| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 | 
							- /* dspgvd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dspgvd_(integer *itype, char *jobz, char *uplo, integer *
 
- 	n, doublereal *ap, doublereal *bp, doublereal *w, doublereal *z__, 
 
- 	integer *ldz, doublereal *work, integer *lwork, integer *iwork, 
 
- 	integer *liwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer j, neig;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer lwmin;
 
-     char trans[1];
 
-     logical upper;
 
-     extern /* Subroutine */ int _starpu_dtpmv_(char *, char *, char *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), 
 
- 	    _starpu_dtpsv_(char *, char *, char *, integer *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     logical wantz;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dspevd_(
 
- 	    char *, char *, integer *, doublereal *, doublereal *, doublereal 
 
- 	    *, integer *, doublereal *, integer *, integer *, integer *, 
 
- 	    integer *);
 
-     integer liwmin;
 
-     extern /* Subroutine */ int _starpu_dpptrf_(char *, integer *, doublereal *, 
 
- 	    integer *), _starpu_dspgst_(integer *, char *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     logical lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPGVD computes all the eigenvalues, and optionally, the eigenvectors */
 
- /*  of a real generalized symmetric-definite eigenproblem, of the form */
 
- /*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and */
 
- /*  B are assumed to be symmetric, stored in packed format, and B is also */
 
- /*  positive definite. */
 
- /*  If eigenvectors are desired, it uses a divide and conquer algorithm. */
 
- /*  The divide and conquer algorithm makes very mild assumptions about */
 
- /*  floating point arithmetic. It will work on machines with a guard */
 
- /*  digit in add/subtract, or on those binary machines without guard */
 
- /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
 
- /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  ITYPE   (input) INTEGER */
 
- /*          Specifies the problem type to be solved: */
 
- /*          = 1:  A*x = (lambda)*B*x */
 
- /*          = 2:  A*B*x = (lambda)*x */
 
- /*          = 3:  B*A*x = (lambda)*x */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangles of A and B are stored; */
 
- /*          = 'L':  Lower triangles of A and B are stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices A and B.  N >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          A, packed columnwise in a linear array.  The j-th column of A */
 
- /*          is stored in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          On exit, the contents of AP are destroyed. */
 
- /*  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          B, packed columnwise in a linear array.  The j-th column of B */
 
- /*          is stored in the array BP as follows: */
 
- /*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
 
- /*          On exit, the triangular factor U or L from the Cholesky */
 
- /*          factorization B = U**T*U or B = L*L**T, in the same storage */
 
- /*          format as B. */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, the eigenvalues in ascending order. */
 
- /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
 
- /*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
 
- /*          eigenvectors.  The eigenvectors are normalized as follows: */
 
- /*          if ITYPE = 1 or 2, Z**T*B*Z = I; */
 
- /*          if ITYPE = 3, Z**T*inv(B)*Z = I. */
 
- /*          If JOBZ = 'N', then Z is not referenced. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          JOBZ = 'V', LDZ >= max(1,N). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the required LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. */
 
- /*          If N <= 1,               LWORK >= 1. */
 
- /*          If JOBZ = 'N' and N > 1, LWORK >= 2*N. */
 
- /*          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the required sizes of the WORK and IWORK */
 
- /*          arrays, returns these values as the first entries of the WORK */
 
- /*          and IWORK arrays, and no error message related to LWORK or */
 
- /*          LIWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
 
- /*  LIWORK  (input) INTEGER */
 
- /*          The dimension of the array IWORK. */
 
- /*          If JOBZ  = 'N' or N <= 1, LIWORK >= 1. */
 
- /*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N. */
 
- /*          If LIWORK = -1, then a workspace query is assumed; the */
 
- /*          routine only calculates the required sizes of the WORK and */
 
- /*          IWORK arrays, returns these values as the first entries of */
 
- /*          the WORK and IWORK arrays, and no error message related to */
 
- /*          LWORK or LIWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  DPPTRF or DSPEVD returned an error code: */
 
