| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641 | 
							- /* dlaebz.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlaebz_(integer *ijob, integer *nitmax, integer *n, 
 
- 	integer *mmax, integer *minp, integer *nbmin, doublereal *abstol, 
 
- 	doublereal *reltol, doublereal *pivmin, doublereal *d__, doublereal *
 
- 	e, doublereal *e2, integer *nval, doublereal *ab, doublereal *c__, 
 
- 	integer *mout, integer *nab, doublereal *work, integer *iwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer nab_dim1, nab_offset, ab_dim1, ab_offset, i__1, i__2, i__3, i__4, 
 
- 	    i__5, i__6;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Local variables */
 
-     integer j, kf, ji, kl, jp, jit;
 
-     doublereal tmp1, tmp2;
 
-     integer itmp1, itmp2, kfnew, klnew;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAEBZ contains the iteration loops which compute and use the */
 
- /*  function N(w), which is the count of eigenvalues of a symmetric */
 
- /*  tridiagonal matrix T less than or equal to its argument  w.  It */
 
- /*  performs a choice of two types of loops: */
 
- /*  IJOB=1, followed by */
 
- /*  IJOB=2: It takes as input a list of intervals and returns a list of */
 
- /*          sufficiently small intervals whose union contains the same */
 
- /*          eigenvalues as the union of the original intervals. */
 
- /*          The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP. */
 
- /*          The output interval (AB(j,1),AB(j,2)] will contain */
 
- /*          eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT. */
 
- /*  IJOB=3: It performs a binary search in each input interval */
 
- /*          (AB(j,1),AB(j,2)] for a point  w(j)  such that */
 
- /*          N(w(j))=NVAL(j), and uses  C(j)  as the starting point of */
 
- /*          the search.  If such a w(j) is found, then on output */
 
- /*          AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output */
 
- /*          (AB(j,1),AB(j,2)] will be a small interval containing the */
 
- /*          point where N(w) jumps through NVAL(j), unless that point */
 
- /*          lies outside the initial interval. */
 
- /*  Note that the intervals are in all cases half-open intervals, */
 
- /*  i.e., of the form  (a,b] , which includes  b  but not  a . */
 
- /*  To avoid underflow, the matrix should be scaled so that its largest */
 
- /*  element is no greater than  overflow**(1/2) * underflow**(1/4) */
 
- /*  in absolute value.  To assure the most accurate computation */
 
- /*  of small eigenvalues, the matrix should be scaled to be */
 
- /*  not much smaller than that, either. */
 
- /*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
 
- /*  Matrix", Report CS41, Computer Science Dept., Stanford */
 
- /*  University, July 21, 1966 */
 
- /*  Note: the arguments are, in general, *not* checked for unreasonable */
 
- /*  values. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  IJOB    (input) INTEGER */
 
- /*          Specifies what is to be done: */
 
- /*          = 1:  Compute NAB for the initial intervals. */
 
- /*          = 2:  Perform bisection iteration to find eigenvalues of T. */
 
- /*          = 3:  Perform bisection iteration to invert N(w), i.e., */
 
- /*                to find a point which has a specified number of */
 
- /*                eigenvalues of T to its left. */
 
- /*          Other values will cause DLAEBZ to return with INFO=-1. */
 
- /*  NITMAX  (input) INTEGER */
 
- /*          The maximum number of "levels" of bisection to be */
 
- /*          performed, i.e., an interval of width W will not be made */
 
- /*          smaller than 2^(-NITMAX) * W.  If not all intervals */
 
- /*          have converged after NITMAX iterations, then INFO is set */
 
- /*          to the number of non-converged intervals. */
 
- /*  N       (input) INTEGER */
 
- /*          The dimension n of the tridiagonal matrix T.  It must be at */
 
- /*          least 1. */
 
- /*  MMAX    (input) INTEGER */
 
- /*          The maximum number of intervals.  If more than MMAX intervals */
 
- /*          are generated, then DLAEBZ will quit with INFO=MMAX+1. */
 
- /*  MINP    (input) INTEGER */
 
- /*          The initial number of intervals.  It may not be greater than */
 
- /*          MMAX. */
 
- /*  NBMIN   (input) INTEGER */
 
- /*          The smallest number of intervals that should be processed */
 
- /*          using a vector loop.  If zero, then only the scalar loop */
 
- /*          will be used. */
 
- /*  ABSTOL  (input) DOUBLE PRECISION */
 
- /*          The minimum (absolute) width of an interval.  When an */
 
- /*          interval is narrower than ABSTOL, or than RELTOL times the */
 
- /*          larger (in magnitude) endpoint, then it is considered to be */
 
- /*          sufficiently small, i.e., converged.  This must be at least */
 
- /*          zero. */
 
- /*  RELTOL  (input) DOUBLE PRECISION */
 
- /*          The minimum relative width of an interval.  When an interval */
 
- /*          is narrower than ABSTOL, or than RELTOL times the larger (in */
 
- /*          magnitude) endpoint, then it is considered to be */
 
- /*          sufficiently small, i.e., converged.  Note: this should */
 
- /*          always be at least radix*machine epsilon. */
 
- /*  PIVMIN  (input) DOUBLE PRECISION */
 
- /*          The minimum absolute value of a "pivot" in the Sturm */
 
- /*          sequence loop.  This *must* be at least  max |e(j)**2| * */
 
- /*          safe_min  and at least safe_min, where safe_min is at least */
 
- /*          the smallest number that can divide one without overflow. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The diagonal elements of the tridiagonal matrix T. */
 
