| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 | 
							- /* dpotf2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b10 = -1.;
 
- static doublereal c_b12 = 1.;
 
- /* Subroutine */ int _starpu_dpotf2_(char *uplo, integer *n, doublereal *a, integer *
 
- 	lda, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer j;
 
-     doublereal ajj;
 
-     extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     logical upper;
 
-     extern logical _starpu_disnan_(doublereal *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPOTF2 computes the Cholesky factorization of a real symmetric */
 
- /*  positive definite matrix A. */
 
- /*  The factorization has the form */
 
- /*     A = U' * U ,  if UPLO = 'U', or */
 
- /*     A = L  * L',  if UPLO = 'L', */
 
- /*  where U is an upper triangular matrix and L is lower triangular. */
 
- /*  This is the unblocked version of the algorithm, calling Level 2 BLAS. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the upper or lower triangular part of the */
 
- /*          symmetric matrix A is stored. */
 
- /*          = 'U':  Upper triangular */
 
- /*          = 'L':  Lower triangular */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 
- /*          n by n upper triangular part of A contains the upper */
 
- /*          triangular part of the matrix A, and the strictly lower */
 
- /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 
- /*          leading n by n lower triangular part of A contains the lower */
 
- /*          triangular part of the matrix A, and the strictly upper */
 
- /*          triangular part of A is not referenced. */
 
- /*          On exit, if INFO = 0, the factor U or L from the Cholesky */
 
- /*          factorization A = U'*U  or A = L*L'. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -k, the k-th argument had an illegal value */
 
- /*          > 0: if INFO = k, the leading minor of order k is not */
 
- /*               positive definite, and the factorization could not be */
 
- /*               completed. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     if (! upper && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DPOTF2", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (upper) {
 
- /*        Compute the Cholesky factorization A = U'*U. */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /*           Compute U(J,J) and test for non-positive-definiteness. */
 
- 	    i__2 = j - 1;
 
- 	    ajj = a[j + j * a_dim1] - _starpu_ddot_(&i__2, &a[j * a_dim1 + 1], &c__1, 
 
- 		    &a[j * a_dim1 + 1], &c__1);
 
- 	    if (ajj <= 0. || _starpu_disnan_(&ajj)) {
 
- 		a[j + j * a_dim1] = ajj;
 
- 		goto L30;
 
- 	    }
 
- 	    ajj = sqrt(ajj);
 
- 	    a[j + j * a_dim1] = ajj;
 
- /*           Compute elements J+1:N of row J. */
 
- 	    if (j < *n) {
 
- 		i__2 = j - 1;
 
- 		i__3 = *n - j;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b10, &a[(j + 1) * a_dim1 
 
- 			+ 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b12, &a[j + (
 
- 			j + 1) * a_dim1], lda);
 
- 		i__2 = *n - j;
 
- 		d__1 = 1. / ajj;
 
- 		_starpu_dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);
 
- 	    }
 
- /* L10: */
 
- 	}
 
-     } else {
 
- /*        Compute the Cholesky factorization A = L*L'. */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /*           Compute L(J,J) and test for non-positive-definiteness. */
 
- 	    i__2 = j - 1;
 
- 	    ajj = a[j + j * a_dim1] - _starpu_ddot_(&i__2, &a[j + a_dim1], lda, &a[j 
 
- 		    + a_dim1], lda);
 
- 	    if (ajj <= 0. || _starpu_disnan_(&ajj)) {
 
- 		a[j + j * a_dim1] = ajj;
 
- 		goto L30;
 
- 	    }
 
- 	    ajj = sqrt(ajj);
 
- 	    a[j + j * a_dim1] = ajj;
 
- /*           Compute elements J+1:N of column J. */
 
- 	    if (j < *n) {
 
- 		i__2 = *n - j;
 
- 		i__3 = j - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b10, &a[j + 1 + 
 
- 			a_dim1], lda, &a[j + a_dim1], lda, &c_b12, &a[j + 1 + 
 
- 			j * a_dim1], &c__1);
 
- 		i__2 = *n - j;
 
- 		d__1 = 1. / ajj;
 
- 		_starpu_dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     }
 
-     goto L40;
 
- L30:
 
-     *info = j;
 
- L40:
 
-     return 0;
 
- /*     End of DPOTF2 */
 
- } /* _starpu_dpotf2_ */
 
 
  |