starpu.texi 176 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @titlepage
  9. @title StarPU Handbook
  10. @subtitle for StarPU @value{VERSION}
  11. @page
  12. @vskip 0pt plus 1fill
  13. @comment For the @value{version-GCC} Version*
  14. @end titlepage
  15. @c @summarycontents
  16. @contents
  17. @page
  18. @node Top
  19. @top Preface
  20. @cindex Preface
  21. This manual documents the usage of StarPU version @value{VERSION}. It
  22. was last updated on @value{UPDATED}.
  23. @comment
  24. @comment When you add a new menu item, please keep the right hand
  25. @comment aligned to the same column. Do not use tabs. This provides
  26. @comment better formatting.
  27. @comment
  28. @menu
  29. * Introduction:: A basic introduction to using StarPU
  30. * Installing StarPU:: How to configure, build and install StarPU
  31. * Using StarPU:: How to run StarPU application
  32. * Basic Examples:: Basic examples of the use of StarPU
  33. * Performance optimization:: How to optimize performance with StarPU
  34. * Performance feedback:: Performance debugging tools
  35. * StarPU MPI support:: How to combine StarPU with MPI
  36. * Configuring StarPU:: How to configure StarPU
  37. * StarPU API:: The API to use StarPU
  38. * Advanced Topics:: Advanced use of StarPU
  39. * Full source code for the 'Scaling a Vector' example::
  40. * Function Index:: Index of C functions.
  41. @end menu
  42. @c ---------------------------------------------------------------------
  43. @c Introduction to StarPU
  44. @c ---------------------------------------------------------------------
  45. @node Introduction
  46. @chapter Introduction to StarPU
  47. @menu
  48. * Motivation:: Why StarPU ?
  49. * StarPU in a Nutshell:: The Fundamentals of StarPU
  50. @end menu
  51. @node Motivation
  52. @section Motivation
  53. @c complex machines with heterogeneous cores/devices
  54. The use of specialized hardware such as accelerators or coprocessors offers an
  55. interesting approach to overcome the physical limits encountered by processor
  56. architects. As a result, many machines are now equipped with one or several
  57. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  58. efforts have been devoted to offload computation onto such accelerators, very
  59. little attention as been paid to portability concerns on the one hand, and to the
  60. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  61. StarPU is a runtime system that offers support for heterogeneous multicore
  62. architectures, it not only offers a unified view of the computational resources
  63. (i.e. CPUs and accelerators at the same time), but it also takes care of
  64. efficiently mapping and executing tasks onto an heterogeneous machine while
  65. transparently handling low-level issues such as data transfers in a portable
  66. fashion.
  67. @c this leads to a complicated distributed memory design
  68. @c which is not (easily) manageable by hand
  69. @c added value/benefits of StarPU
  70. @c - portability
  71. @c - scheduling, perf. portability
  72. @node StarPU in a Nutshell
  73. @section StarPU in a Nutshell
  74. @menu
  75. * Codelet and Tasks::
  76. * StarPU Data Management Library::
  77. * Glossary::
  78. * Research Papers::
  79. @end menu
  80. From a programming point of view, StarPU is not a new language but a library
  81. that executes tasks explicitly submitted by the application. The data that a
  82. task manipulates are automatically transferred onto the accelerator so that the
  83. programmer does not have to take care of complex data movements. StarPU also
  84. takes particular care of scheduling those tasks efficiently and allows
  85. scheduling experts to implement custom scheduling policies in a portable
  86. fashion.
  87. @c explain the notion of codelet and task (i.e. g(A, B)
  88. @node Codelet and Tasks
  89. @subsection Codelet and Tasks
  90. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  91. computational kernel that can possibly be implemented on multiple architectures
  92. such as a CPU, a CUDA device or a Cell's SPU.
  93. @c TODO insert illustration f : f_spu, f_cpu, ...
  94. Another important data structure is the @b{task}. Executing a StarPU task
  95. consists in applying a codelet on a data set, on one of the architectures on
  96. which the codelet is implemented. A task thus describes the codelet that it
  97. uses, but also which data are accessed, and how they are
  98. accessed during the computation (read and/or write).
  99. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  100. operation. The task structure can also specify a @b{callback} function that is
  101. called once StarPU has properly executed the task. It also contains optional
  102. fields that the application may use to give hints to the scheduler (such as
  103. priority levels).
  104. By default, task dependencies are inferred from data dependency (sequential
  105. coherence) by StarPU. The application can however disable sequential coherency
  106. for some data, and dependencies be expressed by hand.
  107. A task may be identified by a unique 64-bit number chosen by the application
  108. which we refer as a @b{tag}.
  109. Task dependencies can be enforced by hand either by the means of callback functions, by
  110. submitting other tasks, or by expressing dependencies
  111. between tags (which can thus correspond to tasks that have not been submitted
  112. yet).
  113. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  114. @c DSM
  115. @node StarPU Data Management Library
  116. @subsection StarPU Data Management Library
  117. Because StarPU schedules tasks at runtime, data transfers have to be
  118. done automatically and ``just-in-time'' between processing units,
  119. relieving the application programmer from explicit data transfers.
  120. Moreover, to avoid unnecessary transfers, StarPU keeps data
  121. where it was last needed, even if was modified there, and it
  122. allows multiple copies of the same data to reside at the same time on
  123. several processing units as long as it is not modified.
  124. @node Glossary
  125. @subsection Glossary
  126. A @b{codelet} records pointers to various implementations of the same
  127. theoretical function.
  128. A @b{memory node} can be either the main RAM or GPU-embedded memory.
  129. A @b{bus} is a link between memory nodes.
  130. A @b{data handle} keeps track of replicates of the same data (@b{registered} by the
  131. application) over various memory nodes. The data management library manages
  132. keeping them coherent.
  133. The @b{home} memory node of a data handle is the memory node from which the data
  134. was registered (usually the main memory node).
  135. A @b{task} represents a scheduled execution of a codelet on some data handles.
  136. A @b{tag} is a rendez-vous point. Tasks typically have their own tag, and can
  137. depend on other tags. The value is chosen by the application.
  138. A @b{worker} execute tasks. There is typically one per CPU computation core and
  139. one per accelerator (for which a whole CPU core is dedicated).
  140. A @b{driver} drives a given kind of workers. There are currently CPU, CUDA,
  141. OpenCL and Gordon drivers. They usually start several workers to actually drive
  142. them.
  143. A @b{performance model} is a (dynamic or static) model of the performance of a
  144. given codelet. Codelets can have execution time performance model as well as
  145. power consumption performance models.
  146. A data @b{interface} describes the layout of the data: for a vector, a pointer
  147. for the start, the number of elements and the size of elements ; for a matrix, a
  148. pointer for the start, the number of elements per row, the offset between rows,
  149. and the size of each element ; etc. To access their data, codelet functions are
  150. given interfaces for the local memory node replicates of the data handles of the
  151. scheduled task.
  152. @b{Partitioning} data means dividing the data of a given data handle (called
  153. @b{father}) into a series of @b{children} data handles which designate various
  154. portions of the former.
  155. A @b{filter} is the function which computes children data handles from a father
  156. data handle, and thus describes how the partitioning should be done (horizontal,
  157. vertical, etc.)
  158. @b{Acquiring} a data handle can be done from the main application, to safely
  159. access the data of a data handle from its home node, without having to
  160. unregister it.
  161. @node Research Papers
  162. @subsection Research Papers
  163. Research papers about StarPU can be found at
  164. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  165. Notably a good overview in the research report
  166. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  167. @c ---------------------------------------------------------------------
  168. @c Installing StarPU
  169. @c ---------------------------------------------------------------------
  170. @node Installing StarPU
  171. @chapter Installing StarPU
  172. @menu
  173. * Downloading StarPU::
  174. * Configuration of StarPU::
  175. * Building and Installing StarPU::
  176. @end menu
  177. StarPU can be built and installed by the standard means of the GNU
  178. autotools. The following chapter is intended to briefly remind how these tools
  179. can be used to install StarPU.
  180. @node Downloading StarPU
  181. @section Downloading StarPU
  182. @menu
  183. * Getting Sources::
  184. * Optional dependencies::
  185. @end menu
  186. @node Getting Sources
  187. @subsection Getting Sources
  188. The simplest way to get StarPU sources is to download the latest official
  189. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  190. or the latest nightly snapshot from
  191. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  192. how to get the very latest version from the subversion repository itself, it
  193. should be needed only if you need the very latest changes (i.e. less than a
  194. day!)
  195. The source code is managed by a Subversion server hosted by the
  196. InriaGforge. To get the source code, you need:
  197. @itemize
  198. @item
  199. To install the client side of the software Subversion if it is
  200. not already available on your system. The software can be obtained from
  201. @indicateurl{http://subversion.tigris.org} . If you are running
  202. on Windows, you will probably prefer to use TortoiseSVN from
  203. @indicateurl{http://tortoisesvn.tigris.org/} .
  204. @item
  205. You can check out the project's SVN repository through anonymous
  206. access. This will provide you with a read access to the
  207. repository.
  208. If you need to have write access on the StarPU project, you can also choose to
  209. become a member of the project @code{starpu}. For this, you first need to get
  210. an account to the gForge server. You can then send a request to join the project
  211. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  212. @item
  213. More information on how to get a gForge account, to become a member of
  214. a project, or on any other related task can be obtained from the
  215. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  216. thing is to upload your public SSH key on the gForge server (see the
  217. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  218. instructions).
  219. @end itemize
  220. You can now check out the latest version from the Subversion server:
  221. @itemize
  222. @item
  223. using the anonymous access via svn:
  224. @example
  225. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  226. @end example
  227. @item
  228. using the anonymous access via https:
  229. @example
  230. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  231. @end example
  232. The password is @code{anonsvn}.
  233. @item
  234. using your gForge account
  235. @example
  236. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  237. @end example
  238. @end itemize
  239. The following step requires the availability of @code{autoconf} and
  240. @code{automake} to generate the @code{./configure} script. This is
  241. done by calling @code{./autogen.sh}. The required version for
  242. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  243. @example
  244. % ./autogen.sh
  245. @end example
  246. If the autotools are not available on your machine or not recent
  247. enough, you can choose to download the latest nightly tarball, which
  248. is provided with a @code{configure} script.
  249. @example
  250. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  251. @end example
  252. @node Optional dependencies
  253. @subsection Optional dependencies
  254. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  255. but strongly recommended. It allows to increase performance, and to
  256. perform some topology aware scheduling.
  257. @code{hwloc} is available in major distributions and for most OSes and can be
  258. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  259. @node Configuration of StarPU
  260. @section Configuration of StarPU
  261. @menu
  262. * Generating Makefiles and configuration scripts::
  263. * Running the configuration::
  264. @end menu
  265. @node Generating Makefiles and configuration scripts
  266. @subsection Generating Makefiles and configuration scripts
  267. This step is not necessary when using the tarball releases of StarPU. If you
  268. are using the source code from the svn repository, you first need to generate
  269. the configure scripts and the Makefiles.
  270. @example
  271. % ./autogen.sh
  272. @end example
  273. @node Running the configuration
  274. @subsection Running the configuration
  275. @example
  276. % ./configure
  277. @end example
  278. Details about options that are useful to give to @code{./configure} are given in
  279. @ref{Compilation configuration}.
  280. @node Building and Installing StarPU
  281. @section Building and Installing StarPU
  282. @menu
  283. * Building::
  284. * Sanity Checks::
  285. * Installing::
  286. @end menu
  287. @node Building
  288. @subsection Building
  289. @example
  290. % make
  291. @end example
  292. @node Sanity Checks
  293. @subsection Sanity Checks
  294. In order to make sure that StarPU is working properly on the system, it is also
  295. possible to run a test suite.
  296. @example
  297. % make check
  298. @end example
  299. @node Installing
  300. @subsection Installing
  301. In order to install StarPU at the location that was specified during
  302. configuration:
  303. @example
  304. % make install
  305. @end example
  306. @c ---------------------------------------------------------------------
  307. @c Using StarPU
  308. @c ---------------------------------------------------------------------
  309. @node Using StarPU
  310. @chapter Using StarPU
  311. @menu
  312. * Setting flags for compiling and linking applications::
  313. * Running a basic StarPU application::
  314. * Kernel threads started by StarPU::
  315. * Using accelerators::
  316. @end menu
  317. @node Setting flags for compiling and linking applications
  318. @section Setting flags for compiling and linking applications
  319. Compiling and linking an application against StarPU may require to use
  320. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  321. To this end, it is possible to use the @code{pkg-config} tool.
  322. If StarPU was not installed at some standard location, the path of StarPU's
  323. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  324. that @code{pkg-config} can find it. For example if StarPU was installed in
  325. @code{$prefix_dir}:
  326. @example
  327. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  328. @end example
  329. The flags required to compile or link against StarPU are then
  330. accessible with the following commands:
  331. @example
  332. % pkg-config --cflags libstarpu # options for the compiler
  333. % pkg-config --libs libstarpu # options for the linker
  334. @end example
  335. @node Running a basic StarPU application
  336. @section Running a basic StarPU application
  337. Basic examples using StarPU have been built in the directory
  338. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  339. example @code{vector_scal}.
  340. @example
  341. % $prefix_dir/lib/starpu/examples/vector_scal
  342. BEFORE : First element was 1.000000
  343. AFTER First element is 3.140000
  344. %
  345. @end example
  346. When StarPU is used for the first time, the directory
  347. @code{$HOME/.starpu/} is created, performance models will be stored in
  348. that directory.
  349. Please note that buses are benchmarked when StarPU is launched for the
  350. first time. This may take a few minutes, or less if @code{hwloc} is
  351. installed. This step is done only once per user and per machine.
  352. @node Kernel threads started by StarPU
  353. @section Kernel threads started by StarPU
  354. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  355. them per GPU. The application is not supposed to do computations in its own
  356. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  357. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  358. worker).
  359. @node Using accelerators
  360. @section Using accelerators
  361. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  362. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  363. This design choice was necessary as OpenCL and CUDA can not run at the
  364. same time on the same NVIDIA GPU, as there is currently no interoperability
  365. between them.
  366. Details on how to specify devices running OpenCL and the ones running
  367. CUDA are given in @ref{Enabling OpenCL}.
  368. @c ---------------------------------------------------------------------
  369. @c Basic Examples
  370. @c ---------------------------------------------------------------------
  371. @node Basic Examples
  372. @chapter Basic Examples
  373. @menu
  374. * Compiling and linking options::
  375. * Hello World:: Submitting Tasks
  376. * Scaling a Vector:: Manipulating Data
  377. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  378. * Task and Worker Profiling::
  379. * Partitioning Data:: Partitioning Data
  380. * Performance model example::
  381. * Theoretical lower bound on execution time::
  382. * Insert Task Utility::
  383. * More examples:: More examples shipped with StarPU
  384. * Debugging:: When things go wrong.
  385. @end menu
  386. @node Compiling and linking options
  387. @section Compiling and linking options
  388. Let's suppose StarPU has been installed in the directory
  389. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  390. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  391. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  392. libraries at runtime.
  393. @example
  394. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  395. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  396. @end example
  397. The Makefile could for instance contain the following lines to define which
  398. options must be given to the compiler and to the linker:
  399. @cartouche
  400. @example
  401. CFLAGS += $$(pkg-config --cflags libstarpu)
  402. LDFLAGS += $$(pkg-config --libs libstarpu)
  403. @end example
  404. @end cartouche
  405. @node Hello World
  406. @section Hello World
  407. @menu
  408. * Required Headers::
  409. * Defining a Codelet::
  410. * Submitting a Task::
  411. * Execution of Hello World::
  412. @end menu
  413. In this section, we show how to implement a simple program that submits a task to StarPU.
  414. @node Required Headers
  415. @subsection Required Headers
  416. The @code{starpu.h} header should be included in any code using StarPU.
  417. @cartouche
  418. @smallexample
  419. #include <starpu.h>
  420. @end smallexample
  421. @end cartouche
  422. @node Defining a Codelet
  423. @subsection Defining a Codelet
  424. @cartouche
  425. @smallexample
  426. struct params @{
  427. int i;
  428. float f;
  429. @};
  430. void cpu_func(void *buffers[], void *cl_arg)
  431. @{
  432. struct params *params = cl_arg;
  433. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  434. @}
  435. starpu_codelet cl =
  436. @{
  437. .where = STARPU_CPU,
  438. .cpu_func = cpu_func,
  439. .nbuffers = 0
  440. @};
  441. @end smallexample
  442. @end cartouche
  443. A codelet is a structure that represents a computational kernel. Such a codelet
  444. may contain an implementation of the same kernel on different architectures
  445. (e.g. CUDA, Cell's SPU, x86, ...).
  446. The @code{nbuffers} field specifies the number of data buffers that are
  447. manipulated by the codelet: here the codelet does not access or modify any data
  448. that is controlled by our data management library. Note that the argument
  449. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  450. structure) does not count as a buffer since it is not managed by our data
  451. management library, but just contain trivial parameters.
  452. @c TODO need a crossref to the proper description of "where" see bla for more ...
  453. We create a codelet which may only be executed on the CPUs. The @code{where}
  454. field is a bitmask that defines where the codelet may be executed. Here, the
  455. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  456. (@pxref{Codelets and Tasks} for more details on this field).
  457. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  458. which @emph{must} have the following prototype:
  459. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  460. In this example, we can ignore the first argument of this function which gives a
  461. description of the input and output buffers (e.g. the size and the location of
  462. the matrices) since there is none.
  463. The second argument is a pointer to a buffer passed as an
  464. argument to the codelet by the means of the @code{cl_arg} field of the
  465. @code{starpu_task} structure.
  466. @c TODO rewrite so that it is a little clearer ?
  467. Be aware that this may be a pointer to a
  468. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  469. if the codelet modifies this buffer, there is no guarantee that the initial
  470. buffer will be modified as well: this for instance implies that the buffer
  471. cannot be used as a synchronization medium. If synchronization is needed, data
  472. has to be registered to StarPU, see @ref{Scaling a Vector}.
