__1 = smax, d__2 = s[j];		smax = max(d__1,d__2);/* L10: */	    }	    if (smin <= 0.) {		*info = -10;	    } else if (*n > 0) {		scond = max(smin,smlnum) / min(smax,bignum);	    } else {		scond = 1.;	    }	}	if (*info == 0) {	    if (*ldb < max(1,*n)) {		*info = -12;	    } else if (*ldx < max(1,*n)) {		*info = -14;	    }	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DPOSVXX", &i__1);	return 0;    }    if (equil) {/*     Compute row and column scalings to equilibrate the matrix A. */	_starpu_dpoequb_(n, &a[a_offset], lda, &s[1], &scond, &amax, &infequ);	if (infequ == 0) {/*     Equilibrate the matrix. */	    _starpu_dlaqsy_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed);	    rcequ = _starpu_lsame_(equed, "Y");	}    }/*     Scale the right-hand side. */    if (rcequ) {	_starpu_dlascl2_(n, nrhs, &s[1], &b[b_offset], ldb);    }    if (nofact || equil) {/*        Compute the LU factorization of A. */	_starpu_dlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);	_starpu_dpotrf_(uplo, n, &af[af_offset], ldaf, info);/*        Return if INFO is non-zero. */	if (*info != 0) {/*           Pivot in column INFO is exactly 0 *//*           Compute the reciprocal pivot growth factor of the *//*           leading rank-deficient INFO columns of A. */	    *rpvgrw = _starpu_dla_porpvgrw__(uplo, info, &a[a_offset], lda, &af[		    af_offset], ldaf, &work[1], (ftnlen)1);	    return 0;	}    }/*     Compute the reciprocal growth factor RPVGRW. */    *rpvgrw = _starpu_dla_porpvgrw__(uplo, n, &a[a_offset], lda, &af[af_offset], ldaf,	     &work[1], (ftnlen)1);/*     Compute the solution matrix X. */    _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);    _starpu_dpotrs_(uplo, n, nrhs, &af[af_offset], ldaf, &x[x_offset], ldx, info);/*     Use iterative refinement to improve the computed solution and *//*     compute error bounds and backward error estimates for it. */    _starpu_dporfsx_(uplo, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &	    s[1], &b[b_offset], ldb, &x[x_offset], ldx, rcond, &berr[1], 	    n_err_bnds__, &err_bnds_norm__[err_bnds_norm_offset], &	    err_bnds_comp__[err_bnds_comp_offset], nparams, ¶ms[1], &work[	    1], &iwork[1], info);/*     Scale solutions. */    if (rcequ) {	_starpu_dlascl2_(n, nrhs, &s[1], &x[x_offset], ldx);    }    return 0;/*     End of DPOSVXX */} /* _starpu_dposvxx_ */
 |