- /*             <= N:  if INFO = i, DSPEVD failed to converge; */
 
- /*                    i off-diagonal elements of an intermediate */
 
- /*                    tridiagonal form did not converge to zero; */
 
- /*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
 
- /*                    minor of order i of B is not positive definite. */
 
- /*                    The factorization of B could not be completed and */
 
- /*                    no eigenvalues or eigenvectors were computed. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --bp;
 
-     --w;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     wantz = _starpu_lsame_(jobz, "V");
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     lquery = *lwork == -1 || *liwork == -1;
 
-     *info = 0;
 
-     if (*itype < 1 || *itype > 3) {
 
- 	*info = -1;
 
-     } else if (! (wantz || _starpu_lsame_(jobz, "N"))) {
 
- 	*info = -2;
 
-     } else if (! (upper || _starpu_lsame_(uplo, "L"))) {
 
- 	*info = -3;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*ldz < 1 || wantz && *ldz < *n) {
 
- 	*info = -9;
 
-     }
 
-     if (*info == 0) {
 
- 	if (*n <= 1) {
 
- 	    liwmin = 1;
 
- 	    lwmin = 1;
 
- 	} else {
 
- 	    if (wantz) {
 
- 		liwmin = *n * 5 + 3;
 
- /* Computing 2nd power */
 
- 		i__1 = *n;
 
- 		lwmin = *n * 6 + 1 + (i__1 * i__1 << 1);
 
- 	    } else {
 
- 		liwmin = 1;
 
- 		lwmin = *n << 1;
 
- 	    }
 
- 	}
 
- 	work[1] = (doublereal) lwmin;
 
- 	iwork[1] = liwmin;
 
- 	if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -11;
 
- 	} else if (*liwork < liwmin && ! lquery) {
 
- 	    *info = -13;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSPGVD", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Form a Cholesky factorization of BP. */
 
-     _starpu_dpptrf_(uplo, n, &bp[1], info);
 
-     if (*info != 0) {
 
- 	*info = *n + *info;
 
- 	return 0;
 
-     }
 
- /*     Transform problem to standard eigenvalue problem and solve. */
 
-     _starpu_dspgst_(itype, uplo, n, &ap[1], &bp[1], info);
 
-     _starpu_dspevd_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], 
 
- 	    lwork, &iwork[1], liwork, info);
 
- /* Computing MAX */
 
-     d__1 = (doublereal) lwmin;
 
-     lwmin = (integer) max(d__1,work[1]);
 
- /* Computing MAX */
 
-     d__1 = (doublereal) liwmin, d__2 = (doublereal) iwork[1];
 
-     liwmin = (integer) max(d__1,d__2);
 
-     if (wantz) {
 
- /*        Backtransform eigenvectors to the original problem. */
 
- 	neig = *n;
 
- 	if (*info > 0) {
 
- 	    neig = *info - 1;
 
- 	}
 
- 	if (*itype == 1 || *itype == 2) {
 
- /*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
 
- /*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
 
- 	    if (upper) {
 
- 		*(unsigned char *)trans = 'N';
 
- 	    } else {
 
- 		*(unsigned char *)trans = 'T';
 
- 	    }
 
- 	    i__1 = neig;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		_starpu_dtpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
 
- 			1], &c__1);
 
- /* L10: */
 
- 	    }
 
- 	} else if (*itype == 3) {
 
- /*           For B*A*x=(lambda)*x; */
 
- /*           backtransform eigenvectors: x = L*y or U'*y */
 
- 	    if (upper) {
 
- 		*(unsigned char *)trans = 'T';
 
- 	    } else {
 
- 		*(unsigned char *)trans = 'N';
 
- 	    }
 
- 	    i__1 = neig;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		_starpu_dtpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
 
- 			1], &c__1);
 
- /* L20: */
 
- 	    }
 
- 	}
 
-     }
 
-     work[1] = (doublereal) lwmin;
 
-     iwork[1] = liwmin;
 
-     return 0;
 
- /*     End of DSPGVD */
 
- } /* _starpu_dspgvd_ */
 
 
  |