  473. @node Submitting a Task
  474. @subsection Submitting a Task
  475. @cartouche
  476. @smallexample
  477. void callback_func(void *callback_arg)
  478. @{
  479. printf("Callback function (arg %x)\n", callback_arg);
  480. @}
  481. int main(int argc, char **argv)
  482. @{
  483. /* @b{initialize StarPU} */
  484. starpu_init(NULL);
  485. struct starpu_task *task = starpu_task_create();
  486. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  487. struct params params = @{ 1, 2.0f @};
  488. task->cl_arg = &params;
  489. task->cl_arg_size = sizeof(params);
  490. task->callback_func = callback_func;
  491. task->callback_arg = 0x42;
  492. /* @b{starpu_task_submit will be a blocking call} */
  493. task->synchronous = 1;
  494. /* @b{submit the task to StarPU} */
  495. starpu_task_submit(task);
  496. /* @b{terminate StarPU} */
  497. starpu_shutdown();
  498. return 0;
  499. @}
  500. @end smallexample
  501. @end cartouche
  502. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  503. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  504. be submitted after the termination of StarPU by a call to
  505. @code{starpu_shutdown}.
  506. In the example above, a task structure is allocated by a call to
  507. @code{starpu_task_create}. This function only allocates and fills the
  508. corresponding structure with the default settings (@pxref{Codelets and
  509. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  510. @c not really clear ;)
  511. The @code{cl} field is a pointer to the codelet which the task will
  512. execute: in other words, the codelet structure describes which computational
  513. kernel should be offloaded on the different architectures, and the task
  514. structure is a wrapper containing a codelet and the piece of data on which the
  515. codelet should operate.
  516. The optional @code{cl_arg} field is a pointer to a buffer (of size
  517. @code{cl_arg_size}) with some parameters for the kernel
  518. described by the codelet. For instance, if a codelet implements a computational
  519. kernel that multiplies its input vector by a constant, the constant could be
  520. specified by the means of this buffer, instead of registering it as a StarPU
  521. data. It must however be noted that StarPU avoids making copy whenever possible
  522. and rather passes the pointer as such, so the buffer which is pointed at must
  523. kept allocated until the task terminates, and if several tasks are submitted
  524. with various parameters, each of them must be given a pointer to their own
  525. buffer.
  526. Once a task has been executed, an optional callback function is be called.
  527. While the computational kernel could be offloaded on various architectures, the
  528. callback function is always executed on a CPU. The @code{callback_arg}
  529. pointer is passed as an argument of the callback. The prototype of a callback
  530. function must be:
  531. @code{void (*callback_function)(void *);}
  532. If the @code{synchronous} field is non-zero, task submission will be
  533. synchronous: the @code{starpu_task_submit} function will not return until the
  534. task was executed. Note that the @code{starpu_shutdown} method does not
  535. guarantee that asynchronous tasks have been executed before it returns,
  536. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  537. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  538. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  539. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  540. @code{starpu_data_set_sequential_consistency_flag}.
  541. @node Execution of Hello World
  542. @subsection Execution of Hello World
  543. @smallexample
  544. % make hello_world
  545. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  546. % ./hello_world
  547. Hello world (params = @{1, 2.000000@} )
  548. Callback function (arg 42)
  549. @end smallexample
  550. @node Scaling a Vector
  551. @section Manipulating Data: Scaling a Vector
  552. The previous example has shown how to submit tasks. In this section,
  553. we show how StarPU tasks can manipulate data. The full source code for
  554. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  555. @menu
  556. * Source code of Vector Scaling::
  557. * Execution of Vector Scaling::
  558. @end menu
  559. @node Source code of Vector Scaling
  560. @subsection Source code of Vector Scaling
  561. Programmers can describe the data layout of their application so that StarPU is
  562. responsible for enforcing data coherency and availability across the machine.
  563. Instead of handling complex (and non-portable) mechanisms to perform data
  564. movements, programmers only declare which piece of data is accessed and/or
  565. modified by a task, and StarPU makes sure that when a computational kernel
  566. starts somewhere (e.g. on a GPU), its data are available locally.
  567. Before submitting those tasks, the programmer first needs to declare the
  568. different pieces of data to StarPU using the @code{starpu_*_data_register}
  569. functions. To ease the development of applications for StarPU, it is possible
  570. to describe multiple types of data layout. A type of data layout is called an
  571. @b{interface}. There are different predefined interfaces available in StarPU:
  572. here we will consider the @b{vector interface}.
  573. The following lines show how to declare an array of @code{NX} elements of type
  574. @code{float} using the vector interface:
  575. @cartouche
  576. @smallexample
  577. float vector[NX];
  578. starpu_data_handle vector_handle;
  579. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  580. sizeof(vector[0]));
  581. @end smallexample
  582. @end cartouche
  583. The first argument, called the @b{data handle}, is an opaque pointer which
  584. designates the array in StarPU. This is also the structure which is used to
  585. describe which data is used by a task. The second argument is the node number
  586. where the data originally resides. Here it is 0 since the @code{vector} array is in
  587. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  588. the number of elements in the vector and the size of each element.
  589. The following shows how to construct a StarPU task that will manipulate the
  590. vector and a constant factor.
  591. @cartouche
  592. @smallexample
  593. float factor = 3.14;
  594. struct starpu_task *task = starpu_task_create();
  595. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  596. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  597. task->buffers[0].mode = STARPU_RW;
  598. task->cl_arg = &factor;
  599. task->cl_arg_size = sizeof(factor);
  600. task->synchronous = 1;
  601. starpu_task_submit(task);
  602. @end smallexample
  603. @end cartouche
  604. Since the factor is a mere constant float value parameter,
  605. it does not need a preliminary registration, and
  606. can just be passed through the @code{cl_arg} pointer like in the previous
  607. example. The vector parameter is described by its handle.
  608. There are two fields in each element of the @code{buffers} array.
  609. @code{handle} is the handle of the data, and @code{mode} specifies how the
  610. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  611. write-only and @code{STARPU_RW} for read and write access).
  612. The definition of the codelet can be written as follows:
  613. @cartouche
  614. @smallexample
  615. void scal_cpu_func(void *buffers[], void *cl_arg)
  616. @{
  617. unsigned i;
  618. float *factor = cl_arg;
  619. /* length of the vector */
  620. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  621. /* CPU copy of the vector pointer */
  622. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  623. for (i = 0; i < n; i++)
  624. val[i] *= *factor;
  625. @}
  626. starpu_codelet cl = @{
  627. .where = STARPU_CPU,
  628. .cpu_func = scal_cpu_func,
  629. .nbuffers = 1
  630. @};
  631. @end smallexample
  632. @end cartouche
  633. The first argument is an array that gives
  634. a description of all the buffers passed in the @code{task->buffers}@ array. The
  635. size of this array is given by the @code{nbuffers} field of the codelet
  636. structure. For the sake of genericity, this array contains pointers to the
  637. different interfaces describing each buffer. In the case of the @b{vector
  638. interface}, the location of the vector (resp. its length) is accessible in the
  639. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  640. read-write fashion, any modification will automatically affect future accesses
  641. to this vector made by other tasks.
  642. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  643. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  644. constant factor from this pointer.
  645. @node Execution of Vector Scaling
  646. @subsection Execution of Vector Scaling
  647. @smallexample
  648. % make vector_scal
  649. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  650. % ./vector_scal
  651. 0.000000 3.000000 6.000000 9.000000 12.000000
  652. @end smallexample
  653. @node Vector Scaling on an Hybrid CPU/GPU Machine
  654. @section Vector Scaling on an Hybrid CPU/GPU Machine
  655. Contrary to the previous examples, the task submitted in this example may not
  656. only be executed by the CPUs, but also by a CUDA device.
  657. @menu
  658. * Definition of the CUDA Kernel::
  659. * Definition of the OpenCL Kernel::
  660. * Definition of the Main Code::
  661. * Execution of Hybrid Vector Scaling::
  662. @end menu
  663. @node Definition of the CUDA Kernel
  664. @subsection Definition of the CUDA Kernel
  665. The CUDA implementation can be written as follows. It needs to be compiled with
  666. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  667. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  668. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  669. call.
  670. @cartouche
  671. @smallexample
  672. #include <starpu.h>
  673. static __global__ void vector_mult_cuda(float *val, unsigned n,
  674. float factor)
  675. @{
  676. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  677. if (i < n)
  678. val[i] *= factor;
  679. @}
  680. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  681. @{
  682. float *factor = (float *)_args;
  683. /* length of the vector */
  684. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  685. /* CUDA copy of the vector pointer */
  686. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  687. unsigned threads_per_block = 64;
  688. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  689. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  690. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  691. @}
  692. @end smallexample
  693. @end cartouche
  694. @node Definition of the OpenCL Kernel
  695. @subsection Definition of the OpenCL Kernel
  696. The OpenCL implementation can be written as follows. StarPU provides
  697. tools to compile a OpenCL kernel stored in a file.
  698. @cartouche
  699. @smallexample
  700. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  701. @{
  702. const int i = get_global_id(0);
  703. if (i < nx) @{
  704. val[i] *= factor;
  705. @}
  706. @}
  707. @end smallexample
  708. @end cartouche
  709. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  710. a device pointer, so that it is passed as such to the OpenCL kernel.
  711. @cartouche
  712. @smallexample
  713. #include <starpu.h>
  714. @i{#include <starpu_opencl.h>}
  715. @i{extern struct starpu_opencl_program programs;}
  716. void scal_opencl_func(void *buffers[], void *_args)
  717. @{
  718. float *factor = _args;
  719. @i{ int id, devid, err;}
  720. @i{ cl_kernel kernel;}
  721. @i{ cl_command_queue queue;}
  722. @i{ cl_event event;}
  723. /* length of the vector */
  724. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  725. /* OpenCL copy of the vector pointer */
  726. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  727. @i{ id = starpu_worker_get_id();}
  728. @i{ devid = starpu_worker_get_devid(id);}
  729. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  730. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  731. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  732. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  733. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  734. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  735. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  736. @i{ @{}
  737. @i{ size_t global=1;}
  738. @i{ size_t local=1;}
  739. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  740. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  741. @i{ @}}
  742. @i{ clFinish(queue);}
  743. @i{ starpu_opencl_collect_stats(event);}
  744. @i{ clReleaseEvent(event);}
  745. @i{ starpu_opencl_release_kernel(kernel);}
  746. @}
  747. @end smallexample
  748. @end cartouche
  749. @node Definition of the Main Code
  750. @subsection Definition of the Main Code
  751. The CPU implementation is the same as in the previous section.
  752. Here is the source of the main application. You can notice the value of the
  753. field @code{where} for the codelet. We specify
  754. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  755. can be executed either on a CPU or on a CUDA or an OpenCL device.
  756. @cartouche
  757. @smallexample
  758. #include <starpu.h>
  759. #define NX 2048
  760. extern void scal_cuda_func(void *buffers[], void *_args);
  761. extern void scal_cpu_func(void *buffers[], void *_args);
  762. extern void scal_opencl_func(void *buffers[], void *_args);
  763. /* @b{Definition of the codelet} */
  764. static starpu_codelet cl = @{
  765. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  766. /* @b{on a CUDA device, or on an OpenCL device} */
  767. .cuda_func = scal_cuda_func;
  768. .cpu_func = scal_cpu_func;
  769. .opencl_func = scal_opencl_func;
  770. .nbuffers = 1;
  771. @}
  772. #ifdef STARPU_USE_OPENCL
  773. /* @b{The compiled version of the OpenCL program} */
  774. struct starpu_opencl_program programs;
  775. #endif
  776. int main(int argc, char **argv)
  777. @{
  778. float *vector;
  779. int i, ret;
  780. float factor=3.0;
  781. struct starpu_task *task;
  782. starpu_data_handle vector_handle;
  783. starpu_init(NULL); /* @b{Initialising StarPU} */
  784. #ifdef STARPU_USE_OPENCL
  785. starpu_opencl_load_opencl_from_file(
  786. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  787. &programs, NULL);
  788. #endif
  789. vector = malloc(NX*sizeof(vector[0]));
  790. assert(vector);
  791. for(i=0 ; i<NX ; i++) vector[i] = i;
  792. @end smallexample
  793. @end cartouche
  794. @cartouche
  795. @smallexample
  796. /* @b{Registering data within StarPU} */
  797. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  798. NX, sizeof(vector[0]));
  799. /* @b{Definition of the task} */
  800. task = starpu_task_create();
  801. task->cl = &cl;
  802. task->buffers[0].handle = vector_handle;
  803. task->buffers[0].mode = STARPU_RW;
  804. task->cl_arg = &factor;
  805. task->cl_arg_size = sizeof(factor);
  806. @end smallexample
  807. @end cartouche
  808. @cartouche
  809. @smallexample
  810. /* @b{Submitting the task} */
  811. ret = starpu_task_submit(task);
  812. if (ret == -ENODEV) @{
  813. fprintf(stderr, "No worker may execute this task\n");
  814. return 1;
  815. @}
  816. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  817. /* @b{Waiting for its termination} */
  818. starpu_task_wait_for_all();
  819. /* @b{Update the vector in RAM} */
  820. starpu_data_acquire(vector_handle, STARPU_R);
  821. @end smallexample
  822. @end cartouche
  823. @cartouche
  824. @smallexample
  825. /* @b{Access the data} */
  826. for(i=0 ; i<NX; i++) @{
  827. fprintf(stderr, "%f ", vector[i]);
  828. @}
  829. fprintf(stderr, "\n");
  830. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  831. starpu_data_release(vector_handle);
  832. starpu_data_unregister(vector_handle);
  833. starpu_shutdown();
  834. return 0;
  835. @}
  836. @end smallexample
  837. @end cartouche
  838. @node Execution of Hybrid Vector Scaling
  839. @subsection Execution of Hybrid Vector Scaling
  840. The Makefile given at the beginning of the section must be extended to
  841. give the rules to compile the CUDA source code. Note that the source
  842. file of the OpenCL kernel does not need to be compiled now, it will
  843. be compiled at run-time when calling the function
  844. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  845. @cartouche
  846. @smallexample
  847. CFLAGS += $(shell pkg-config --cflags libstarpu)
  848. LDFLAGS += $(shell pkg-config --libs libstarpu)
  849. CC = gcc
  850. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  851. %.o: %.cu
  852. nvcc $(CFLAGS) $< -c $@
  853. clean:
  854. rm -f vector_scal *.o
  855. @end smallexample
  856. @end cartouche
  857. @smallexample
  858. % make
  859. @end smallexample
  860. and to execute it, with the default configuration:
  861. @smallexample
  862. % ./vector_scal
  863. 0.000000 3.000000 6.000000 9.000000 12.000000
  864. @end smallexample
  865. or for example, by disabling CPU devices:
  866. @smallexample
  867. % STARPU_NCPUS=0 ./vector_scal
  868. 0.000000 3.000000 6.000000 9.000000 12.000000
  869. @end smallexample
  870. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  871. see @ref{Using accelerators}):
  872. @smallexample
  873. % STARPU_NCUDA=0 ./vector_scal
  874. 0.000000 3.000000 6.000000 9.000000 12.000000
  875. @end smallexample
  876. @node Task and Worker Profiling
  877. @section Task and Worker Profiling
  878. A full example showing how to use the profiling API is available in
  879. the StarPU sources in the directory @code{examples/profiling/}.
  880. @cartouche
  881. @smallexample
  882. struct starpu_task *task = starpu_task_create();
  883. task->cl = &cl;
  884. task->synchronous = 1;
  885. /* We will destroy the task structure by hand so that we can
  886. * query the profiling info before the task is destroyed. */
  887. task->destroy = 0;
  888. /* Submit and wait for completion (since synchronous was set to 1) */
  889. starpu_task_submit(task);
  890. /* The task is finished, get profiling information */
  891. struct starpu_task_profiling_info *info = task->profiling_info;
  892. /* How much time did it take before the task started ? */
  893. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  894. /* How long was the task execution ? */
  895. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  896. /* We don't need the task structure anymore */
  897. starpu_task_destroy(task);
  898. @end smallexample
  899. @end cartouche
  900. @cartouche
  901. @smallexample
  902. /* Display the occupancy of all workers during the test */
  903. int worker;
  904. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  905. @{
  906. struct starpu_worker_profiling_info worker_info;
  907. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  908. STARPU_ASSERT(!ret);
  909. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  910. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  911. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  912. float executing_ratio = 100.0*executing_time/total_time;
  913. float sleeping_ratio = 100.0*sleeping_time/total_time;
  914. char workername[128];
  915. starpu_worker_get_name(worker, workername, 128);
  916. fprintf(stderr, "Worker %s:\n", workername);
  917. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  918. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  919. executing_ratio);
  920. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  921. sleeping_ratio);
  922. @}
  923. @end smallexample
  924. @end cartouche
  925. @node Partitioning Data
  926. @section Partitioning Data
  927. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  928. @cartouche
  929. @smallexample
  930. int vector[NX];
  931. starpu_data_handle handle;
  932. /* Declare data to StarPU */
  933. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  934. /* Partition the vector in PARTS sub-vectors */
  935. starpu_filter f =
  936. @{
  937. .filter_func = starpu_block_filter_func_vector,
  938. .nchildren = PARTS,
  939. .get_nchildren = NULL,
  940. .get_child_ops = NULL
  941. @};
  942. starpu_data_partition(handle, &f);
  943. @end smallexample
  944. @end cartouche
  945. @cartouche
  946. @smallexample
  947. /* Submit a task on each sub-vector */
  948. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  949. /* Get subdata number i (there is only 1 dimension) */
  950. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  951. struct starpu_task *task = starpu_task_create();
  952. task->buffers[0].handle = sub_handle;
  953. task->buffers[0].mode = STARPU_RW;
  954. task->cl = &cl;
  955. task->synchronous = 1;
  956. task->cl_arg = &factor;
  957. task->cl_arg_size = sizeof(factor);
  958. starpu_task_submit(task);
  959. @}
  960. @end smallexample
  961. @end cartouche
  962. Partitioning can be applied several times, see
  963. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  964. @node Performance model example
  965. @section Performance model example
  966. To achieve good scheduling, StarPU scheduling policies need to be able to
  967. estimate in advance the duration of a task. This is done by giving to codelets a
  968. performance model. There are several kinds of performance models.
