| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 | 
							- /* dspgvx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dspgvx_(integer *itype, char *jobz, char *range, char *
 
- 	uplo, integer *n, doublereal *ap, doublereal *bp, doublereal *vl, 
 
- 	doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer 
 
- 	*m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 
 
- 	integer *iwork, integer *ifail, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1;
 
-     /* Local variables */
 
-     integer j;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     char trans[1];
 
-     logical upper;
 
-     extern /* Subroutine */ int _starpu_dtpmv_(char *, char *, char *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), 
 
- 	    _starpu_dtpsv_(char *, char *, char *, integer *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     logical wantz, alleig, indeig, valeig;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dpptrf_(
 
- 	    char *, integer *, doublereal *, integer *), _starpu_dspgst_(
 
- 	    integer *, char *, integer *, doublereal *, doublereal *, integer 
 
- 	    *), _starpu_dspevx_(char *, char *, char *, integer *, doublereal 
 
- 	    *, doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	     integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, integer *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPGVX computes selected eigenvalues, and optionally, eigenvectors */
 
- /*  of a real generalized symmetric-definite eigenproblem, of the form */
 
- /*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A */
 
- /*  and B are assumed to be symmetric, stored in packed storage, and B */
 
- /*  is also positive definite.  Eigenvalues and eigenvectors can be */
 
- /*  selected by specifying either a range of values or a range of indices */
 
- /*  for the desired eigenvalues. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  ITYPE   (input) INTEGER */
 
- /*          Specifies the problem type to be solved: */
 
- /*          = 1:  A*x = (lambda)*B*x */
 
- /*          = 2:  A*B*x = (lambda)*x */
 
- /*          = 3:  B*A*x = (lambda)*x */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  RANGE   (input) CHARACTER*1 */
 
- /*          = 'A': all eigenvalues will be found. */
 
- /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 
- /*                 will be found. */
 
- /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A and B are stored; */
 
- /*          = 'L':  Lower triangle of A and B are stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix pencil (A,B).  N >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          A, packed columnwise in a linear array.  The j-th column of A */
 
- /*          is stored in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          On exit, the contents of AP are destroyed. */
 
- /*  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          B, packed columnwise in a linear array.  The j-th column of B */
 
- /*          is stored in the array BP as follows: */
 
- /*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
 
- /*          On exit, the triangular factor U or L from the Cholesky */
 
- /*          factorization B = U**T*U or B = L*L**T, in the same storage */
 
- /*          format as B. */
 
- /*  VL      (input) DOUBLE PRECISION */
 
- /*  VU      (input) DOUBLE PRECISION */
 
- /*          If RANGE='V', the lower and upper bounds of the interval to */
 
- /*          be searched for eigenvalues. VL < VU. */
 
- /*          Not referenced if RANGE = 'A' or 'I'. */
 
- /*  IL      (input) INTEGER */
 
- /*  IU      (input) INTEGER */
 
- /*          If RANGE='I', the indices (in ascending order) of the */
 
- /*          smallest and largest eigenvalues to be returned. */
 
- /*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 
- /*          Not referenced if RANGE = 'A' or 'V'. */
 
- /*  ABSTOL  (input) DOUBLE PRECISION */
 
- /*          The absolute error tolerance for the eigenvalues. */
 
- /*          An approximate eigenvalue is accepted as converged */
 
- /*          when it is determined to lie in an interval [a,b] */
 
- /*          of width less than or equal to */
 
- /*                  ABSTOL + EPS *   max( |a|,|b| ) , */
 
- /*          where EPS is the machine precision.  If ABSTOL is less than */
 
- /*          or equal to zero, then  EPS*|T|  will be used in its place, */
 
- /*          where |T| is the 1-norm of the tridiagonal matrix obtained */
 
- /*          by reducing A to tridiagonal form. */
 
- /*          Eigenvalues will be computed most accurately when ABSTOL is */
 
- /*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
 
- /*          If this routine returns with INFO>0, indicating that some */
 
- /*          eigenvectors did not converge, try setting ABSTOL to */
 
- /*          2*DLAMCH('S'). */
 
- /*  M       (output) INTEGER */
 
- /*          The total number of eigenvalues found.  0 <= M <= N. */
 
- /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On normal exit, the first M elements contain the selected */
 