- /*  E       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The offdiagonal elements of the tridiagonal matrix T in */
 
- /*          positions 1 through N-1.  E(N) is arbitrary. */
 
- /*  E2      (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The squares of the offdiagonal elements of the tridiagonal */
 
- /*          matrix T.  E2(N) is ignored. */
 
- /*  NVAL    (input/output) INTEGER array, dimension (MINP) */
 
- /*          If IJOB=1 or 2, not referenced. */
 
- /*          If IJOB=3, the desired values of N(w).  The elements of NVAL */
 
- /*          will be reordered to correspond with the intervals in AB. */
 
- /*          Thus, NVAL(j) on output will not, in general be the same as */
 
- /*          NVAL(j) on input, but it will correspond with the interval */
 
- /*          (AB(j,1),AB(j,2)] on output. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (MMAX,2) */
 
- /*          The endpoints of the intervals.  AB(j,1) is  a(j), the left */
 
- /*          endpoint of the j-th interval, and AB(j,2) is b(j), the */
 
- /*          right endpoint of the j-th interval.  The input intervals */
 
- /*          will, in general, be modified, split, and reordered by the */
 
- /*          calculation. */
 
- /*  C       (input/output) DOUBLE PRECISION array, dimension (MMAX) */
 
- /*          If IJOB=1, ignored. */
 
- /*          If IJOB=2, workspace. */
 
- /*          If IJOB=3, then on input C(j) should be initialized to the */
 
- /*          first search point in the binary search. */
 
- /*  MOUT    (output) INTEGER */
 
- /*          If IJOB=1, the number of eigenvalues in the intervals. */
 
- /*          If IJOB=2 or 3, the number of intervals output. */
 
- /*          If IJOB=3, MOUT will equal MINP. */
 
- /*  NAB     (input/output) INTEGER array, dimension (MMAX,2) */
 
- /*          If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). */
 
- /*          If IJOB=2, then on input, NAB(i,j) should be set.  It must */
 
- /*             satisfy the condition: */
 
- /*             N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)), */
 
- /*             which means that in interval i only eigenvalues */
 
- /*             NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually, */
 
- /*             NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with */
 
- /*             IJOB=1. */
 
- /*             On output, NAB(i,j) will contain */
 
- /*             max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of */
 
- /*             the input interval that the output interval */
 
- /*             (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the */
 
- /*             the input values of NAB(k,1) and NAB(k,2). */
 
- /*          If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)), */
 
- /*             unless N(w) > NVAL(i) for all search points  w , in which */
 
- /*             case NAB(i,1) will not be modified, i.e., the output */
 
- /*             value will be the same as the input value (modulo */
 
- /*             reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) */
 
- /*             for all search points  w , in which case NAB(i,2) will */
 
- /*             not be modified.  Normally, NAB should be set to some */
 
- /*             distinctive value(s) before DLAEBZ is called. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (MMAX) */
 
- /*          Workspace. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (MMAX) */
 
- /*          Workspace. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:       All intervals converged. */
 
- /*          = 1--MMAX: The last INFO intervals did not converge. */
 
- /*          = MMAX+1:  More than MMAX intervals were generated. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*      This routine is intended to be called only by other LAPACK */
 
- /*  routines, thus the interface is less user-friendly.  It is intended */
 
- /*  for two purposes: */
 
- /*  (a) finding eigenvalues.  In this case, DLAEBZ should have one or */
 
- /*      more initial intervals set up in AB, and DLAEBZ should be called */
 
- /*      with IJOB=1.  This sets up NAB, and also counts the eigenvalues. */
 
- /*      Intervals with no eigenvalues would usually be thrown out at */
 
- /*      this point.  Also, if not all the eigenvalues in an interval i */
 
- /*      are desired, NAB(i,1) can be increased or NAB(i,2) decreased. */
 
- /*      For example, set NAB(i,1)=NAB(i,2)-1 to get the largest */
 
- /*      eigenvalue.  DLAEBZ is then called with IJOB=2 and MMAX */
 
- /*      no smaller than the value of MOUT returned by the call with */
 
- /*      IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1 */
 
- /*      through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the */
 
- /*      tolerance specified by ABSTOL and RELTOL. */
 
- /*  (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). */
 
- /*      In this case, start with a Gershgorin interval  (a,b).  Set up */
 
- /*      AB to contain 2 search intervals, both initially (a,b).  One */
 
- /*      NVAL element should contain  f-1  and the other should contain  l */
 
- /*      , while C should contain a and b, resp.  NAB(i,1) should be -1 */
 
- /*      and NAB(i,2) should be N+1, to flag an error if the desired */
 
- /*      interval does not lie in (a,b).  DLAEBZ is then called with */
 
- /*      IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals -- */
 
- /*      j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while */
 
- /*      if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r */
 
- /*      >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and */
 
- /*      N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and */
 
- /*      w(l-r)=...=w(l+k) are handled similarly. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Check for Errors */
 