  969. @itemize
  970. @item
  971. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  972. see for instance
  973. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  974. @item
  975. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  976. given set of data input/output sizes, the performance will always be about the
  977. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  978. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  979. few different sets of data input/output sizes. StarPU will then keep record of
  980. the average time of previous executions on the various processing units, and use
  981. it as an estimation. History is done per task size, by using a hash of the input
  982. and ouput sizes as an index.
  983. It will also save it in @code{~/.starpu/sampling/codelets}
  984. for further executions, and can be observed by using the
  985. @code{starpu_perfmodel_display} command. The following is a small code example.
  986. @cartouche
  987. @smallexample
  988. static struct starpu_perfmodel_t mult_perf_model = @{
  989. .type = STARPU_HISTORY_BASED,
  990. .symbol = "mult_perf_model"
  991. @};
  992. starpu_codelet cl = @{
  993. .where = STARPU_CPU,
  994. .cpu_func = cpu_mult,
  995. .nbuffers = 3,
  996. /* for the scheduling policy to be able to use performance models */
  997. .model = &mult_perf_model
  998. @};
  999. @end smallexample
  1000. @end cartouche
  1001. @item
  1002. Measured at runtime and refined by regression (STARPU_REGRESSION_*_BASED
  1003. model type). This still assumes performance regularity, but can work
  1004. with various data input sizes, by applying regression over observed
  1005. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  1006. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  1007. STARPU_REGRESSION_BASED, but costs a lot more to compute)
  1008. @item
  1009. Provided explicitly by the application (STARPU_PER_ARCH model type): the
  1010. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  1011. functions which return the expected duration of the task in micro-seconds, one
  1012. per architecture.
  1013. @end itemize
  1014. How to use schedulers which can benefit from such performance model is explained
  1015. in @ref{Task scheduling policy}.
  1016. The same can be done for task power consumption estimation, by setting the
  1017. @code{power_model} field the same way as the @code{model} field. Note: for
  1018. now, the application has to give to the power consumption performance model
  1019. a name which is different from the execution time performance model.
  1020. @node Theoretical lower bound on execution time
  1021. @section Theoretical lower bound on execution time
  1022. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  1023. bound for the execution time of a whole set of tasks. See for
  1024. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  1025. call @code{starpu_bound_start}, and after complete execution, call
  1026. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  1027. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  1028. problem corresponding to the schedule of your tasks. Run it through
  1029. @code{lp_solve} or any other linear programming solver, and that will give you a
  1030. lower bound for the total execution time of your tasks. If StarPU was compiled
  1031. with the glpk library installed, @code{starpu_bound_compute} can be used to
  1032. solve it immediately and get the optimized minimum. Its @code{integer}
  1033. parameter allows to decide whether integer resolution should be computed
  1034. and returned.
  1035. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  1036. dependencies into account. It must be understood that the linear programming
  1037. problem size is quadratic with the number of tasks and thus the time to solve it
  1038. will be very long, it could be minutes for just a few dozen tasks. You should
  1039. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  1040. problem to MPS format and then use a better solver, @code{glpsol} might be
  1041. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1042. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1043. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1044. of @code{lp_solve}. For instance, we often just use
  1045. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1046. the @code{-gr} option can also be quite useful.
  1047. Setting @code{deps} to 0 will only take into account the actual computations
  1048. on processing units. It however still properly takes into account the varying
  1049. performances of kernels and processing units, which is quite more accurate than
  1050. just comparing StarPU performances with the fastest of the kernels being used.
  1051. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1052. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1053. tasks before less prioritized tasks, to check to which extend this results
  1054. to a less optimal solution. This increases even more computation time.
  1055. Note that for simplicity, all this however doesn't take into account data
  1056. transfers, which are assumed to be completely overlapped.
  1057. @node Insert Task Utility
  1058. @section Insert Task Utility
  1059. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1060. the creation and submission of tasks.
  1061. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1062. Create and submit a task corresponding to @var{cl} with the following
  1063. arguments. The argument list must be zero-terminated.
  1064. The arguments following the codelets can be of the following types:
  1065. @itemize
  1066. @item
  1067. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1068. @item
  1069. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1070. the size of the constant;
  1071. @item
  1072. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1073. @item
  1074. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1075. argument to the callback function;
  1076. @item
  1077. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1078. @end itemize
  1079. Parameters to be passed to the codelet implementation are defined
  1080. through the type @code{STARPU_VALUE}. The function
  1081. @code{starpu_unpack_cl_args} must be called within the codelet
  1082. implementation to retrieve them.
  1083. @end deftypefun
  1084. Here the implementation of the codelet:
  1085. @smallexample
  1086. void func_cpu(void *descr[], void *_args)
  1087. @{
  1088. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1089. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1090. int ifactor;
  1091. float ffactor;
  1092. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1093. *x0 = *x0 * ifactor;
  1094. *x1 = *x1 * ffactor;
  1095. @}
  1096. starpu_codelet mycodelet = @{
  1097. .where = STARPU_CPU,
  1098. .cpu_func = func_cpu,
  1099. .nbuffers = 2
  1100. @};
  1101. @end smallexample
  1102. And the call to the @code{starpu_insert_task} wrapper:
  1103. @smallexample
  1104. starpu_insert_task(&mycodelet,
  1105. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1106. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1107. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1108. 0);
  1109. @end smallexample
  1110. The call to @code{starpu_insert_task} is equivalent to the following
  1111. code:
  1112. @smallexample
  1113. struct starpu_task *task = starpu_task_create();
  1114. task->cl = &mycodelet;
  1115. task->buffers[0].handle = data_handles[0];
  1116. task->buffers[0].mode = STARPU_RW;
  1117. task->buffers[1].handle = data_handles[1];
  1118. task->buffers[1].mode = STARPU_RW;
  1119. char *arg_buffer;
  1120. size_t arg_buffer_size;
  1121. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1122. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1123. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1124. 0);
  1125. task->cl_arg = arg_buffer;
  1126. task->cl_arg_size = arg_buffer_size;
  1127. int ret = starpu_task_submit(task);
  1128. @end smallexample
  1129. @node Debugging
  1130. @section Debugging
  1131. StarPU provides several tools to help debugging aplications. Execution traces
  1132. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1133. gdb helpers are also provided to show the whole StarPU state:
  1134. @smallexample
  1135. (gdb) source tools/gdbinit
  1136. (gdb) help starpu
  1137. @end smallexample
  1138. @node More examples
  1139. @section More examples
  1140. More examples are available in the StarPU sources in the @code{examples/}
  1141. directory. Simple examples include:
  1142. @table @asis
  1143. @item @code{incrementer/}:
  1144. Trivial incrementation test.
  1145. @item @code{basic_examples/}:
  1146. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1147. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1148. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1149. interface, and an example using the variable data interface.
  1150. @item @code{matvecmult/}:
  1151. OpenCL example from NVidia, adapted to StarPU.
  1152. @item @code{axpy/}:
  1153. AXPY CUBLAS operation adapted to StarPU.
  1154. @item @code{fortran/}:
  1155. Example of Fortran bindings.
  1156. @end table
  1157. More advanced examples include:
  1158. @table @asis
  1159. @item @code{filters/}:
  1160. Examples using filters, as shown in @ref{Partitioning Data}.
  1161. @item @code{lu/}:
  1162. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1163. @item @code{cholesky/}:
  1164. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1165. @end table
  1166. @c ---------------------------------------------------------------------
  1167. @c Performance options
  1168. @c ---------------------------------------------------------------------
  1169. @node Performance optimization
  1170. @chapter How to optimize performance with StarPU
  1171. TODO: improve!
  1172. @menu
  1173. * Data management::
  1174. * Task submission::
  1175. * Task priorities::
  1176. * Task scheduling policy::
  1177. * Task distribution vs Data transfer::
  1178. * Data prefetch::
  1179. * Power-based scheduling::
  1180. * Profiling::
  1181. * CUDA-specific optimizations::
  1182. @end menu
  1183. Simply encapsulating application kernels into tasks already permits to
  1184. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1185. few additional changes are needed.
  1186. @node Data management
  1187. @section Data management
  1188. When the application allocates data, whenever possible it should use the
  1189. @code{starpu_malloc} function, which will ask CUDA or
  1190. OpenCL to make the allocation itself and pin the corresponding allocated
  1191. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1192. transfer to overlap with computations.
  1193. By default, StarPU leaves replicates of data wherever they were used, in case they
  1194. will be re-used by other tasks, thus saving the data transfer time. When some
  1195. task modifies some data, all the other replicates are invalidated, and only the
  1196. processing unit which ran that task will have a valid replicate of the data. If the application knows
  1197. that this data will not be re-used by further tasks, it should advise StarPU to
  1198. immediately replicate it to a desired list of memory nodes (given through a
  1199. bitmask). This can be understood like the write-through mode of CPU caches.
  1200. @example
  1201. starpu_data_set_wt_mask(img_handle, 1<<0);
  1202. @end example
  1203. will for instance request to always transfer a replicate into the main memory (node
  1204. 0), as bit 0 of the write-through bitmask is being set.
  1205. @node Task submission
  1206. @section Task submission
  1207. To let StarPU make online optimizations, tasks should be submitted
  1208. asynchronously as much as possible. Ideally, all the tasks should be
  1209. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1210. @code{starpu_data_unregister} be done to wait for
  1211. termination. StarPU will then be able to rework the whole schedule, overlap
  1212. computation with communication, manage accelerator local memory usage, etc.
  1213. @node Task priorities
  1214. @section Task priorities
  1215. By default, StarPU will consider the tasks in the order they are submitted by
  1216. the application. If the application programmer knows that some tasks should
  1217. be performed in priority (for instance because their output is needed by many
  1218. other tasks and may thus be a bottleneck if not executed early enough), the
  1219. @code{priority} field of the task structure should be set to transmit the
  1220. priority information to StarPU.
  1221. @node Task scheduling policy
  1222. @section Task scheduling policy
  1223. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1224. because it provides correct load balance even if the application codelets do not
  1225. have performance models. If your application codelets have performance models
  1226. (@pxref{Performance model example} for examples showing how to do it),
  1227. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1228. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1229. the list of available schedulers.
  1230. @c TODO: give some details about each scheduler.
  1231. Most schedulers are based on an estimation of codelet duration on each kind
  1232. of processing unit. For this to be possible, the application programmer needs
  1233. to configure a performance model for the codelets of the application (see
  1234. @ref{Performance model example} for instance). History-based performance models
  1235. use on-line calibration. StarPU will automatically calibrate codelets
  1236. which have never been calibrated yet. To force continuing calibration, use
  1237. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1238. has not-so-stable performance. Details on the current performance model status
  1239. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1240. option lists the available performance models, and the @code{-s} option permits
  1241. to choose the performance model to be displayed. The result looks like:
  1242. @example
  1243. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1244. performance model for cpu
  1245. # hash size mean dev n
  1246. 5c6c3401 1572864 1.216300e+04 2.277778e+03 1240
  1247. @end example
  1248. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1249. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1250. 1240 samples. It is a good idea to check this before doing actual performance
  1251. measurements.
  1252. If a kernel source code was modified (e.g. performance improvement), the
  1253. calibration information is stale and should be dropped, to re-calibrate from
  1254. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1255. Note: due to CUDA limitations, to be able to measure kernel duration,
  1256. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1257. disables data transfer / computation overlapping, and should thus not be used
  1258. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1259. only if a performance-model-based scheduler is chosen.
  1260. @node Task distribution vs Data transfer
  1261. @section Task distribution vs Data transfer
  1262. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1263. thus needs to find a balance between both. The target function that the
  1264. @code{dmda} scheduler of StarPU
  1265. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1266. @code{T_execution} is the estimated execution time of the codelet (usually
  1267. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1268. latter is estimated based on bus calibration before execution start,
  1269. i.e. with an idle machine, thus without contention. You can force bus re-calibration by running
  1270. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1271. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance,
  1272. since during real application execution, contention makes transfer times bigger.
  1273. This is of course imprecise, but in practice, a rough estimation already gives
  1274. the good results that a precise estimation would give.
  1275. @node Data prefetch
  1276. @section Data prefetch
  1277. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1278. as soon as a scheduling decision is taken for a task, requests are issued to
  1279. transfer its required data to the target processing unit, if needeed, so that
  1280. when the processing unit actually starts the task, its data will hopefully be
  1281. already available and it will not have to wait for the transfer to finish.
  1282. The application may want to perform some manual prefetching, for several reasons
  1283. such as excluding initial data transfers from performance measurements, or
  1284. setting up an initial statically-computed data distribution on the machine
  1285. before submitting tasks, which will thus guide StarPU toward an initial task
  1286. distribution (since StarPU will try to avoid further transfers).
  1287. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1288. the handle and the desired target memory node.
  1289. @node Power-based scheduling
  1290. @section Power-based scheduling
  1291. If the application can provide some power performance model (through
  1292. the @code{power_model} field of the codelet structure), StarPU will
  1293. take it into account when distributing tasks. The target function that
  1294. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1295. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1296. is the estimated task consumption in Joules. To tune this parameter, use
  1297. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1298. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1299. @code{alpha} and @code{beta} to zero permits to only take into account power consumption.
  1300. This is however not sufficient to correctly optimize power: the scheduler would
  1301. simply tend to run all computations on the most energy-conservative processing
  1302. unit. To account for the consumption of the whole machine (including idle
  1303. processing units), the idle power of the machine should be given by setting
  1304. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1305. be obtained from the machine power supplier.
  1306. The power actually consumed by the total execution can be displayed by setting
  1307. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1308. @node Profiling
  1309. @section Profiling
  1310. A quick view of how many tasks each worker has executed can be obtained by setting
  1311. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1312. execution did happen on accelerators without penalizing performance with
  1313. the profiling overhead.
  1314. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1315. calling @code{starpu_profiling_status_set} from the source code.
  1316. Statistics on the execution can then be obtained by using @code{export
  1317. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1318. More details on performance feedback are provided by the next chapter.
  1319. @node CUDA-specific optimizations
  1320. @section CUDA-specific optimizations
  1321. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1322. communications and the codelet computations if the application does not use a
  1323. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1324. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1325. operations. For instance:
  1326. @example
  1327. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1328. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1329. @end example
  1330. Unfortunately, some CUDA libraries do not have stream variants of
  1331. kernels. That will lower the potential for overlapping.
  1332. @c ---------------------------------------------------------------------
  1333. @c Performance feedback
  1334. @c ---------------------------------------------------------------------
  1335. @node Performance feedback
  1336. @chapter Performance feedback
  1337. @menu
  1338. * On-line:: On-line performance feedback
  1339. * Off-line:: Off-line performance feedback
  1340. * Codelet performance:: Performance of codelets
  1341. @end menu
  1342. @node On-line
  1343. @section On-line performance feedback
  1344. @menu
  1345. * Enabling monitoring:: Enabling on-line performance monitoring
  1346. * Task feedback:: Per-task feedback
  1347. * Codelet feedback:: Per-codelet feedback
  1348. * Worker feedback:: Per-worker feedback
  1349. * Bus feedback:: Bus-related feedback
  1350. @end menu
  1351. @node Enabling monitoring
  1352. @subsection Enabling on-line performance monitoring
  1353. In order to enable online performance monitoring, the application can call
  1354. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1355. detect whether monitoring is already enabled or not by calling
  1356. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1357. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1358. can also be set to 1 to achieve the same effect.
  1359. Likewise, performance monitoring is stopped by calling
  1360. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1361. does not reset the performance counters so that the application may consult
  1362. them later on.
  1363. More details about the performance monitoring API are available in section
  1364. @ref{Profiling API}.
  1365. @node Task feedback
  1366. @subsection Per-task feedback
  1367. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1368. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1369. structure when a task terminates.
  1370. This structure is automatically destroyed when the task structure is destroyed,
  1371. either automatically or by calling @code{starpu_task_destroy}.
  1372. The @code{starpu_task_profiling_info} structure indicates the date when the
  1373. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1374. terminated (@code{end_time}), relative to the initialization of
  1375. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1376. that has executed the task (@code{workerid}).
  1377. These date are stored as @code{timespec} structures which the user may convert
  1378. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1379. function.
  1380. It it worth noting that the application may directly access this structure from
  1381. the callback executed at the end of the task. The @code{starpu_task} structure
  1382. associated to the callback currently being executed is indeed accessible with
  1383. the @code{starpu_get_current_task()} function.
  1384. @node Codelet feedback
  1385. @subsection Per-codelet feedback
  1386. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1387. an array of counters. The i-th entry of the array is incremented every time a
  1388. task implementing the codelet is executed on the i-th worker.
  1389. This array is not reinitialized when profiling is enabled or disabled.
  1390. @node Worker feedback
  1391. @subsection Per-worker feedback
  1392. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1393. function is a @code{starpu_worker_profiling_info} structure that gives
  1394. statistics about the specified worker. This structure specifies when StarPU
  1395. started collecting profiling information for that worker (@code{start_time}),
  1396. the duration of the profiling measurement interval (@code{total_time}), the
  1397. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1398. because there is no task to execute at all (@code{sleeping_time}), and the
  1399. number of tasks that were executed while profiling was enabled.
  1400. These values give an estimation of the proportion of time spent do real work,
  1401. and the time spent either sleeping because there are not enough executable
  1402. tasks or simply wasted in pure StarPU overhead.
  1403. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1404. information associated to a worker.
  1405. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1406. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1407. generate a graphic showing the evolution of these values during the time, for
  1408. the different workers.