- /*          eigenvalues in ascending order. */
 
- /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
 
- /*          If JOBZ = 'N', then Z is not referenced. */
 
- /*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
 
- /*          contain the orthonormal eigenvectors of the matrix A */
 
- /*          corresponding to the selected eigenvalues, with the i-th */
 
- /*          column of Z holding the eigenvector associated with W(i). */
 
- /*          The eigenvectors are normalized as follows: */
 
- /*          if ITYPE = 1 or 2, Z**T*B*Z = I; */
 
- /*          if ITYPE = 3, Z**T*inv(B)*Z = I. */
 
- /*          If an eigenvector fails to converge, then that column of Z */
 
- /*          contains the latest approximation to the eigenvector, and the */
 
- /*          index of the eigenvector is returned in IFAIL. */
 
- /*          Note: the user must ensure that at least max(1,M) columns are */
 
- /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
 
- /*          is not known in advance and an upper bound must be used. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          JOBZ = 'V', LDZ >= max(1,N). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (8*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (5*N) */
 
- /*  IFAIL   (output) INTEGER array, dimension (N) */
 
- /*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
 
- /*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
 
- /*          indices of the eigenvectors that failed to converge. */
 
- /*          If JOBZ = 'N', then IFAIL is not referenced. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  DPPTRF or DSPEVX returned an error code: */
 
- /*             <= N:  if INFO = i, DSPEVX failed to converge; */
 
- /*                    i eigenvectors failed to converge.  Their indices */
 
- /*                    are stored in array IFAIL. */
 
- /*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
 
- /*                    minor of order i of B is not positive definite. */
 
- /*                    The factorization of B could not be completed and */
 
- /*                    no eigenvalues or eigenvectors were computed. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
 
- /* ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --bp;
 
-     --w;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     --iwork;
 
-     --ifail;
 
-     /* Function Body */
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     wantz = _starpu_lsame_(jobz, "V");
 
-     alleig = _starpu_lsame_(range, "A");
 
-     valeig = _starpu_lsame_(range, "V");
 
-     indeig = _starpu_lsame_(range, "I");
 
-     *info = 0;
 
-     if (*itype < 1 || *itype > 3) {
 
- 	*info = -1;
 
-     } else if (! (wantz || _starpu_lsame_(jobz, "N"))) {
 
- 	*info = -2;
 
-     } else if (! (alleig || valeig || indeig)) {
 
- 	*info = -3;
 
-     } else if (! (upper || _starpu_lsame_(uplo, "L"))) {
 
- 	*info = -4;
 
-     } else if (*n < 0) {
 
- 	*info = -5;
 
-     } else {
 
- 	if (valeig) {
 
- 	    if (*n > 0 && *vu <= *vl) {
 
- 		*info = -9;
 
- 	    }
 
- 	} else if (indeig) {
 
- 	    if (*il < 1) {
 
- 		*info = -10;
 
- 	    } else if (*iu < min(*n,*il) || *iu > *n) {
 
- 		*info = -11;
 
- 	    }
 
- 	}
 
-     }
 
-     if (*info == 0) {
 
- 	if (*ldz < 1 || wantz && *ldz < *n) {
 
- 	    *info = -16;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSPGVX", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     *m = 0;
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Form a Cholesky factorization of B. */
 
-     _starpu_dpptrf_(uplo, n, &bp[1], info);
 
-     if (*info != 0) {
 
- 	*info = *n + *info;
 
- 	return 0;
 
-     }
 
- /*     Transform problem to standard eigenvalue problem and solve. */
 
-     _starpu_dspgst_(itype, uplo, n, &ap[1], &bp[1], info);
 
-     _starpu_dspevx_(jobz, range, uplo, n, &ap[1], vl, vu, il, iu, abstol, m, &w[1], &
 
- 	    z__[z_offset], ldz, &work[1], &iwork[1], &ifail[1], info);
 
-     if (wantz) {
 
- /*        Backtransform eigenvectors to the original problem. */
 
- 	if (*info > 0) {
 
- 	    *m = *info - 1;
 
- 	}
 
- 	if (*itype == 1 || *itype == 2) {
 
- /*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
 
- /*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
 
- 	    if (upper) {
 
- 		*(unsigned char *)trans = 'N';
 
- 	    } else {
 
- 		*(unsigned char *)trans = 'T';
 
- 	    }
 
- 	    i__1 = *m;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		_starpu_dtpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
 
- 			1], &c__1);
 
- /* L10: */
 
- 	    }
 
- 	} else if (*itype == 3) {
 
- /*           For B*A*x=(lambda)*x; */
 
- /*           backtransform eigenvectors: x = L*y or U'*y */
 
- 	    if (upper) {
 
- 		*(unsigned char *)trans = 'T';
 
- 	    } else {
 
- 		*(unsigned char *)trans = 'N';
 
- 	    }
 
- 	    i__1 = *m;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		_starpu_dtpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
 
- 			1], &c__1);
 
- /* L20: */
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DSPGVX */
 
- } /* _starpu_dspgvx_ */
 
 
  |