| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 | /* dlaqsy.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlaqsy_(char *uplo, integer *n, doublereal *a, integer *	lda, doublereal *s, doublereal *scond, doublereal *amax, char *equed){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer i__, j;    doublereal cj, large;    extern logical _starpu_lsame_(char *, char *);    doublereal small;    extern doublereal _starpu_dlamch_(char *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAQSY equilibrates a symmetric matrix A using the scaling factors *//*  in the vector S. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored. *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          n by n upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading n by n lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, if EQUED = 'Y', the equilibrated matrix: *//*          diag(S) * A * diag(S). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(N,1). *//*  S       (input) DOUBLE PRECISION array, dimension (N) *//*          The scale factors for A. *//*  SCOND   (input) DOUBLE PRECISION *//*          Ratio of the smallest S(i) to the largest S(i). *//*  AMAX    (input) DOUBLE PRECISION *//*          Absolute value of largest matrix entry. *//*  EQUED   (output) CHARACTER*1 *//*          Specifies whether or not equilibration was done. *//*          = 'N':  No equilibration. *//*          = 'Y':  Equilibration was done, i.e., A has been replaced by *//*                  diag(S) * A * diag(S). *//*  Internal Parameters *//*  =================== *//*  THRESH is a threshold value used to decide if scaling should be done *//*  based on the ratio of the scaling factors.  If SCOND < THRESH, *//*  scaling is done. *//*  LARGE and SMALL are threshold values used to decide if scaling should *//*  be done based on the absolute size of the largest matrix element. *//*  If AMAX > LARGE or AMAX < SMALL, scaling is done. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --s;    /* Function Body */    if (*n <= 0) {	*(unsigned char *)equed = 'N';	return 0;    }/*     Initialize LARGE and SMALL. */    small = _starpu_dlamch_("Safe minimum") / _starpu_dlamch_("Precision");    large = 1. / small;    if (*scond >= .1 && *amax >= small && *amax <= large) {/*        No equilibration */	*(unsigned char *)equed = 'N';    } else {/*        Replace A by diag(S) * A * diag(S). */	if (_starpu_lsame_(uplo, "U")) {/*           Upper triangle of A is stored. */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		cj = s[j];		i__2 = j;		for (i__ = 1; i__ <= i__2; ++i__) {		    a[i__ + j * a_dim1] = cj * s[i__] * a[i__ + j * a_dim1];/* L10: */		}/* L20: */	    }	} else {/*           Lower triangle of A is stored. */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		cj = s[j];		i__2 = *n;		for (i__ = j; i__ <= i__2; ++i__) {		    a[i__ + j * a_dim1] = cj * s[i__] * a[i__ + j * a_dim1];/* L30: */		}/* L40: */	    }	}	*(unsigned char *)equed = 'Y';    }    return 0;/*     End of DLAQSY */} /* _starpu_dlaqsy_ */
 |