  1409. @node Bus feedback
  1410. @subsection Bus-related feedback
  1411. TODO
  1412. @c how to enable/disable performance monitoring
  1413. @c what kind of information do we get ?
  1414. @node Off-line
  1415. @section Off-line performance feedback
  1416. @menu
  1417. * Generating traces:: Generating traces with FxT
  1418. * Gantt diagram:: Creating a Gantt Diagram
  1419. * DAG:: Creating a DAG with graphviz
  1420. * starpu-top:: Monitoring activity
  1421. @end menu
  1422. @node Generating traces
  1423. @subsection Generating traces with FxT
  1424. StarPU can use the FxT library (see
  1425. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1426. with a limited runtime overhead.
  1427. You can either get the FxT library from CVS (autotools are required):
  1428. @example
  1429. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1430. % ./bootstrap
  1431. @end example
  1432. If autotools are not available on your machine, or if you prefer to do so,
  1433. FxT's code is also available as a tarball:
  1434. @example
  1435. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1436. @end example
  1437. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1438. done following the standard procedure:
  1439. @example
  1440. % ./configure --prefix=$FXTDIR
  1441. % make
  1442. % make install
  1443. @end example
  1444. In order to have StarPU to generate traces, StarPU should be configured with
  1445. the @code{--with-fxt} option:
  1446. @example
  1447. $ ./configure --with-fxt=$FXTDIR
  1448. @end example
  1449. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1450. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1451. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1452. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1453. @code{/tmp/} directory by default, or by the directory specified by
  1454. the @code{STARPU_FXT_PREFIX} environment variable.
  1455. @node Gantt diagram
  1456. @subsection Creating a Gantt Diagram
  1457. When the FxT trace file @code{filename} has been generated, it is possible to
  1458. generate a trace in the Paje format by calling:
  1459. @example
  1460. % starpu_fxt_tool -i filename
  1461. @end example
  1462. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1463. to 1 before application execution will make StarPU do it automatically at
  1464. application shutdown.
  1465. This will create a @code{paje.trace} file in the current directory that can be
  1466. inspected with the ViTE trace visualizing open-source tool. More information
  1467. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1468. possible to open the @code{paje.trace} file with ViTE by using the following
  1469. command:
  1470. @example
  1471. % vite paje.trace
  1472. @end example
  1473. @node DAG
  1474. @subsection Creating a DAG with graphviz
  1475. When the FxT trace file @code{filename} has been generated, it is possible to
  1476. generate a task graph in the DOT format by calling:
  1477. @example
  1478. $ starpu_fxt_tool -i filename
  1479. @end example
  1480. This will create a @code{dag.dot} file in the current directory. This file is a
  1481. task graph described using the DOT language. It is possible to get a
  1482. graphical output of the graph by using the graphviz library:
  1483. @example
  1484. $ dot -Tpdf dag.dot -o output.pdf
  1485. @end example
  1486. @node starpu-top
  1487. @subsection Monitoring activity
  1488. When the FxT trace file @code{filename} has been generated, it is possible to
  1489. generate a activity trace by calling:
  1490. @example
  1491. $ starpu_fxt_tool -i filename
  1492. @end example
  1493. This will create an @code{activity.data} file in the current
  1494. directory. A profile of the application showing the activity of StarPU
  1495. during the execution of the program can be generated:
  1496. @example
  1497. $ starpu_top.sh activity.data
  1498. @end example
  1499. This will create a file named @code{activity.eps} in the current directory.
  1500. This picture is composed of two parts.
  1501. The first part shows the activity of the different workers. The green sections
  1502. indicate which proportion of the time was spent executed kernels on the
  1503. processing unit. The red sections indicate the proportion of time spent in
  1504. StartPU: an important overhead may indicate that the granularity may be too
  1505. low, and that bigger tasks may be appropriate to use the processing unit more
  1506. efficiently. The black sections indicate that the processing unit was blocked
  1507. because there was no task to process: this may indicate a lack of parallelism
  1508. which may be alleviated by creating more tasks when it is possible.
  1509. The second part of the @code{activity.eps} picture is a graph showing the
  1510. evolution of the number of tasks available in the system during the execution.
  1511. Ready tasks are shown in black, and tasks that are submitted but not
  1512. schedulable yet are shown in grey.
  1513. @node Codelet performance
  1514. @section Performance of codelets
  1515. The performance model of codelets can be examined by using the
  1516. @code{starpu_perfmodel_display} tool:
  1517. @example
  1518. $ starpu_perfmodel_display -l
  1519. file: <malloc_pinned.hannibal>
  1520. file: <starpu_slu_lu_model_21.hannibal>
  1521. file: <starpu_slu_lu_model_11.hannibal>
  1522. file: <starpu_slu_lu_model_22.hannibal>
  1523. file: <starpu_slu_lu_model_12.hannibal>
  1524. @end example
  1525. Here, the codelets of the lu example are available. We can examine the
  1526. performance of the 22 kernel:
  1527. @example
  1528. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1529. performance model for cpu
  1530. # hash size mean dev n
  1531. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1532. performance model for cuda_0
  1533. # hash size mean dev n
  1534. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1535. performance model for cuda_1
  1536. # hash size mean dev n
  1537. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1538. performance model for cuda_2
  1539. # hash size mean dev n
  1540. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1541. @end example
  1542. We can see that for the given size, over a sample of a few hundreds of
  1543. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1544. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1545. CPUs.
  1546. @c ---------------------------------------------------------------------
  1547. @c MPI support
  1548. @c ---------------------------------------------------------------------
  1549. @node StarPU MPI support
  1550. @chapter StarPU MPI support
  1551. The integration of MPI transfers within task parallelism is done in a
  1552. very natural way by the means of asynchronous interactions between the
  1553. application and StarPU. This is implemented in a separate libstarpumpi library
  1554. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1555. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1556. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.
  1557. @menu
  1558. * The API::
  1559. * Simple Example::
  1560. * MPI Insert Task Utility::
  1561. @end menu
  1562. @node The API
  1563. @section The API
  1564. @subsection Initialisation
  1565. @deftypefun int starpu_mpi_initialize (void)
  1566. Initializes the starpumpi library. This must be called between calling
  1567. @code{starpu_init} and other @code{starpu_mpi} functions. This
  1568. function does not call @code{MPI_Init}, it should be called beforehand.
  1569. @end deftypefun
  1570. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  1571. Initializes the starpumpi library. This must be called between calling
  1572. @code{starpu_init} and other @code{starpu_mpi} functions.
  1573. This function calls @code{MPI_Init}, and therefore should be prefered
  1574. to the previous one for MPI implementations which are not thread-safe.
  1575. Returns the current MPI node rank and world size.
  1576. @end deftypefun
  1577. @deftypefun int starpu_mpi_shutdown (void)
  1578. Cleans the starpumpi library. This must be called between calling
  1579. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1580. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  1581. by calling @code{starpu_mpi_initialize_extended}.
  1582. @end deftypefun
  1583. @subsection Communication
  1584. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1585. @end deftypefun
  1586. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1587. @end deftypefun
  1588. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1589. @end deftypefun
  1590. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1591. @end deftypefun
  1592. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1593. @end deftypefun
  1594. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1595. @end deftypefun
  1596. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1597. @end deftypefun
  1598. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1599. @end deftypefun
  1600. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1601. @end deftypefun
  1602. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1603. When the transfer is completed, the tag is unlocked
  1604. @end deftypefun
  1605. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1606. @end deftypefun
  1607. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1608. Asynchronously send an array of buffers, and unlocks the tag once all
  1609. of them are transmitted.
  1610. @end deftypefun
  1611. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1612. @end deftypefun
  1613. @page
  1614. @node Simple Example
  1615. @section Simple Example
  1616. @cartouche
  1617. @smallexample
  1618. void increment_token(void)
  1619. @{
  1620. struct starpu_task *task = starpu_task_create();
  1621. task->cl = &increment_cl;
  1622. task->buffers[0].handle = token_handle;
  1623. task->buffers[0].mode = STARPU_RW;
  1624. starpu_task_submit(task);
  1625. @}
  1626. @end smallexample
  1627. @end cartouche
  1628. @cartouche
  1629. @smallexample
  1630. int main(int argc, char **argv)
  1631. @{
  1632. int rank, size;
  1633. starpu_init(NULL);
  1634. starpu_mpi_initialize_extended(&rank, &size);
  1635. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1636. unsigned nloops = NITER;
  1637. unsigned loop;
  1638. unsigned last_loop = nloops - 1;
  1639. unsigned last_rank = size - 1;
  1640. @end smallexample
  1641. @end cartouche
  1642. @cartouche
  1643. @smallexample
  1644. for (loop = 0; loop < nloops; loop++) @{
  1645. int tag = loop*size + rank;
  1646. if (loop == 0 && rank == 0)
  1647. @{
  1648. token = 0;
  1649. fprintf(stdout, "Start with token value %d\n", token);
  1650. @}
  1651. else
  1652. @{
  1653. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1654. MPI_COMM_WORLD, NULL, NULL);
  1655. @}
  1656. increment_token();
  1657. if (loop == last_loop && rank == last_rank)
  1658. @{
  1659. starpu_data_acquire(token_handle, STARPU_R);
  1660. fprintf(stdout, "Finished : token value %d\n", token);
  1661. starpu_data_release(token_handle);
  1662. @}
  1663. else
  1664. @{
  1665. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1666. MPI_COMM_WORLD, NULL, NULL);
  1667. @}
  1668. @}
  1669. starpu_task_wait_for_all();
  1670. @end smallexample
  1671. @end cartouche
  1672. @cartouche
  1673. @smallexample
  1674. starpu_mpi_shutdown();
  1675. starpu_shutdown();
  1676. if (rank == last_rank)
  1677. @{
  1678. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1679. STARPU_ASSERT(token == nloops*size);
  1680. @}
  1681. @end smallexample
  1682. @end cartouche
  1683. @page
  1684. @node MPI Insert Task Utility
  1685. @section MPI Insert Task Utility
  1686. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1687. Create and submit a task corresponding to @var{cl} with the following
  1688. arguments. The argument list must be zero-terminated.
  1689. The arguments following the codelets are the same types as for the
  1690. function @code{starpu_insert_task} defined in @ref{Insert Task
  1691. Utility}. The extra argument @code{STARPU_EXECUTE} followed by an
  1692. integer allows to specify the node to execute the codelet.
  1693. The algorithm is as follows:
  1694. @enumerate
  1695. @item Find out whether we are to execute the codelet because we own the
  1696. data to be written to. If different tasks own data to be written to,
  1697. the argument @code{STARPU_EXECUTE} should be used to specify the
  1698. executing task @code{ET}.
  1699. @item Send and receive data as requested. Tasks owning data which need
  1700. to be read by the executing task @code{ET} are sending them to @code{ET}.
  1701. @item Execute the codelet. This is done by the task selected in the
  1702. 1st step of the algorithm.
  1703. @item In the case when different tasks own data to be written to, send
  1704. W data back to their owners.
  1705. @end enumerate
  1706. The algorithm also includes a cache mechanism that allows not to send
  1707. data twice to the same task, unless the data has been modified.
  1708. @end deftypefun
  1709. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1710. @end deftypefun
  1711. @page
  1712. Here an example showing how to use @code{starpu_mpi_insert_task}. One
  1713. first needs to define a distribution function which specifies the
  1714. locality of the data. Note that that distribution information needs to
  1715. be given to StarPU by calling @code{starpu_data_set_rank}.
  1716. @cartouche
  1717. @smallexample
  1718. /* Returns the MPI node number where data is */
  1719. int my_distrib(int x, int y, int nb_nodes) @{
  1720. /* Cyclic distrib */
  1721. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  1722. // /* Linear distrib */
  1723. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  1724. @}
  1725. @end smallexample
  1726. @end cartouche
  1727. Now the data can be registered within StarPU. Data which are not
  1728. owned but will be needed for computations can be registered through
  1729. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  1730. StarPU will automatically allocate the memory when it is used for the
  1731. first time.
  1732. @cartouche
  1733. @smallexample
  1734. unsigned matrix[X][Y];
  1735. starpu_data_handle data_handles[X][Y];
  1736. for(x = 0; x < X; x++) @{
  1737. for (y = 0; y < Y; y++) @{
  1738. int mpi_rank = my_distrib(x, y, size);
  1739. if (mpi_rank == rank)
  1740. /* Owning data */
  1741. starpu_variable_data_register(&data_handles[x][y], 0,
  1742. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  1743. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  1744. /* I don't own that index, but will need it for my computations */
  1745. starpu_variable_data_register(&data_handles[x][y], -1,
  1746. (uintptr_t)NULL, sizeof(unsigned));
  1747. else
  1748. /* I know it's useless to allocate anything for this */
  1749. data_handles[x][y] = NULL;
  1750. if (data_handles[x][y])
  1751. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  1752. @}
  1753. @}
  1754. @end smallexample
  1755. @end cartouche
  1756. Now @code{starpu_mpi_insert_task()} can be called for the different
  1757. steps of the application.
  1758. @cartouche
  1759. @smallexample
  1760. for(loop=0 ; loop<niter; loop++)
  1761. for (x = 1; x < X-1; x++)
  1762. for (y = 1; y < Y-1; y++)
  1763. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  1764. STARPU_RW, data_handles[x][y],
  1765. STARPU_R, data_handles[x-1][y],
  1766. STARPU_R, data_handles[x+1][y],
  1767. STARPU_R, data_handles[x][y-1],
  1768. STARPU_R, data_handles[x][y+1],
  1769. 0);
  1770. starpu_task_wait_for_all();
  1771. @end smallexample
  1772. @end cartouche
  1773. @c ---------------------------------------------------------------------
  1774. @c Configuration options
  1775. @c ---------------------------------------------------------------------
  1776. @node Configuring StarPU
  1777. @chapter Configuring StarPU
  1778. @menu
  1779. * Compilation configuration::
  1780. * Execution configuration through environment variables::
  1781. @end menu
  1782. @node Compilation configuration
  1783. @section Compilation configuration
  1784. The following arguments can be given to the @code{configure} script.
  1785. @menu
  1786. * Common configuration::
  1787. * Configuring workers::
  1788. * Advanced configuration::
  1789. @end menu
  1790. @node Common configuration
  1791. @subsection Common configuration
  1792. @menu
  1793. * --enable-debug::
  1794. * --enable-fast::
  1795. * --enable-verbose::
  1796. * --enable-coverage::
  1797. @end menu
  1798. @node --enable-debug
  1799. @subsubsection @code{--enable-debug}
  1800. @table @asis
  1801. @item @emph{Description}:
  1802. Enable debugging messages.
  1803. @end table
  1804. @node --enable-fast
  1805. @subsubsection @code{--enable-fast}
  1806. @table @asis
  1807. @item @emph{Description}:
  1808. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1809. @end table
  1810. @node --enable-verbose
  1811. @subsubsection @code{--enable-verbose}
  1812. @table @asis
  1813. @item @emph{Description}:
  1814. Augment the verbosity of the debugging messages. This can be disabled
  1815. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1816. any value.
  1817. @smallexample
  1818. % STARPU_SILENT=1 ./vector_scal
  1819. @end smallexample
  1820. @end table
  1821. @node --enable-coverage
  1822. @subsubsection @code{--enable-coverage}
  1823. @table @asis
  1824. @item @emph{Description}:
  1825. Enable flags for the @code{gcov} coverage tool.
  1826. @end table
  1827. @node Configuring workers
  1828. @subsection Configuring workers
  1829. @menu
  1830. * --enable-nmaxcpus::
  1831. * --disable-cpu::
  1832. * --enable-maxcudadev::
  1833. * --disable-cuda::
  1834. * --with-cuda-dir::
  1835. * --with-cuda-include-dir::
  1836. * --with-cuda-lib-dir::
  1837. * --enable-maxopencldev::
  1838. * --disable-opencl::
  1839. * --with-opencl-dir::
  1840. * --with-opencl-include-dir::
  1841. * --with-opencl-lib-dir::
  1842. * --enable-gordon::
  1843. * --with-gordon-dir::
  1844. @end menu
  1845. @node --enable-nmaxcpus
  1846. @subsubsection @code{--enable-nmaxcpus=<number>}
  1847. @table @asis
  1848. @item @emph{Description}:
  1849. Defines the maximum number of CPU cores that StarPU will support, then
  1850. available as the @code{STARPU_NMAXCPUS} macro.
  1851. @end table
  1852. @node --disable-cpu
  1853. @subsubsection @code{--disable-cpu}
  1854. @table @asis
  1855. @item @emph{Description}:
  1856. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1857. @end table
  1858. @node --enable-maxcudadev
  1859. @subsubsection @code{--enable-maxcudadev=<number>}
  1860. @table @asis
  1861. @item @emph{Description}:
  1862. Defines the maximum number of CUDA devices that StarPU will support, then
  1863. available as the @code{STARPU_MAXCUDADEVS} macro.
  1864. @end table
  1865. @node --disable-cuda
  1866. @subsubsection @code{--disable-cuda}
  1867. @table @asis
  1868. @item @emph{Description}:
  1869. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1870. @end table
  1871. @node --with-cuda-dir
  1872. @subsubsection @code{--with-cuda-dir=<path>}
  1873. @table @asis
  1874. @item @emph{Description}:
  1875. Specify the directory where CUDA is installed. This directory should notably contain
  1876. @code{include/cuda.h}.
  1877. @end table
  1878. @node --with-cuda-include-dir
  1879. @subsubsection @code{--with-cuda-include-dir=<path>}
  1880. @table @asis
  1881. @item @emph{Description}:
  1882. Specify the directory where CUDA headers are installed. This directory should
  1883. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1884. value given to @code{--with-cuda-dir}.
