| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 | /* dger.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dger_(integer *m, integer *n, doublereal *alpha, 	doublereal *x, integer *incx, doublereal *y, integer *incy, 	doublereal *a, integer *lda){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer i__, j, ix, jy, kx, info;    doublereal temp;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGER   performs the rank 1 operation *//*     A := alpha*x*y' + A, *//*  where alpha is a scalar, x is an m element vector, y is an n element *//*  vector and A is an m by n matrix. *//*  Arguments *//*  ========== *//*  M      - INTEGER. *//*           On entry, M specifies the number of rows of the matrix A. *//*           M must be at least zero. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the number of columns of the matrix A. *//*           N must be at least zero. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION. *//*           On entry, ALPHA specifies the scalar alpha. *//*           Unchanged on exit. *//*  X      - DOUBLE PRECISION array of dimension at least *//*           ( 1 + ( m - 1 )*abs( INCX ) ). *//*           Before entry, the incremented array X must contain the m *//*           element vector x. *//*           Unchanged on exit. *//*  INCX   - INTEGER. *//*           On entry, INCX specifies the increment for the elements of *//*           X. INCX must not be zero. *//*           Unchanged on exit. *//*  Y      - DOUBLE PRECISION array of dimension at least *//*           ( 1 + ( n - 1 )*abs( INCY ) ). *//*           Before entry, the incremented array Y must contain the n *//*           element vector y. *//*           Unchanged on exit. *//*  INCY   - INTEGER. *//*           On entry, INCY specifies the increment for the elements of *//*           Y. INCY must not be zero. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). *//*           Before entry, the leading m by n part of the array A must *//*           contain the matrix of coefficients. On exit, A is *//*           overwritten by the updated matrix. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program. LDA must be at least *//*           max( 1, m ). *//*           Unchanged on exit. *//*  Level 2 Blas routine. *//*  -- Written on 22-October-1986. *//*     Jack Dongarra, Argonne National Lab. *//*     Jeremy Du Croz, Nag Central Office. *//*     Sven Hammarling, Nag Central Office. *//*     Richard Hanson, Sandia National Labs. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     Test the input parameters. */    /* Parameter adjustments */    --x;    --y;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    /* Function Body */    info = 0;    if (*m < 0) {	info = 1;    } else if (*n < 0) {	info = 2;    } else if (*incx == 0) {	info = 5;    } else if (*incy == 0) {	info = 7;    } else if (*lda < max(1,*m)) {	info = 9;    }    if (info != 0) {	_starpu_xerbla_("DGER  ", &info);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0 || *alpha == 0.) {	return 0;    }/*     Start the operations. In this version the elements of A are *//*     accessed sequentially with one pass through A. */    if (*incy > 0) {	jy = 1;    } else {	jy = 1 - (*n - 1) * *incy;    }    if (*incx == 1) {	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    if (y[jy] != 0.) {		temp = *alpha * y[jy];		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    a[i__ + j * a_dim1] += x[i__] * temp;/* L10: */		}	    }	    jy += *incy;/* L20: */	}    } else {	if (*incx > 0) {	    kx = 1;	} else {	    kx = 1 - (*m - 1) * *incx;	}	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    if (y[jy] != 0.) {		temp = *alpha * y[jy];		ix = kx;		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    a[i__ + j * a_dim1] += x[ix] * temp;		    ix += *incx;/* L30: */		}	    }	    jy += *incy;/* L40: */	}    }    return 0;/*     End of DGER  . */} /* _starpu_dger_ */
 |