| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 | /* dgbcon.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dgbcon_(char *norm, integer *n, integer *kl, integer *ku, 	 doublereal *ab, integer *ldab, integer *ipiv, doublereal *anorm, 	doublereal *rcond, doublereal *work, integer *iwork, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, i__1, i__2, i__3;    doublereal d__1;    /* Local variables */    integer j;    doublereal t;    integer kd, lm, jp, ix, kase;    extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    integer kase1;    doublereal scale;    extern logical _starpu_lsame_(char *, char *);    integer isave[3];    extern /* Subroutine */ int _starpu_drscl_(integer *, doublereal *, doublereal *, 	    integer *);    logical lnoti;    extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *), _starpu_dlacn2_(integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    integer *);    extern doublereal _starpu_dlamch_(char *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dlatbs_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);    doublereal ainvnm;    logical onenrm;    char normin[1];    doublereal smlnum;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGBCON estimates the reciprocal of the condition number of a real *//*  general band matrix A, in either the 1-norm or the infinity-norm, *//*  using the LU factorization computed by DGBTRF. *//*  An estimate is obtained for norm(inv(A)), and the reciprocal of the *//*  condition number is computed as *//*     RCOND = 1 / ( norm(A) * norm(inv(A)) ). *//*  Arguments *//*  ========= *//*  NORM    (input) CHARACTER*1 *//*          Specifies whether the 1-norm condition number or the *//*          infinity-norm condition number is required: *//*          = '1' or 'O':  1-norm; *//*          = 'I':         Infinity-norm. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  KL      (input) INTEGER *//*          The number of subdiagonals within the band of A.  KL >= 0. *//*  KU      (input) INTEGER *//*          The number of superdiagonals within the band of A.  KU >= 0. *//*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) *//*          Details of the LU factorization of the band matrix A, as *//*          computed by DGBTRF.  U is stored as an upper triangular band *//*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and *//*          the multipliers used during the factorization are stored in *//*          rows KL+KU+2 to 2*KL+KU+1. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. *//*  IPIV    (input) INTEGER array, dimension (N) *//*          The pivot indices; for 1 <= i <= N, row i of the matrix was *//*          interchanged with row IPIV(i). *//*  ANORM   (input) DOUBLE PRECISION *//*          If NORM = '1' or 'O', the 1-norm of the original matrix A. *//*          If NORM = 'I', the infinity-norm of the original matrix A. *//*  RCOND   (output) DOUBLE PRECISION *//*          The reciprocal of the condition number of the matrix A, *//*          computed as RCOND = 1/(norm(A) * norm(inv(A))). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  IWORK   (workspace) INTEGER array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --ipiv;    --work;    --iwork;    /* Function Body */    *info = 0;    onenrm = *(unsigned char *)norm == '1' || _starpu_lsame_(norm, "O");    if (! onenrm && ! _starpu_lsame_(norm, "I")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kl < 0) {	*info = -3;    } else if (*ku < 0) {	*info = -4;    } else if (*ldab < (*kl << 1) + *ku + 1) {	*info = -6;    } else if (*anorm < 0.) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGBCON", &i__1);	return 0;    }/*     Quick return if possible */    *rcond = 0.;    if (*n == 0) {	*rcond = 1.;	return 0;    } else if (*anorm == 0.) {	return 0;    }    smlnum = _starpu_dlamch_("Safe minimum");/*     Estimate the norm of inv(A). */    ainvnm = 0.;    *(unsigned char *)normin = 'N';    if (onenrm) {	kase1 = 1;    } else {	kase1 = 2;    }    kd = *kl + *ku + 1;    lnoti = *kl > 0;    kase = 0;L10:    _starpu_dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);    if (kase != 0) {	if (kase == kase1) {/*           Multiply by inv(L). */	    if (lnoti) {		i__1 = *n - 1;		for (j = 1; j <= i__1; ++j) {/* Computing MIN */		    i__2 = *kl, i__3 = *n - j;		    lm = min(i__2,i__3);		    jp = ipiv[j];		    t = work[jp];		    if (jp != j) {			work[jp] = work[j];			work[j] = t;		    }		    d__1 = -t;		    _starpu_daxpy_(&lm, &d__1, &ab[kd + 1 + j * ab_dim1], &c__1, &			    work[j + 1], &c__1);/* L20: */		}	    }/*           Multiply by inv(U). */	    i__1 = *kl + *ku;	    _starpu_dlatbs_("Upper", "No transpose", "Non-unit", normin, n, &i__1, &		    ab[ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 		    1], info);	} else {/*           Multiply by inv(U'). */	    i__1 = *kl + *ku;	    _starpu_dlatbs_("Upper", "Transpose", "Non-unit", normin, n, &i__1, &ab[		    ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], 		    info);/*           Multiply by inv(L'). */	    if (lnoti) {		for (j = *n - 1; j >= 1; --j) {/* Computing MIN */		    i__1 = *kl, i__2 = *n - j;		    lm = min(i__1,i__2);		    work[j] -= _starpu_ddot_(&lm, &ab[kd + 1 + j * ab_dim1], &c__1, &			    work[j + 1], &c__1);		    jp = ipiv[j];		    if (jp != j) {			t = work[jp];			work[jp] = work[j];			work[j] = t;		    }/* L30: */		}	    }	}/*        Divide X by 1/SCALE if doing so will not cause overflow. */	*(unsigned char *)normin = 'Y';	if (scale != 1.) {	    ix = _starpu_idamax_(n, &work[1], &c__1);	    if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) 		    {		goto L40;	    }	    _starpu_drscl_(n, &scale, &work[1], &c__1);	}	goto L10;    }/*     Compute the estimate of the reciprocal condition number. */    if (ainvnm != 0.) {	*rcond = 1. / ainvnm / *anorm;    }L40:    return 0;/*     End of DGBCON */} /* _starpu_dgbcon_ */
 |