  1885. @end table
  1886. @node --with-cuda-lib-dir
  1887. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1888. @table @asis
  1889. @item @emph{Description}:
  1890. Specify the directory where the CUDA library is installed. This directory should
  1891. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1892. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1893. @end table
  1894. @node --enable-maxopencldev
  1895. @subsubsection @code{--enable-maxopencldev=<number>}
  1896. @table @asis
  1897. @item @emph{Description}:
  1898. Defines the maximum number of OpenCL devices that StarPU will support, then
  1899. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1900. @end table
  1901. @node --disable-opencl
  1902. @subsubsection @code{--disable-opencl}
  1903. @table @asis
  1904. @item @emph{Description}:
  1905. Disable the use of OpenCL, even if the SDK is detected.
  1906. @end table
  1907. @node --with-opencl-dir
  1908. @subsubsection @code{--with-opencl-dir=<path>}
  1909. @table @asis
  1910. @item @emph{Description}:
  1911. Specify the location of the OpenCL SDK. This directory should notably contain
  1912. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1913. @end table
  1914. @node --with-opencl-include-dir
  1915. @subsubsection @code{--with-opencl-include-dir=<path>}
  1916. @table @asis
  1917. @item @emph{Description}:
  1918. Specify the location of OpenCL headers. This directory should notably contain
  1919. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1920. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1921. @end table
  1922. @node --with-opencl-lib-dir
  1923. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1924. @table @asis
  1925. @item @emph{Description}:
  1926. Specify the location of the OpenCL library. This directory should notably
  1927. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1928. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1929. @end table
  1930. @node --enable-gordon
  1931. @subsubsection @code{--enable-gordon}
  1932. @table @asis
  1933. @item @emph{Description}:
  1934. Enable the use of the Gordon runtime for Cell SPUs.
  1935. @c TODO: rather default to enabled when detected
  1936. @end table
  1937. @node --with-gordon-dir
  1938. @subsubsection @code{--with-gordon-dir=<path>}
  1939. @table @asis
  1940. @item @emph{Description}:
  1941. Specify the location of the Gordon SDK.
  1942. @end table
  1943. @node Advanced configuration
  1944. @subsection Advanced configuration
  1945. @menu
  1946. * --enable-perf-debug::
  1947. * --enable-model-debug::
  1948. * --enable-stats::
  1949. * --enable-maxbuffers::
  1950. * --enable-allocation-cache::
  1951. * --enable-opengl-render::
  1952. * --enable-blas-lib::
  1953. * --with-magma::
  1954. * --with-fxt::
  1955. * --with-perf-model-dir::
  1956. * --with-mpicc::
  1957. * --with-goto-dir::
  1958. * --with-atlas-dir::
  1959. * --with-mkl-cflags::
  1960. * --with-mkl-ldflags::
  1961. @end menu
  1962. @node --enable-perf-debug
  1963. @subsubsection @code{--enable-perf-debug}
  1964. @table @asis
  1965. @item @emph{Description}:
  1966. Enable performance debugging.
  1967. @end table
  1968. @node --enable-model-debug
  1969. @subsubsection @code{--enable-model-debug}
  1970. @table @asis
  1971. @item @emph{Description}:
  1972. Enable performance model debugging.
  1973. @end table
  1974. @node --enable-stats
  1975. @subsubsection @code{--enable-stats}
  1976. @table @asis
  1977. @item @emph{Description}:
  1978. Enable statistics.
  1979. @end table
  1980. @node --enable-maxbuffers
  1981. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1982. @table @asis
  1983. @item @emph{Description}:
  1984. Define the maximum number of buffers that tasks will be able to take
  1985. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1986. @end table
  1987. @node --enable-allocation-cache
  1988. @subsubsection @code{--enable-allocation-cache}
  1989. @table @asis
  1990. @item @emph{Description}:
  1991. Enable the use of a data allocation cache to avoid the cost of it with
  1992. CUDA. Still experimental.
  1993. @end table
  1994. @node --enable-opengl-render
  1995. @subsubsection @code{--enable-opengl-render}
  1996. @table @asis
  1997. @item @emph{Description}:
  1998. Enable the use of OpenGL for the rendering of some examples.
  1999. @c TODO: rather default to enabled when detected
  2000. @end table
  2001. @node --enable-blas-lib
  2002. @subsubsection @code{--enable-blas-lib=<name>}
  2003. @table @asis
  2004. @item @emph{Description}:
  2005. Specify the blas library to be used by some of the examples. The
  2006. library has to be 'atlas' or 'goto'.
  2007. @end table
  2008. @node --with-magma
  2009. @subsubsection @code{--with-magma=<path>}
  2010. @table @asis
  2011. @item @emph{Description}:
  2012. Specify where magma is installed. This directory should notably contain
  2013. @code{include/magmablas.h}.
  2014. @end table
  2015. @node --with-fxt
  2016. @subsubsection @code{--with-fxt=<path>}
  2017. @table @asis
  2018. @item @emph{Description}:
  2019. Specify the location of FxT (for generating traces and rendering them
  2020. using ViTE). This directory should notably contain
  2021. @code{include/fxt/fxt.h}.
  2022. @c TODO add ref to other section
  2023. @end table
  2024. @node --with-perf-model-dir
  2025. @subsubsection @code{--with-perf-model-dir=<dir>}
  2026. @table @asis
  2027. @item @emph{Description}:
  2028. Specify where performance models should be stored (instead of defaulting to the
  2029. current user's home).
  2030. @end table
  2031. @node --with-mpicc
  2032. @subsubsection @code{--with-mpicc=<path to mpicc>}
  2033. @table @asis
  2034. @item @emph{Description}:
  2035. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  2036. @end table
  2037. @node --with-goto-dir
  2038. @subsubsection @code{--with-goto-dir=<dir>}
  2039. @table @asis
  2040. @item @emph{Description}:
  2041. Specify the location of GotoBLAS.
  2042. @end table
  2043. @node --with-atlas-dir
  2044. @subsubsection @code{--with-atlas-dir=<dir>}
  2045. @table @asis
  2046. @item @emph{Description}:
  2047. Specify the location of ATLAS. This directory should notably contain
  2048. @code{include/cblas.h}.
  2049. @end table
  2050. @node --with-mkl-cflags
  2051. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2052. @table @asis
  2053. @item @emph{Description}:
  2054. Specify the compilation flags for the MKL Library.
  2055. @end table
  2056. @node --with-mkl-ldflags
  2057. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2058. @table @asis
  2059. @item @emph{Description}:
  2060. Specify the linking flags for the MKL Library. Note that the
  2061. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2062. website provides a script to determine the linking flags.
  2063. @end table
  2064. @c ---------------------------------------------------------------------
  2065. @c Environment variables
  2066. @c ---------------------------------------------------------------------
  2067. @node Execution configuration through environment variables
  2068. @section Execution configuration through environment variables
  2069. @menu
  2070. * Workers:: Configuring workers
  2071. * Scheduling:: Configuring the Scheduling engine
  2072. * Misc:: Miscellaneous and debug
  2073. @end menu
  2074. Note: the values given in @code{starpu_conf} structure passed when
  2075. calling @code{starpu_init} will override the values of the environment
  2076. variables.
  2077. @node Workers
  2078. @subsection Configuring workers
  2079. @menu
  2080. * STARPU_NCPUS:: Number of CPU workers
  2081. * STARPU_NCUDA:: Number of CUDA workers
  2082. * STARPU_NOPENCL:: Number of OpenCL workers
  2083. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2084. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2085. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2086. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2087. @end menu
  2088. @node STARPU_NCPUS
  2089. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2090. @table @asis
  2091. @item @emph{Description}:
  2092. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2093. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2094. the accelerators.
  2095. @end table
  2096. @node STARPU_NCUDA
  2097. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2098. @table @asis
  2099. @item @emph{Description}:
  2100. Specify the number of CUDA devices that StarPU can use. If
  2101. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2102. possible to select which CUDA devices should be used by the means of the
  2103. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2104. create as many CUDA workers as there are CUDA devices.
  2105. @end table
  2106. @node STARPU_NOPENCL
  2107. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2108. @table @asis
  2109. @item @emph{Description}:
  2110. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2111. @end table
  2112. @node STARPU_NGORDON
  2113. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2114. @table @asis
  2115. @item @emph{Description}:
  2116. Specify the number of SPUs that StarPU can use.
  2117. @end table
  2118. @node STARPU_WORKERS_CPUID
  2119. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2120. @table @asis
  2121. @item @emph{Description}:
  2122. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2123. specifies on which logical CPU the different workers should be
  2124. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2125. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2126. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2127. determined by the OS, or provided by the @code{hwloc} library in case it is
  2128. available.
  2129. Note that the first workers correspond to the CUDA workers, then come the
  2130. OpenCL and the SPU, and finally the CPU workers. For example if
  2131. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2132. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2133. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2134. the logical CPUs #1 and #3 will be used by the CPU workers.
  2135. If the number of workers is larger than the array given in
  2136. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2137. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2138. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2139. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2140. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2141. @end table
  2142. @node STARPU_WORKERS_CUDAID
  2143. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2144. @table @asis
  2145. @item @emph{Description}:
  2146. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2147. possible to select which CUDA devices should be used by StarPU. On a machine
  2148. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2149. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2150. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2151. the one reported by CUDA).
  2152. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2153. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2154. @end table
  2155. @node STARPU_WORKERS_OPENCLID
  2156. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2157. @table @asis
  2158. @item @emph{Description}:
  2159. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2160. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2161. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2162. @end table
  2163. @node Scheduling
  2164. @subsection Configuring the Scheduling engine
  2165. @menu
  2166. * STARPU_SCHED:: Scheduling policy
  2167. * STARPU_CALIBRATE:: Calibrate performance models
  2168. * STARPU_PREFETCH:: Use data prefetch
  2169. * STARPU_SCHED_ALPHA:: Computation factor
  2170. * STARPU_SCHED_BETA:: Communication factor
  2171. @end menu
  2172. @node STARPU_SCHED
  2173. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2174. @table @asis
  2175. @item @emph{Description}:
  2176. This chooses between the different scheduling policies proposed by StarPU: work
  2177. random, stealing, greedy, with performance models, etc.
  2178. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2179. @end table
  2180. @node STARPU_CALIBRATE
  2181. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2182. @table @asis
  2183. @item @emph{Description}:
  2184. If this variable is set to 1, the performance models are calibrated during
  2185. the execution. If it is set to 2, the previous values are dropped to restart
  2186. calibration from scratch. Setting this variable to 0 disable calibration, this
  2187. is the default behaviour.
  2188. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2189. @end table
  2190. @node STARPU_PREFETCH
  2191. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2192. @table @asis
  2193. @item @emph{Description}:
  2194. This variable indicates whether data prefetching should be enabled (0 means
  2195. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2196. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2197. advance, so that data is already present on the GPU when the task starts. As a
  2198. result, computation and data transfers are overlapped.
  2199. Note that prefetching is enabled by default in StarPU.
  2200. @end table
  2201. @node STARPU_SCHED_ALPHA
  2202. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2203. @table @asis
  2204. @item @emph{Description}:
  2205. To estimate the cost of a task StarPU takes into account the estimated
  2206. computation time (obtained thanks to performance models). The alpha factor is
  2207. the coefficient to be applied to it before adding it to the communication part.
  2208. @end table
  2209. @node STARPU_SCHED_BETA
  2210. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2211. @table @asis
  2212. @item @emph{Description}:
  2213. To estimate the cost of a task StarPU takes into account the estimated
  2214. data transfer time (obtained thanks to performance models). The beta factor is
  2215. the coefficient to be applied to it before adding it to the computation part.
  2216. @end table
  2217. @node Misc
  2218. @subsection Miscellaneous and debug
  2219. @menu
  2220. * STARPU_SILENT:: Disable verbose mode
  2221. * STARPU_LOGFILENAME:: Select debug file name
  2222. * STARPU_FXT_PREFIX:: FxT trace location
  2223. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2224. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2225. @end menu
  2226. @node STARPU_SILENT
  2227. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2228. @table @asis
  2229. @item @emph{Description}:
  2230. This variable allows to disable verbose mode at runtime when StarPU
  2231. has been configured with the option @code{--enable-verbose}.
  2232. @end table
  2233. @node STARPU_LOGFILENAME
  2234. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2235. @table @asis
  2236. @item @emph{Description}:
  2237. This variable specifies in which file the debugging output should be saved to.
  2238. @end table
  2239. @node STARPU_FXT_PREFIX
  2240. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2241. @table @asis
  2242. @item @emph{Description}
  2243. This variable specifies in which directory to save the trace generated if FxT is enabled.
  2244. @end table
  2245. @node STARPU_LIMIT_GPU_MEM
  2246. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2247. @table @asis
  2248. @item @emph{Description}
  2249. This variable specifies the maximum number of megabytes that should be
  2250. available to the application on each GPUs. In case this value is smaller than
  2251. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2252. on the device. This variable is intended to be used for experimental purposes
  2253. as it emulates devices that have a limited amount of memory.
  2254. @end table
  2255. @node STARPU_GENERATE_TRACE
  2256. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2257. @table @asis
  2258. @item @emph{Description}
  2259. When set to 1, this variable indicates that StarPU should automatically
  2260. generate a Paje trace when starpu_shutdown is called.
  2261. @end table
  2262. @c ---------------------------------------------------------------------
  2263. @c StarPU API
  2264. @c ---------------------------------------------------------------------
  2265. @node StarPU API
  2266. @chapter StarPU API
  2267. @menu
  2268. * Initialization and Termination:: Initialization and Termination methods
  2269. * Workers' Properties:: Methods to enumerate workers' properties
  2270. * Data Library:: Methods to manipulate data
  2271. * Data Interfaces::
  2272. * Data Partition::
  2273. * Codelets and Tasks:: Methods to construct tasks
  2274. * Explicit Dependencies:: Explicit Dependencies
  2275. * Implicit Data Dependencies:: Implicit Data Dependencies
  2276. * Performance Model API::
  2277. * Profiling API:: Profiling API
  2278. * CUDA extensions:: CUDA extensions
  2279. * OpenCL extensions:: OpenCL extensions
  2280. * Cell extensions:: Cell extensions
  2281. * Miscellaneous helpers::
  2282. @end menu
  2283. @node Initialization and Termination
  2284. @section Initialization and Termination
  2285. @menu
  2286. * starpu_init:: Initialize StarPU
  2287. * struct starpu_conf:: StarPU runtime configuration
  2288. * starpu_conf_init:: Initialize starpu_conf structure
  2289. * starpu_shutdown:: Terminate StarPU
  2290. @end menu
  2291. @node starpu_init
  2292. @subsection @code{starpu_init} -- Initialize StarPU
  2293. @table @asis
  2294. @item @emph{Description}:
  2295. This is StarPU initialization method, which must be called prior to any other
  2296. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2297. policy, number of cores, ...) by passing a non-null argument. Default
  2298. configuration is used if the passed argument is @code{NULL}.
  2299. @item @emph{Return value}:
  2300. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2301. indicates that no worker was available (so that StarPU was not initialized).
  2302. @item @emph{Prototype}:
  2303. @code{int starpu_init(struct starpu_conf *conf);}
  2304. @end table
  2305. @node struct starpu_conf
  2306. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2307. @table @asis
  2308. @item @emph{Description}:
  2309. This structure is passed to the @code{starpu_init} function in order
  2310. to configure StarPU.
  2311. When the default value is used, StarPU automatically selects the number
  2312. of processing units and takes the default scheduling policy. This parameter
  2313. overwrites the equivalent environment variables.
  2314. @item @emph{Fields}:
  2315. @table @asis
  2316. @item @code{sched_policy_name} (default = NULL):
  2317. This is the name of the scheduling policy. This can also be specified with the
  2318. @code{STARPU_SCHED} environment variable.
  2319. @item @code{sched_policy} (default = NULL):
  2320. This is the definition of the scheduling policy. This field is ignored
  2321. if @code{sched_policy_name} is set.
  2322. @item @code{ncpus} (default = -1):
  2323. This is the number of CPU cores that StarPU can use. This can also be
  2324. specified with the @code{STARPU_NCPUS} environment variable.
  2325. @item @code{ncuda} (default = -1):
  2326. This is the number of CUDA devices that StarPU can use. This can also be
  2327. specified with the @code{STARPU_NCUDA} environment variable.
  2328. @item @code{nopencl} (default = -1):
  2329. This is the number of OpenCL devices that StarPU can use. This can also be
  2330. specified with the @code{STARPU_NOPENCL} environment variable.
  2331. @item @code{nspus} (default = -1):
  2332. This is the number of Cell SPUs that StarPU can use. This can also be
  2333. specified with the @code{STARPU_NGORDON} environment variable.
  2334. @item @code{use_explicit_workers_bindid} (default = 0)
  2335. If this flag is set, the @code{workers_bindid} array indicates where the
  2336. different workers are bound, otherwise StarPU automatically selects where to
  2337. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2338. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2339. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2340. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2341. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2342. where to bind the different workers. The i-th entry of the
  2343. @code{workers_bindid} indicates the logical identifier of the processor which
  2344. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2345. either determined by the OS, or provided by the @code{hwloc} library in case it
  2346. is available.
  2347. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2348. ignored.
  2349. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2350. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2351. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2352. CUDA devices in a round-robin fashion.
  2353. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2354. ignored.
  2355. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2356. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2357. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2358. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2359. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2360. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2361. OpenCL devices in a round-robin fashion.
  2362. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2363. @item @code{calibrate} (default = 0):
  2364. If this flag is set, StarPU will calibrate the performance models when
  2365. executing tasks. If this value is equal to -1, the default value is used. The
  2366. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2367. variable when it is set.
  2368. @end table
  2369. @end table
  2370. @node starpu_conf_init
  2371. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2372. @table @asis
  2373. This function initializes the @code{starpu_conf} structure passed as argument
  2374. with the default values. In case some configuration parameters are already
  2375. specified through environment variables, @code{starpu_conf_init} initializes
  2376. the fields of the structure according to the environment variables. For
  2377. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2378. @code{.ncuda} field of the structure passed as argument.
  2379. @item @emph{Return value}:
  2380. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2381. indicates that the argument was NULL.
  2382. @item @emph{Prototype}:
  2383. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2384. @end table
  2385. @node starpu_shutdown
  2386. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2387. @deftypefun void starpu_shutdown (void)
  2388. This is StarPU termination method. It must be called at the end of the
  2389. application: statistics and other post-mortem debugging information are not
  2390. guaranteed to be available until this method has been called.
  2391. @end deftypefun
  2392. @node Workers' Properties
  2393. @section Workers' Properties
  2394. @menu
  2395. * starpu_worker_get_count:: Get the number of processing units
  2396. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2397. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2398. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2399. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2400. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2401. * starpu_worker_get_id:: Get the identifier of the current worker
  2402. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2403. * starpu_worker_get_devid:: Get the device identifier of a worker
  2404. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2405. * starpu_worker_get_name:: Get the name of a worker
  2406. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2407. @end menu
  2408. @node starpu_worker_get_count
  2409. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2410. @deftypefun unsigned starpu_worker_get_count (void)
  2411. This function returns the number of workers (i.e. processing units executing
  2412. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2413. @end deftypefun
  2414. @node starpu_worker_get_count_by_type
  2415. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2416. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2417. Returns the number of workers of the type indicated by the argument. A positive
  2418. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2419. the type is not valid otherwise.
  2420. @end deftypefun
  2421. @node starpu_cpu_worker_get_count
  2422. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2423. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2424. This function returns the number of CPUs controlled by StarPU. The returned
  2425. value should be at most @code{STARPU_NMAXCPUS}.
  2426. @end deftypefun
  2427. @node starpu_cuda_worker_get_count
  2428. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2429. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2430. This function returns the number of CUDA devices controlled by StarPU. The returned
  2431. value should be at most @code{STARPU_MAXCUDADEVS}.
  2432. @end deftypefun
  2433. @node starpu_opencl_worker_get_count
  2434. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2435. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2436. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2437. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2438. @end deftypefun
  2439. @node starpu_spu_worker_get_count
  2440. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2441. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2442. This function returns the number of Cell SPUs controlled by StarPU.
  2443. @end deftypefun
  2444. @node starpu_worker_get_id
  2445. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2446. @deftypefun int starpu_worker_get_id (void)
  2447. This function returns the identifier of the worker associated to the calling
  2448. thread. The returned value is either -1 if the current context is not a StarPU
  2449. worker (i.e. when called from the application outside a task or a callback), or
  2450. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2451. @end deftypefun
  2452. @node starpu_worker_get_ids_by_type
  2453. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2454. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2455. Fill the workerids array with the identifiers of the workers that have the type
  2456. indicated in the first argument. The maxsize argument indicates the size of the
  2457. workids array. The returned value gives the number of identifiers that were put
  2458. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2459. workers with the appropriate type: in that case, the array is filled with the
  2460. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2461. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2462. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2463. @end deftypefun
  2464. @node starpu_worker_get_devid
  2465. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2466. @deftypefun int starpu_worker_get_devid (int @var{id})
  2467. This functions returns the device id of the worker associated to an identifier
  2468. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2469. CUDA worker, this device identifier is the logical device identifier exposed by
  2470. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2471. identifier of a CPU worker is the logical identifier of the core on which the
  2472. worker was bound; this identifier is either provided by the OS or by the
  2473. @code{hwloc} library in case it is available.
  2474. @end deftypefun
  2475. @node starpu_worker_get_type
  2476. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2477. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2478. This function returns the type of worker associated to an identifier (as
  2479. returned by the @code{starpu_worker_get_id} function). The returned value
  2480. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2481. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2482. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2483. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2484. identifier is unspecified.
  2485. @end deftypefun
  2486. @node starpu_worker_get_name
  2487. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2488. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2489. StarPU associates a unique human readable string to each processing unit. This
  2490. function copies at most the @var{maxlen} first bytes of the unique string
  2491. associated to a worker identified by its identifier @var{id} into the
  2492. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2493. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2494. function on an invalid identifier results in an unspecified behaviour.
  2495. @end deftypefun
  2496. @node starpu_worker_get_memory_node
  2497. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2498. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2499. This function returns the identifier of the memory node associated to the
  2500. worker identified by @var{workerid}.
  2501. @end deftypefun
  2502. @node Data Library
  2503. @section Data Library
  2504. This section describes the data management facilities provided by StarPU.
  2505. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2506. design their own data interfaces if required.
  2507. @menu
  2508. * starpu_malloc:: Allocate data and pin it
  2509. * starpu_access_mode:: Data access mode
  2510. * unsigned memory_node:: Memory node
  2511. * starpu_data_handle:: StarPU opaque data handle
  2512. * void *interface:: StarPU data interface
  2513. * starpu_data_register:: Register a piece of data to StarPU
  2514. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2515. * starpu_data_invalidate:: Invalidate all data replicates
  2516. * starpu_data_acquire:: Access registered data from the application
  2517. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2518. * starpu_data_release:: Release registered data from the application
  2519. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2520. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2521. @end menu
  2522. @node starpu_malloc
  2523. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2524. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2525. This function allocates data of the given size in main memory. It will also try to pin it in
  2526. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  2527. thus permit data transfer and computation overlapping. The allocated buffer must
  2528. be freed thanks to the @code{starpu_free} function.
  2529. @end deftypefun
  2530. @node starpu_access_mode
  2531. @subsection @code{starpu_access_mode} -- Data access mode
  2532. This datatype describes a data access mode. The different available modes are:
  2533. @table @asis
  2534. @table @asis
  2535. @item @code{STARPU_R} read-only mode.
  2536. @item @code{STARPU_W} write-only mode.
  2537. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2538. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2539. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2540. @end table
  2541. @end table
  2542. @node unsigned memory_node
  2543. @subsection @code{unsigned memory_node} -- Memory node
  2544. @table @asis
  2545. @item @emph{Description}:
  2546. Every worker is associated to a memory node which is a logical abstraction of
  2547. the address space from which the processing unit gets its data. For instance,
  2548. the memory node associated to the different CPU workers represents main memory
  2549. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2550. Every memory node is identified by a logical index which is accessible from the
  2551. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2552. to StarPU, the specified memory node indicates where the piece of data
  2553. initially resides (we also call this memory node the home node of a piece of
  2554. data).
  2555. @end table
  2556. @node starpu_data_handle
  2557. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2558. @table @asis
  2559. @item @emph{Description}:
  2560. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2561. data. Once a piece of data has been registered to StarPU, it is associated to a
  2562. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2563. over the entire machine, so that we can maintain data consistency and locate
  2564. data replicates for instance.
  2565. @end table
  2566. @node void *interface
  2567. @subsection @code{void *interface} -- StarPU data interface
  2568. @table @asis
  2569. @item @emph{Description}:
  2570. Data management is done at a high-level in StarPU: rather than accessing a mere
  2571. list of contiguous buffers, the tasks may manipulate data that are described by
  2572. a high-level construct which we call data interface.
  2573. An example of data interface is the "vector" interface which describes a
  2574. contiguous data array on a spefic memory node. This interface is a simple
  2575. structure containing the number of elements in the array, the size of the
  2576. elements, and the address of the array in the appropriate address space (this
  2577. address may be invalid if there is no valid copy of the array in the memory
  2578. node). More informations on the data interfaces provided by StarPU are
  2579. given in @ref{Data Interfaces}.
  2580. When a piece of data managed by StarPU is used by a task, the task
  2581. implementation is given a pointer to an interface describing a valid copy of
  2582. the data that is accessible from the current processing unit.
  2583. @end table
  2584. @node starpu_data_register
  2585. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2586. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2587. Register a piece of data into the handle located at the @var{handleptr}
  2588. address. The @var{interface} buffer contains the initial description of the
  2589. data in the home node. The @var{ops} argument is a pointer to a structure
  2590. describing the different methods used to manipulate this type of interface. See
  2591. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2592. If @code{home_node} is -1, StarPU will automatically
  2593. allocate the memory when it is used for the
  2594. first time in write-only mode. Once such data handle has been automatically
  2595. allocated, it is possible to access it using any access mode.
  2596. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2597. matrix) which can be registered by the means of helper functions (e.g.
  2598. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2599. @end deftypefun
  2600. @node starpu_data_unregister
  2601. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2602. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2603. This function unregisters a data handle from StarPU. If the data was
  2604. automatically allocated by StarPU because the home node was -1, all
  2605. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2606. is put back into the home node in the buffer that was initially registered.
  2607. Using a data handle that has been unregistered from StarPU results in an
  2608. undefined behaviour.
  2609. @end deftypefun
  2610. @node starpu_data_invalidate
  2611. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2612. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2613. Destroy all replicates of the data handle. After data invalidation, the first
  2614. access to the handle must be performed in write-only mode. Accessing an
  2615. invalidated data in read-mode results in undefined behaviour.
  2616. @end deftypefun
  2617. @c TODO create a specific sections about user interaction with the DSM ?
  2618. @node starpu_data_acquire
  2619. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2620. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  2621. The application must call this function prior to accessing registered data from
  2622. main memory outside tasks. StarPU ensures that the application will get an
  2623. up-to-date copy of the data in main memory located where the data was
  2624. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2625. be consistent with the access mode specified in the @var{mode} argument.
  2626. @code{starpu_data_release} must be called once the application does not need to
  2627. access the piece of data anymore. Note that implicit data
  2628. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2629. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2630. the data, unless that they have not been disabled explictly by calling
  2631. @code{starpu_data_set_default_sequential_consistency_flag} or
  2632. @code{starpu_data_set_sequential_consistency_flag}.
  2633. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2634. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2635. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2636. @end deftypefun
  2637. @node starpu_data_acquire_cb
  2638. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2639. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  2640. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2641. @code{starpu_data_release}. When the data specified in the first argument is
  2642. available in the appropriate access mode, the callback function is executed.
  2643. The application may access the requested data during the execution of this
  2644. callback. The callback function must call @code{starpu_data_release} once the
  2645. application does not need to access the piece of data anymore.
  2646. Note that implicit data dependencies are also enforced by
  2647. @code{starpu_data_acquire_cb} in case they are enabled.
  2648. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2649. be called from task callbacks. Upon successful completion, this function
  2650. returns 0.
  2651. @end deftypefun
  2652. @node starpu_data_release
  2653. @subsection @code{starpu_data_release} -- Release registered data from the application
  2654. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  2655. This function releases the piece of data acquired by the application either by
  2656. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2657. @end deftypefun
  2658. @node starpu_data_set_wt_mask
  2659. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2660. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  2661. This function sets the write-through mask of a given data, i.e. a bitmask of
  2662. nodes where the data should be always replicated after modification.
  2663. @end deftypefun
  2664. @node starpu_data_prefetch_on_node
  2665. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  2666. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  2667. Issue a prefetch request for a given data to a given node, i.e.
  2668. requests that the data be replicated to the given node, so that it is available
  2669. there for tasks. If the @var{async} parameter is 0, the call will block until
  2670. the transfer is achieved, else the call will return as soon as the request is
  2671. scheduled (which may however have to wait for a task completion).
  2672. @end deftypefun
  2673. @node Data Interfaces
  2674. @section Data Interfaces
  2675. @menu
  2676. * Variable Interface::
  2677. * Vector Interface::
  2678. * Matrix Interface::
  2679. * 3D Matrix Interface::
  2680. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2681. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2682. @end menu
  2683. @node Variable Interface
  2684. @subsection Variable Interface
  2685. @table @asis
  2686. @item @emph{Description}:
  2687. This variant of @code{starpu_data_register} uses the variable interface,
  2688. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2689. and @code{elemsize} is the size of the variable.
  2690. @item @emph{Prototype}:
  2691. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2692. uint32_t home_node,
  2693. uintptr_t ptr, size_t elemsize);}
  2694. @item @emph{Example}:
  2695. @cartouche
  2696. @smallexample
  2697. float var;
  2698. starpu_data_handle var_handle;
  2699. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2700. @end smallexample
  2701. @end cartouche
  2702. @end table
  2703. @node Vector Interface
  2704. @subsection Vector Interface
  2705. @table @asis
  2706. @item @emph{Description}:
  2707. This variant of @code{starpu_data_register} uses the vector interface,
  2708. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2709. element in the home node. @code{nx} is the number of elements in the vector.
  2710. @code{elemsize} is the size of each element.
  2711. @item @emph{Prototype}:
  2712. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2713. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2714. @item @emph{Example}:
  2715. @cartouche
  2716. @smallexample
  2717. float vector[NX];
  2718. starpu_data_handle vector_handle;
  2719. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2720. sizeof(vector[0]));
  2721. @end smallexample
  2722. @end cartouche
  2723. @end table
  2724. @node Matrix Interface
  2725. @subsection Matrix Interface
  2726. @table @asis
  2727. @item @emph{Description}:
  2728. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2729. matrices of elements. @code{ptr} is the address of the first element in the home
  2730. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2731. of elements in a row (this can be different from @code{ld} if there are extra
  2732. elements for alignment for instance). @code{ny} is the number of rows.
  2733. @code{elemsize} is the size of each element.
  2734. @item @emph{Prototype}:
  2735. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2736. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2737. uint32_t ny, size_t elemsize);}
  2738. @item @emph{Example}:
  2739. @cartouche
  2740. @smallexample
  2741. float *matrix;
  2742. starpu_data_handle matrix_handle;
  2743. matrix = (float*)malloc(width * height * sizeof(float));
  2744. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2745. width, width, height, sizeof(float));
  2746. @end smallexample
  2747. @end cartouche
  2748. @end table
  2749. @node 3D Matrix Interface
  2750. @subsection 3D Matrix Interface
  2751. @table @asis
  2752. @item @emph{Description}:
  2753. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2754. @code{ptr} is the address of the array of first element in the home node.
  2755. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2756. of rows between z planes. @code{nx} is the number of elements in a row (this
  2757. can be different from @code{ldy} if there are extra elements for alignment
  2758. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2759. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2760. each element.
  2761. @item @emph{Prototype}:
  2762. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2763. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2764. uint32_t ny, uint32_t nz, size_t elemsize);}
  2765. @item @emph{Example}:
  2766. @cartouche
  2767. @smallexample
  2768. float *block;
  2769. starpu_data_handle block_handle;
  2770. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2771. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2772. nx, nx*ny, nx, ny, nz, sizeof(float));
  2773. @end smallexample
  2774. @end cartouche
  2775. @end table
  2776. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2777. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2778. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  2779. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2780. TODO
  2781. @end deftypefun
  2782. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2783. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2784. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  2785. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2786. TODO
  2787. @end deftypefun
  2788. @node Data Partition
  2789. @section Data Partition
  2790. @menu
  2791. * struct starpu_data_filter:: StarPU filter structure
  2792. * starpu_data_partition:: Partition Data
  2793. * starpu_data_unpartition:: Unpartition Data
  2794. * starpu_data_get_nb_children::
  2795. * starpu_data_get_sub_data::
  2796. * Predefined filter functions::
  2797. @end menu
  2798. @node struct starpu_data_filter
  2799. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2800. @table @asis
  2801. @item @emph{Description}:
  2802. The filter structure describes a data partitioning operation, to be given to the
  2803. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2804. @item @emph{Fields}:
  2805. @table @asis
  2806. @item @code{filter_func}:
  2807. This function fills the @code{child_interface} structure with interface
  2808. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2809. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2810. @item @code{nchildren}:
  2811. This is the number of parts to partition the data into.
  2812. @item @code{get_nchildren}:
  2813. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2814. children depends on the actual data (e.g. the number of blocks in a sparse
  2815. matrix).
  2816. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2817. @item @code{get_child_ops}:
  2818. In case the resulting children use a different data interface, this function
  2819. returns which interface is used by child number @code{id}.
  2820. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2821. @item @code{filter_arg}:
  2822. Some filters take an addition parameter, but this is usually unused.
  2823. @item @code{filter_arg_ptr}:
  2824. Some filters take an additional array parameter like the sizes of the parts, but
  2825. this is usually unused.
  2826. @end table
  2827. @end table
  2828. @node starpu_data_partition
  2829. @subsection starpu_data_partition -- Partition Data
  2830. @table @asis
  2831. @item @emph{Description}:
  2832. This requests partitioning one StarPU data @code{initial_handle} into several
  2833. subdata according to the filter @code{f}
  2834. @item @emph{Prototype}:
  2835. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2836. @item @emph{Example}:
  2837. @cartouche
  2838. @smallexample
  2839. struct starpu_data_filter f = @{
  2840. .filter_func = starpu_vertical_block_filter_func,
  2841. .nchildren = nslicesx,
  2842. .get_nchildren = NULL,
  2843. .get_child_ops = NULL
  2844. @};
  2845. starpu_data_partition(A_handle, &f);
  2846. @end smallexample
  2847. @end cartouche
  2848. @end table
  2849. @node starpu_data_unpartition
  2850. @subsection starpu_data_unpartition -- Unpartition data
  2851. @table @asis
  2852. @item @emph{Description}:
  2853. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2854. collected back into one big piece in the @code{gathering_node} (usually 0).
  2855. @item @emph{Prototype}:
  2856. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2857. @item @emph{Example}:
  2858. @cartouche
  2859. @smallexample
  2860. starpu_data_unpartition(A_handle, 0);
  2861. @end smallexample
  2862. @end cartouche
  2863. @end table
  2864. @node starpu_data_get_nb_children
  2865. @subsection starpu_data_get_nb_children
  2866. @table @asis
  2867. @item @emph{Description}:
  2868. This function returns the number of children.
  2869. @item @emph{Return value}:
  2870. The number of children.
  2871. @item @emph{Prototype}:
  2872. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2873. @end table
  2874. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2875. @node starpu_data_get_sub_data
  2876. @subsection starpu_data_get_sub_data
  2877. @table @asis
  2878. @item @emph{Description}:
  2879. After partitioning a StarPU data by applying a filter,
  2880. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2881. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2882. is the number of filters to traverse (in case several filters have been applied,
  2883. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2884. parameters are the indexes.
  2885. @item @emph{Return value}:
  2886. A handle to the subdata.
  2887. @item @emph{Prototype}:
  2888. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2889. @item @emph{Example}:
  2890. @cartouche
  2891. @smallexample
  2892. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2893. @end smallexample
  2894. @end cartouche
  2895. @end table
  2896. @node Predefined filter functions
  2897. @subsection Predefined filter functions
  2898. @menu
  2899. * Partitioning BCSR Data::
  2900. * Partitioning BLAS interface::
  2901. * Partitioning Vector Data::
  2902. * Partitioning Block Data::
  2903. @end menu
  2904. This section gives a partial list of the predefined partitioning functions.
  2905. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2906. list can be found in @code{starpu_data_filters.h} .
  2907. @node Partitioning BCSR Data
  2908. @subsubsection Partitioning BCSR Data
  2909. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2910. TODO
  2911. @end deftypefun
  2912. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2913. TODO
  2914. @end deftypefun
  2915. @node Partitioning BLAS interface
  2916. @subsubsection Partitioning BLAS interface
  2917. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2918. This partitions a dense Matrix into horizontal blocks.
  2919. @end deftypefun
  2920. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2921. This partitions a dense Matrix into vertical blocks.
  2922. @end deftypefun
  2923. @node Partitioning Vector Data
  2924. @subsubsection Partitioning Vector Data
  2925. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2926. This partitions a vector into blocks of the same size.
  2927. @end deftypefun
  2928. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2929. This partitions a vector into blocks of sizes given in @var{filter_arg_ptr}.
  2930. @end deftypefun
  2931. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2932. This partitions a vector into two blocks, the first block size being given in @var{filter_arg}.
  2933. @end deftypefun
  2934. @node Partitioning Block Data
  2935. @subsubsection Partitioning Block Data
  2936. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2937. This partitions a 3D matrix along the X axis.
  2938. @end deftypefun
  2939. @node Codelets and Tasks
  2940. @section Codelets and Tasks
  2941. This section describes the interface to manipulate codelets and tasks.
  2942. @deftp {Data Type} {struct starpu_codelet}
  2943. The codelet structure describes a kernel that is possibly implemented on various
  2944. targets. For compatibility, make sure to initialize the whole structure to zero.
  2945. @table @asis
  2946. @item @code{where}
  2947. Indicates which types of processing units are able to execute the codelet.
  2948. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2949. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2950. indicates that it is only available on Cell SPUs.
  2951. @item @code{cpu_func} (optional)
  2952. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2953. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2954. argument being the array of data managed by the data management library, and
  2955. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2956. field of the @code{starpu_task} structure.
  2957. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2958. the @code{where} field, it must be non-null otherwise.
  2959. @item @code{cuda_func} (optional)
  2960. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2961. must be a host-function written in the CUDA runtime API}. Its prototype must
  2962. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2963. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2964. field, it must be non-null otherwise.
  2965. @item @code{opencl_func} (optional)
  2966. Is a function pointer to the OpenCL implementation of the codelet. Its
  2967. prototype must be:
  2968. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2969. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2970. @code{where} field, it must be non-null otherwise.
  2971. @item @code{gordon_func} (optional)
  2972. This is the index of the Cell SPU implementation within the Gordon library.
  2973. See Gordon documentation for more details on how to register a kernel and
  2974. retrieve its index.
  2975. @item @code{nbuffers}
  2976. Specifies the number of arguments taken by the codelet. These arguments are
  2977. managed by the DSM and are accessed from the @code{void *buffers[]}
  2978. array. The constant argument passed with the @code{cl_arg} field of the
  2979. @code{starpu_task} structure is not counted in this number. This value should
  2980. not be above @code{STARPU_NMAXBUFS}.
  2981. @item @code{model} (optional)
  2982. This is a pointer to the task duration performance model associated to this
  2983. codelet. This optional field is ignored when set to @code{NULL}.
  2984. TODO
  2985. @item @code{power_model} (optional)
  2986. This is a pointer to the task power consumption performance model associated
  2987. to this codelet. This optional field is ignored when set to @code{NULL}.
  2988. In the case of parallel codelets, this has to account for all processing units
  2989. involved in the parallel execution.
  2990. TODO
  2991. @end table
  2992. @end deftp
  2993. @deftp {Data Type} {struct starpu_task}
  2994. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2995. processing units managed by StarPU. It instantiates a codelet. It can either be
  2996. allocated dynamically with the @code{starpu_task_create} method, or declared
  2997. statically. In the latter case, the programmer has to zero the
  2998. @code{starpu_task} structure and to fill the different fields properly. The
  2999. indicated default values correspond to the configuration of a task allocated
  3000. with @code{starpu_task_create}.
  3001. @table @asis
  3002. @item @code{cl}
  3003. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  3004. describes where the kernel should be executed, and supplies the appropriate
  3005. implementations. When set to @code{NULL}, no code is executed during the tasks,
  3006. such empty tasks can be useful for synchronization purposes.
  3007. @item @code{buffers}
  3008. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  3009. different pieces of data accessed by the task, and how they should be accessed.
  3010. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  3011. @code{handle} field specifies the handle of the piece of data, and the
  3012. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  3013. of entries in this array must be specified in the @code{nbuffers} field of the
  3014. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  3015. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  3016. option when configuring StarPU.
  3017. @item @code{cl_arg} (optional; default: @code{NULL})
  3018. This pointer is passed to the codelet through the second argument
  3019. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  3020. In the specific case of the Cell processor, see the @code{cl_arg_size}
  3021. argument.
  3022. @item @code{cl_arg_size} (optional, Cell-specific)
  3023. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  3024. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  3025. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  3026. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  3027. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  3028. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  3029. codelets, where the @code{cl_arg} pointer is given as such.
  3030. @item @code{callback_func} (optional) (default: @code{NULL})
  3031. This is a function pointer of prototype @code{void (*f)(void *)} which
  3032. specifies a possible callback. If this pointer is non-null, the callback
  3033. function is executed @emph{on the host} after the execution of the task. The
  3034. callback is passed the value contained in the @code{callback_arg} field. No
  3035. callback is executed if the field is set to @code{NULL}.
  3036. @item @code{callback_arg} (optional) (default: @code{NULL})
  3037. This is the pointer passed to the callback function. This field is ignored if
  3038. the @code{callback_func} is set to @code{NULL}.
  3039. @item @code{use_tag} (optional) (default: @code{0})
  3040. If set, this flag indicates that the task should be associated with the tag
  3041. contained in the @code{tag_id} field. Tag allow the application to synchronize
  3042. with the task and to express task dependencies easily.
  3043. @item @code{tag_id}
  3044. This fields contains the tag associated to the task if the @code{use_tag} field
  3045. was set, it is ignored otherwise.
  3046. @item @code{synchronous}
  3047. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3048. returns only when the task has been executed (or if no worker is able to
  3049. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3050. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3051. This field indicates a level of priority for the task. This is an integer value
  3052. that must be set between the return values of the
  3053. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3054. and that of the @code{starpu_sched_get_max_priority} for the most important
  3055. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3056. are provided for convenience and respectively returns value of
  3057. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3058. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3059. order to allow static task initialization. Scheduling strategies that take
  3060. priorities into account can use this parameter to take better scheduling
  3061. decisions, but the scheduling policy may also ignore it.
  3062. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3063. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3064. task to the worker specified by the @code{workerid} field.
  3065. @item @code{workerid} (optional)
  3066. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3067. which is the identifier of the worker that should process this task (as
  3068. returned by @code{starpu_worker_get_id}). This field is ignored if
  3069. @code{execute_on_a_specific_worker} field is set to 0.
  3070. @item @code{detach} (optional) (default: @code{1})
  3071. If this flag is set, it is not possible to synchronize with the task
  3072. by the means of @code{starpu_task_wait} later on. Internal data structures
  3073. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3074. flag is not set.
  3075. @item @code{destroy} (optional) (default: @code{1})
  3076. If this flag is set, the task structure will automatically be freed, either
  3077. after the execution of the callback if the task is detached, or during
  3078. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3079. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3080. called explicitly. Setting this flag for a statically allocated task structure
  3081. will result in undefined behaviour.
  3082. @item @code{predicted} (output field)
  3083. Predicted duration of the task. This field is only set if the scheduling
  3084. strategy used performance models.
  3085. @end table
  3086. @end deftp
  3087. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3088. Initialize @var{task} with default values. This function is implicitly
  3089. called by @code{starpu_task_create}. By default, tasks initialized with
  3090. @code{starpu_task_init} must be deinitialized explicitly with
  3091. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3092. constant @code{STARPU_TASK_INITIALIZER}.
  3093. @end deftypefun
  3094. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3095. Allocate a task structure and initialize it with default values. Tasks
  3096. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3097. task is terminated. If the destroy flag is explicitly unset, the resources used
  3098. by the task are freed by calling
  3099. @code{starpu_task_destroy}.
  3100. @end deftypefun
  3101. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3102. Release all the structures automatically allocated to execute @var{task}. This is
  3103. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3104. freed. This should be used for statically allocated tasks for instance.
  3105. @end deftypefun
  3106. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3107. Free the resource allocated during @code{starpu_task_create} and
  3108. associated with @var{task}. This function can be called automatically
  3109. after the execution of a task by setting the @code{destroy} flag of the
  3110. @code{starpu_task} structure (default behaviour). Calling this function
  3111. on a statically allocated task results in an undefined behaviour.
  3112. @end deftypefun
  3113. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3114. This function blocks until @var{task} has been executed. It is not possible to
  3115. synchronize with a task more than once. It is not possible to wait for
  3116. synchronous or detached tasks.
  3117. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3118. indicates that the specified task was either synchronous or detached.
  3119. @end deftypefun
  3120. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3121. This function submits @var{task} to StarPU. Calling this function does
  3122. not mean that the task will be executed immediately as there can be data or task
  3123. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3124. scheduling this task with respect to such dependencies.
  3125. This function returns immediately if the @code{synchronous} field of the
  3126. @code{starpu_task} structure was set to 0, and block until the termination of
  3127. the task otherwise. It is also possible to synchronize the application with
  3128. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3129. function for instance.
  3130. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3131. means that there is no worker able to process this task (e.g. there is no GPU
  3132. available and this task is only implemented for CUDA devices).
  3133. @end deftypefun
  3134. @deftypefun int starpu_task_wait_for_all (void)
  3135. This function blocks until all the tasks that were submitted are terminated.
  3136. @end deftypefun
  3137. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3138. This function returns the task currently executed by the worker, or
  3139. NULL if it is called either from a thread that is not a task or simply
  3140. because there is no task being executed at the moment.
  3141. @end deftypefun
  3142. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3143. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3144. @end deftypefun
  3145. @c Callbacks : what can we put in callbacks ?
  3146. @node Explicit Dependencies
  3147. @section Explicit Dependencies
  3148. @menu
  3149. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3150. * starpu_tag_t:: Task logical identifier
  3151. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3152. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3153. * starpu_tag_wait:: Block until a Tag is terminated
  3154. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3155. * starpu_tag_remove:: Destroy a Tag
  3156. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3157. @end menu
  3158. @node starpu_task_declare_deps_array
  3159. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3160. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3161. Declare task dependencies between a @var{task} and an array of tasks of length
  3162. @var{ndeps}. This function must be called prior to the submission of the task,
  3163. but it may called after the submission or the execution of the tasks in the
  3164. array provided the tasks are still valid (ie. they were not automatically
  3165. destroyed). Calling this function on a task that was already submitted or with
  3166. an entry of @var{task_array} that is not a valid task anymore results in an
  3167. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3168. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3169. same task, in this case, the dependencies are added. It is possible to have
  3170. redundancy in the task dependencies.
  3171. @end deftypefun
  3172. @node starpu_tag_t
  3173. @subsection @code{starpu_tag_t} -- Task logical identifier
  3174. @table @asis
  3175. @item @emph{Description}:
  3176. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3177. dependencies between tasks by the means of those tags. To do so, fill the
  3178. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3179. be arbitrary) and set the @code{use_tag} field to 1.
  3180. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3181. not be started until the tasks which holds the declared dependency tags are
  3182. completed.
  3183. @end table
  3184. @node starpu_tag_declare_deps
  3185. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3186. @table @asis
  3187. @item @emph{Description}:
  3188. Specify the dependencies of the task identified by tag @code{id}. The first
  3189. argument specifies the tag which is configured, the second argument gives the
  3190. number of tag(s) on which @code{id} depends. The following arguments are the
  3191. tags which have to be terminated to unlock the task.
  3192. This function must be called before the associated task is submitted to StarPU
  3193. with @code{starpu_task_submit}.
  3194. @item @emph{Remark}
  3195. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3196. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3197. typically need to be explicitly casted. Using the
  3198. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3199. @item @emph{Prototype}:
  3200. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3201. @item @emph{Example}:
  3202. @cartouche
  3203. @example
  3204. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3205. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3206. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3207. @end example
  3208. @end cartouche
  3209. @end table
  3210. @node starpu_tag_declare_deps_array
  3211. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3212. @table @asis
  3213. @item @emph{Description}:
  3214. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3215. does not take a variable number of arguments but an array of tags of size
  3216. @code{ndeps}.
  3217. @item @emph{Prototype}:
  3218. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3219. @item @emph{Example}:
  3220. @cartouche
  3221. @example
  3222. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3223. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3224. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3225. @end example
  3226. @end cartouche
  3227. @end table
  3228. @node starpu_tag_wait
  3229. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3230. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3231. This function blocks until the task associated to tag @var{id} has been
  3232. executed. This is a blocking call which must therefore not be called within
  3233. tasks or callbacks, but only from the application directly. It is possible to
  3234. synchronize with the same tag multiple times, as long as the
  3235. @code{starpu_tag_remove} function is not called. Note that it is still
  3236. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3237. data structure was freed (e.g. if the @code{destroy} flag of the
  3238. @code{starpu_task} was enabled).
  3239. @end deftypefun
  3240. @node starpu_tag_wait_array
  3241. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3242. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3243. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3244. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3245. terminated.
  3246. @end deftypefun
  3247. @node starpu_tag_remove
  3248. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3249. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3250. This function releases the resources associated to tag @var{id}. It can be
  3251. called once the corresponding task has been executed and when there is
  3252. no other tag that depend on this tag anymore.
  3253. @end deftypefun
  3254. @node starpu_tag_notify_from_apps
  3255. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3256. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3257. This function explicitly unlocks tag @var{id}. It may be useful in the
  3258. case of applications which execute part of their computation outside StarPU
  3259. tasks (e.g. third-party libraries). It is also provided as a
  3260. convenient tool for the programmer, for instance to entirely construct the task
  3261. DAG before actually giving StarPU the opportunity to execute the tasks.
  3262. @end deftypefun
  3263. @node Implicit Data Dependencies
  3264. @section Implicit Data Dependencies
  3265. @menu
  3266. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3267. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3268. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3269. @end menu
  3270. In this section, we describe how StarPU makes it possible to insert implicit
  3271. task dependencies in order to enforce sequential data consistency. When this
  3272. data consistency is enabled on a specific data handle, any data access will
  3273. appear as sequentially consistent from the application. For instance, if the
  3274. application submits two tasks that access the same piece of data in read-only
  3275. mode, and then a third task that access it in write mode, dependencies will be
  3276. added between the two first tasks and the third one. Implicit data dependencies
  3277. are also inserted in the case of data accesses from the application.
  3278. @node starpu_data_set_default_sequential_consistency_flag
  3279. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3280. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3281. Set the default sequential consistency flag. If a non-zero value is passed, a
  3282. sequential data consistency will be enforced for all handles registered after
  3283. this function call, otherwise it is disabled. By default, StarPU enables
  3284. sequential data consistency. It is also possible to select the data consistency
  3285. mode of a specific data handle with the
  3286. @code{starpu_data_set_sequential_consistency_flag} function.
  3287. @end deftypefun
  3288. @node starpu_data_get_default_sequential_consistency_flag
  3289. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3290. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3291. This function returns the current default sequential consistency flag.
  3292. @end deftypefun
  3293. @node starpu_data_set_sequential_consistency_flag
  3294. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3295. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3296. Select the data consistency mode associated to a data handle. The consistency
  3297. mode set using this function has the priority over the default mode which can
  3298. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3299. @end deftypefun
  3300. @node Performance Model API
  3301. @section Performance Model API
  3302. @menu
  3303. * starpu_load_history_debug::
  3304. * starpu_perfmodel_debugfilepath::
  3305. * starpu_perfmodel_get_arch_name::
  3306. * starpu_force_bus_sampling::
  3307. @end menu
  3308. @node starpu_load_history_debug
  3309. @subsection @code{starpu_load_history_debug}
  3310. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3311. TODO
  3312. @end deftypefun
  3313. @node starpu_perfmodel_debugfilepath
  3314. @subsection @code{starpu_perfmodel_debugfilepath}
  3315. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3316. TODO
  3317. @end deftypefun
  3318. @node starpu_perfmodel_get_arch_name
  3319. @subsection @code{starpu_perfmodel_get_arch_name}
  3320. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3321. TODO
  3322. @end deftypefun
  3323. @node starpu_force_bus_sampling
  3324. @subsection @code{starpu_force_bus_sampling}
  3325. @deftypefun void starpu_force_bus_sampling (void)
  3326. This forces sampling the bus performance model again.
  3327. @end deftypefun
  3328. @node Profiling API
  3329. @section Profiling API
  3330. @menu
  3331. * starpu_profiling_status_set:: starpu_profiling_status_set
  3332. * starpu_profiling_status_get:: starpu_profiling_status_get
  3333. * struct starpu_task_profiling_info:: task profiling information
  3334. * struct starpu_worker_profiling_info:: worker profiling information
  3335. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3336. * struct starpu_bus_profiling_info:: bus profiling information
  3337. * starpu_bus_get_count::
  3338. * starpu_bus_get_id::
  3339. * starpu_bus_get_src::
  3340. * starpu_bus_get_dst::
  3341. * starpu_timing_timespec_delay_us::
  3342. * starpu_timing_timespec_to_us::
  3343. * starpu_bus_profiling_helper_display_summary::
  3344. * starpu_worker_profiling_helper_display_summary::
  3345. @end menu
  3346. @node starpu_profiling_status_set
  3347. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3348. @table @asis
  3349. @item @emph{Description}:
  3350. Thie function sets the profiling status. Profiling is activated by passing
  3351. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3352. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3353. resets all profiling measurements. When profiling is enabled, the
  3354. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3355. to a valid @code{struct starpu_task_profiling_info} structure containing
  3356. information about the execution of the task.
  3357. @item @emph{Return value}:
  3358. Negative return values indicate an error, otherwise the previous status is
  3359. returned.
  3360. @item @emph{Prototype}:
  3361. @code{int starpu_profiling_status_set(int status);}
  3362. @end table
  3363. @node starpu_profiling_status_get
  3364. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3365. @deftypefun int starpu_profiling_status_get (void)
  3366. Return the current profiling status or a negative value in case there was an error.
  3367. @end deftypefun
  3368. @node struct starpu_task_profiling_info
  3369. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3370. @table @asis
  3371. @item @emph{Description}:
  3372. This structure contains information about the execution of a task. It is
  3373. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3374. structure if profiling was enabled.
  3375. @item @emph{Fields}:
  3376. @table @asis
  3377. @item @code{submit_time}:
  3378. Date of task submission (relative to the initialization of StarPU).
  3379. @item @code{start_time}:
  3380. Date of task execution beginning (relative to the initialization of StarPU).
  3381. @item @code{end_time}:
  3382. Date of task execution termination (relative to the initialization of StarPU).
  3383. @item @code{workerid}:
  3384. Identifier of the worker which has executed the task.
  3385. @end table
  3386. @end table
  3387. @node struct starpu_worker_profiling_info
  3388. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3389. @table @asis
  3390. @item @emph{Description}:
  3391. This structure contains the profiling information associated to a worker.
  3392. @item @emph{Fields}:
  3393. @table @asis
  3394. @item @code{start_time}:
  3395. Starting date for the reported profiling measurements.
  3396. @item @code{total_time}:
  3397. Duration of the profiling measurement interval.
  3398. @item @code{executing_time}:
  3399. Time spent by the worker to execute tasks during the profiling measurement interval.
  3400. @item @code{sleeping_time}:
  3401. Time spent idling by the worker during the profiling measurement interval.
  3402. @item @code{executed_tasks}:
  3403. Number of tasks executed by the worker during the profiling measurement interval.
  3404. @end table
  3405. @end table
  3406. @node starpu_worker_get_profiling_info
  3407. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3408. @table @asis
  3409. @item @emph{Description}:
  3410. Get the profiling info associated to the worker identified by @code{workerid},
  3411. and reset the profiling measurements. If the @code{worker_info} argument is
  3412. NULL, only reset the counters associated to worker @code{workerid}.
  3413. @item @emph{Return value}:
  3414. Upon successful completion, this function returns 0. Otherwise, a negative
  3415. value is returned.
  3416. @item @emph{Prototype}:
  3417. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3418. @end table
  3419. @node struct starpu_bus_profiling_info
  3420. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3421. @table @asis
  3422. @item @emph{Description}:
  3423. TODO
  3424. @item @emph{Fields}:
  3425. @table @asis
  3426. @item @code{start_time}:
  3427. TODO
  3428. @item @code{total_time}:
  3429. TODO
  3430. @item @code{transferred_bytes}:
  3431. TODO
  3432. @item @code{transfer_count}:
  3433. TODO
  3434. @end table
  3435. @end table
  3436. @node starpu_bus_get_count
  3437. @subsection @code{starpu_bus_get_count}
  3438. @deftypefun int starpu_bus_get_count (void)
  3439. TODO
  3440. @end deftypefun
  3441. @node starpu_bus_get_id
  3442. @subsection @code{starpu_bus_get_id}
  3443. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3444. TODO
  3445. @end deftypefun
  3446. @node starpu_bus_get_src
  3447. @subsection @code{starpu_bus_get_src}
  3448. @deftypefun int starpu_bus_get_src (int @var{busid})
  3449. TODO
  3450. @end deftypefun
  3451. @node starpu_bus_get_dst
  3452. @subsection @code{starpu_bus_get_dst}
  3453. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3454. TODO
  3455. @end deftypefun
  3456. @node starpu_timing_timespec_delay_us
  3457. @subsection @code{starpu_timing_timespec_delay_us}
  3458. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3459. TODO
  3460. @end deftypefun
  3461. @node starpu_timing_timespec_to_us
  3462. @subsection @code{starpu_timing_timespec_to_us}
  3463. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3464. TODO
  3465. @end deftypefun
  3466. @node starpu_bus_profiling_helper_display_summary
  3467. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3468. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3469. TODO
  3470. @end deftypefun
  3471. @node starpu_worker_profiling_helper_display_summary
  3472. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3473. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3474. TODO
  3475. @end deftypefun
  3476. @node CUDA extensions
  3477. @section CUDA extensions
  3478. @c void starpu_malloc(float **A, size_t dim);
  3479. @menu
  3480. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3481. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3482. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3483. @end menu
  3484. @node starpu_cuda_get_local_stream
  3485. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3486. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3487. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3488. function is only provided for convenience so that programmers can easily use
  3489. asynchronous operations within codelets without having to create a stream by
  3490. hand. Note that the application is not forced to use the stream provided by
  3491. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3492. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3493. the likelihood of having all transfers overlapped.
  3494. @end deftypefun
  3495. @node starpu_helper_cublas_init
  3496. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3497. @deftypefun void starpu_helper_cublas_init (void)
  3498. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3499. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3500. controlled by StarPU. This call blocks until CUBLAS has been properly
  3501. initialized on every device.
  3502. @end deftypefun
  3503. @node starpu_helper_cublas_shutdown
  3504. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3505. @deftypefun void starpu_helper_cublas_shutdown (void)
  3506. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3507. @end deftypefun
  3508. @node OpenCL extensions
  3509. @section OpenCL extensions
  3510. @menu
  3511. * Enabling OpenCL:: Enabling OpenCL
  3512. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3513. * Loading OpenCL kernels:: Loading OpenCL kernels
  3514. * OpenCL statistics:: Collecting statistics from OpenCL
  3515. @end menu
  3516. @node Enabling OpenCL
  3517. @subsection Enabling OpenCL
  3518. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3519. enabled by default. To enable OpenCL, you need either to disable CUDA
  3520. when configuring StarPU:
  3521. @example
  3522. % ./configure --disable-cuda
  3523. @end example
  3524. or when running applications:
  3525. @example
  3526. % STARPU_NCUDA=0 ./application
  3527. @end example
  3528. OpenCL will automatically be started on any device not yet used by
  3529. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3530. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3531. so:
  3532. @example
  3533. % STARPU_NCUDA=2 ./application
  3534. @end example
  3535. @node Compiling OpenCL kernels
  3536. @subsection Compiling OpenCL kernels
  3537. Source codes for OpenCL kernels can be stored in a file or in a
  3538. string. StarPU provides functions to build the program executable for
  3539. each available OpenCL device as a @code{cl_program} object. This
  3540. program executable can then be loaded within a specific queue as
  3541. explained in the next section. These are only helpers, Applications
  3542. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3543. use (e.g. different programs on the different OpenCL devices, for
  3544. relocation purpose for instance).
  3545. @menu
  3546. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3547. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3548. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3549. @end menu
  3550. @node starpu_opencl_load_opencl_from_file
  3551. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3552. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3553. TODO
  3554. @end deftypefun
  3555. @node starpu_opencl_load_opencl_from_string
  3556. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3557. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3558. TODO
  3559. @end deftypefun
  3560. @node starpu_opencl_unload_opencl
  3561. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3562. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3563. TODO
  3564. @end deftypefun
  3565. @node Loading OpenCL kernels
  3566. @subsection Loading OpenCL kernels
  3567. @menu
  3568. * starpu_opencl_load_kernel:: Loading a kernel
  3569. * starpu_opencl_relase_kernel:: Releasing a kernel
  3570. @end menu
  3571. @node starpu_opencl_load_kernel
  3572. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3573. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3574. TODO
  3575. @end deftypefun
  3576. @node starpu_opencl_relase_kernel
  3577. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3578. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3579. TODO
  3580. @end deftypefun
  3581. @node OpenCL statistics
  3582. @subsection OpenCL statistics
  3583. @menu
  3584. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3585. @end menu
  3586. @node starpu_opencl_collect_stats
  3587. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3588. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3589. After termination of the kernels, the OpenCL codelet should call this function
  3590. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3591. collect statistics about the kernel execution (used cycles, consumed power).
  3592. @end deftypefun
  3593. @node Cell extensions
  3594. @section Cell extensions
  3595. nothing yet.
  3596. @node Miscellaneous helpers
  3597. @section Miscellaneous helpers
  3598. @menu
  3599. * starpu_data_cpy:: Copy a data handle into another data handle
  3600. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3601. @end menu
  3602. @node starpu_data_cpy
  3603. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3604. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3605. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3606. The @var{asynchronous} parameter indicates whether the function should
  3607. block or not. In the case of an asynchronous call, it is possible to
  3608. synchronize with the termination of this operation either by the means of
  3609. implicit dependencies (if enabled) or by calling
  3610. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3611. this callback function is executed after the handle has been copied, and it is
  3612. given the @var{callback_arg} pointer as argument.
  3613. @end deftypefun
  3614. @node starpu_execute_on_each_worker
  3615. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3616. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3617. When calling this method, the offloaded function specified by the first argument is
  3618. executed by every StarPU worker that may execute the function.
  3619. The second argument is passed to the offloaded function.
  3620. The last argument specifies on which types of processing units the function
  3621. should be executed. Similarly to the @var{where} field of the
  3622. @code{starpu_codelet} structure, it is possible to specify that the function
  3623. should be executed on every CUDA device and every CPU by passing
  3624. @code{STARPU_CPU|STARPU_CUDA}.
  3625. This function blocks until the function has been executed on every appropriate
  3626. processing units, so that it may not be called from a callback function for
  3627. instance.
  3628. @end deftypefun
  3629. @c ---------------------------------------------------------------------
  3630. @c Advanced Topics
  3631. @c ---------------------------------------------------------------------
  3632. @node Advanced Topics
  3633. @chapter Advanced Topics
  3634. @menu
  3635. * Defining a new data interface::
  3636. * Defining a new scheduling policy::
  3637. @end menu
  3638. @node Defining a new data interface
  3639. @section Defining a new data interface
  3640. @menu
  3641. * struct starpu_data_interface_ops_t:: Per-interface methods
  3642. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3643. * An example of data interface:: An example of data interface
  3644. @end menu
  3645. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3646. @node struct starpu_data_interface_ops_t
  3647. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3648. @table @asis
  3649. @item @emph{Description}:
  3650. TODO describe all the different fields
  3651. @end table
  3652. @node struct starpu_data_copy_methods
  3653. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3654. @table @asis
  3655. @item @emph{Description}:
  3656. TODO describe all the different fields
  3657. @end table
  3658. @node An example of data interface
  3659. @subsection An example of data interface
  3660. @table @asis
  3661. TODO
  3662. See @code{src/datawizard/interfaces/vector_interface.c} for now.
  3663. @end table
  3664. @node Defining a new scheduling policy
  3665. @section Defining a new scheduling policy
  3666. TODO
  3667. A full example showing how to define a new scheduling policy is available in
  3668. the StarPU sources in the directory @code{examples/scheduler/}.
  3669. @menu
  3670. * struct starpu_sched_policy_s::
  3671. * starpu_worker_set_sched_condition::
  3672. * starpu_sched_set_min_priority:: Set the minimum priority level
  3673. * starpu_sched_set_max_priority:: Set the maximum priority level
  3674. * starpu_push_local_task:: Assign a task to a worker
  3675. * Source code::
  3676. @end menu
  3677. @node struct starpu_sched_policy_s
  3678. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3679. @table @asis
  3680. @item @emph{Description}:
  3681. This structure contains all the methods that implement a scheduling policy. An
  3682. application may specify which scheduling strategy in the @code{sched_policy}
  3683. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3684. function.
  3685. @item @emph{Fields}:
  3686. @table @asis
  3687. @item @code{init_sched}:
  3688. Initialize the scheduling policy.
  3689. @item @code{deinit_sched}:
  3690. Cleanup the scheduling policy.
  3691. @item @code{push_task}:
  3692. Insert a task into the scheduler.
  3693. @item @code{push_prio_task}:
  3694. Insert a priority task into the scheduler.
  3695. @item @code{push_prio_notify}:
  3696. Notify the scheduler that a task was pushed on the worker. This method is
  3697. called when a task that was explicitely assigned to a worker is scheduled. This
  3698. method therefore permits to keep the state of of the scheduler coherent even
  3699. when StarPU bypasses the scheduling strategy.
  3700. @item @code{pop_task}:
  3701. Get a task from the scheduler. The mutex associated to the worker is already
  3702. taken when this method is called. If this method is defined as @code{NULL}, the
  3703. worker will only execute tasks from its local queue. In this case, the
  3704. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3705. assign tasks to the different workers.
  3706. @item @code{pop_every_task}:
  3707. Remove all available tasks from the scheduler (tasks are chained by the means
  3708. of the prev and next fields of the starpu_task structure). The mutex associated
  3709. to the worker is already taken when this method is called.
  3710. @item @code{post_exec_hook} (optionnal):
  3711. This method is called every time a task has been executed.
  3712. @item @code{policy_name}:
  3713. Name of the policy (optionnal).
  3714. @item @code{policy_description}:
  3715. Description of the policy (optionnal).
  3716. @end table
  3717. @end table
  3718. @node starpu_worker_set_sched_condition
  3719. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3720. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  3721. When there is no available task for a worker, StarPU blocks this worker on a
  3722. condition variable. This function specifies which condition variable (and the
  3723. associated mutex) should be used to block (and to wake up) a worker. Note that
  3724. multiple workers may use the same condition variable. For instance, in the case
  3725. of a scheduling strategy with a single task queue, the same condition variable
  3726. would be used to block and wake up all workers.
  3727. The initialization method of a scheduling strategy (@code{init_sched}) must
  3728. call this function once per worker.
  3729. @end deftypefun
  3730. @node starpu_sched_set_min_priority
  3731. @subsection @code{starpu_sched_set_min_priority}
  3732. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  3733. Defines the minimum priority level supported by the scheduling policy. The
  3734. default minimum priority level is the same as the default priority level which
  3735. is 0 by convention. The application may access that value by calling the
  3736. @code{starpu_sched_get_min_priority} function. This function should only be
  3737. called from the initialization method of the scheduling policy, and should not
  3738. be used directly from the application.
  3739. @end deftypefun
  3740. @node starpu_sched_set_max_priority
  3741. @subsection @code{starpu_sched_set_max_priority}
  3742. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  3743. Defines the maximum priority level supported by the scheduling policy. The
  3744. default maximum priority level is 1. The application may access that value by
  3745. calling the @code{starpu_sched_get_max_priority} function. This function should
  3746. only be called from the initialization method of the scheduling policy, and
  3747. should not be used directly from the application.
  3748. @end deftypefun
  3749. @node starpu_push_local_task
  3750. @subsection @code{starpu_push_local_task}
  3751. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3752. The scheduling policy may put tasks directly into a worker's local queue so
  3753. that it is not always necessary to create its own queue when the local queue
  3754. is sufficient. If "back" not null, the task is put at the back of the queue
  3755. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3756. a FIFO ordering.
  3757. @end deftypefun
  3758. @node Source code
  3759. @subsection Source code
  3760. @cartouche
  3761. @smallexample
  3762. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3763. .init_sched = init_dummy_sched,
  3764. .deinit_sched = deinit_dummy_sched,
  3765. .push_task = push_task_dummy,
  3766. .push_prio_task = NULL,
  3767. .pop_task = pop_task_dummy,
  3768. .post_exec_hook = NULL,
  3769. .pop_every_task = NULL,
  3770. .policy_name = "dummy",
  3771. .policy_description = "dummy scheduling strategy"
  3772. @};
  3773. @end smallexample
  3774. @end cartouche
  3775. @c ---------------------------------------------------------------------
  3776. @c Appendices
  3777. @c ---------------------------------------------------------------------
  3778. @c ---------------------------------------------------------------------
  3779. @c Full source code for the 'Scaling a Vector' example
  3780. @c ---------------------------------------------------------------------
  3781. @node Full source code for the 'Scaling a Vector' example
  3782. @appendix Full source code for the 'Scaling a Vector' example
  3783. @menu
  3784. * Main application::
  3785. * CPU Kernel::
  3786. * CUDA Kernel::
  3787. * OpenCL Kernel::
  3788. @end menu
  3789. @node Main application
  3790. @section Main application
  3791. @smallexample
  3792. @include vector_scal_c.texi
  3793. @end smallexample
  3794. @node CPU Kernel
  3795. @section CPU Kernel
  3796. @smallexample
  3797. @include vector_scal_cpu.texi
  3798. @end smallexample
  3799. @node CUDA Kernel
  3800. @section CUDA Kernel
  3801. @smallexample
  3802. @include vector_scal_cuda.texi
  3803. @end smallexample
  3804. @node OpenCL Kernel
  3805. @section OpenCL Kernel
  3806. @menu
  3807. * Invoking the kernel::
  3808. * Source of the kernel::
  3809. @end menu
  3810. @node Invoking the kernel
  3811. @subsection Invoking the kernel
  3812. @smallexample
  3813. @include vector_scal_opencl.texi
  3814. @end smallexample
  3815. @node Source of the kernel
  3816. @subsection Source of the kernel
  3817. @smallexample
  3818. @include vector_scal_opencl_codelet.texi
  3819. @end smallexample
  3820. @c
  3821. @c Indices.
  3822. @c
  3823. @node Function Index
  3824. @unnumbered Function Index
  3825. @printindex fn
  3826. @bye