-     /* Parameter adjustments */
 
-     nab_dim1 = *mmax;
 
-     nab_offset = 1 + nab_dim1;
 
-     nab -= nab_offset;
 
-     ab_dim1 = *mmax;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --d__;
 
-     --e;
 
-     --e2;
 
-     --nval;
 
-     --c__;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*ijob < 1 || *ijob > 3) {
 
- 	*info = -1;
 
- 	return 0;
 
-     }
 
- /*     Initialize NAB */
 
-     if (*ijob == 1) {
 
- /*        Compute the number of eigenvalues in the initial intervals. */
 
- 	*mout = 0;
 
- /* DIR$ NOVECTOR */
 
- 	i__1 = *minp;
 
- 	for (ji = 1; ji <= i__1; ++ji) {
 
- 	    for (jp = 1; jp <= 2; ++jp) {
 
- 		tmp1 = d__[1] - ab[ji + jp * ab_dim1];
 
- 		if (abs(tmp1) < *pivmin) {
 
- 		    tmp1 = -(*pivmin);
 
- 		}
 
- 		nab[ji + jp * nab_dim1] = 0;
 
- 		if (tmp1 <= 0.) {
 
- 		    nab[ji + jp * nab_dim1] = 1;
 
- 		}
 
- 		i__2 = *n;
 
- 		for (j = 2; j <= i__2; ++j) {
 
- 		    tmp1 = d__[j] - e2[j - 1] / tmp1 - ab[ji + jp * ab_dim1];
 
- 		    if (abs(tmp1) < *pivmin) {
 
- 			tmp1 = -(*pivmin);
 
- 		    }
 
- 		    if (tmp1 <= 0.) {
 
- 			++nab[ji + jp * nab_dim1];
 
- 		    }
 
- /* L10: */
 
- 		}
 
- /* L20: */
 
- 	    }
 
- 	    *mout = *mout + nab[ji + (nab_dim1 << 1)] - nab[ji + nab_dim1];
 
- /* L30: */
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Initialize for loop */
 
- /*     KF and KL have the following meaning: */
 
- /*        Intervals 1,...,KF-1 have converged. */
 
- /*        Intervals KF,...,KL  still need to be refined. */
 
-     kf = 1;
 
-     kl = *minp;
 
- /*     If IJOB=2, initialize C. */
 
- /*     If IJOB=3, use the user-supplied starting point. */
 
-     if (*ijob == 2) {
 
- 	i__1 = *minp;
 
- 	for (ji = 1; ji <= i__1; ++ji) {
 
- 	    c__[ji] = (ab[ji + ab_dim1] + ab[ji + (ab_dim1 << 1)]) * .5;
 
- /* L40: */
 
- 	}
 
-     }
 
- /*     Iteration loop */
 
-     i__1 = *nitmax;
 
-     for (jit = 1; jit <= i__1; ++jit) {
 
- /*        Loop over intervals */
 
- 	if (kl - kf + 1 >= *nbmin && *nbmin > 0) {
 
- /*           Begin of Parallel Version of the loop */
 
- 	    i__2 = kl;
 
- 	    for (ji = kf; ji <= i__2; ++ji) {
 
- /*              Compute N(c), the number of eigenvalues less than c */
 
- 		work[ji] = d__[1] - c__[ji];
 
- 		iwork[ji] = 0;
 
- 		if (work[ji] <= *pivmin) {
 
- 		    iwork[ji] = 1;
 
- /* Computing MIN */
 
- 		    d__1 = work[ji], d__2 = -(*pivmin);
 
- 		    work[ji] = min(d__1,d__2);
 
- 		}
 
- 		i__3 = *n;
 
- 		for (j = 2; j <= i__3; ++j) {
 
- 		    work[ji] = d__[j] - e2[j - 1] / work[ji] - c__[ji];
 
- 		    if (work[ji] <= *pivmin) {
 
- 			++iwork[ji];
 
- /* Computing MIN */
 
- 			d__1 = work[ji], d__2 = -(*pivmin);
 
- 			work[ji] = min(d__1,d__2);
 
- 		    }
 
- /* L50: */
 
- 		}
 
- /* L60: */
 
- 	    }
 
- 	    if (*ijob <= 2) {
 
- /*              IJOB=2: Choose all intervals containing eigenvalues. */
 
- 		klnew = kl;
 
- 		i__2 = kl;
 
- 		for (ji = kf; ji <= i__2; ++ji) {
 
- /*                 Insure that N(w) is monotone */
 
- /* Computing MIN */
 
- /* Computing MAX */
 
- 		    i__5 = nab[ji + nab_dim1], i__6 = iwork[ji];
 
- 		    i__3 = nab[ji + (nab_dim1 << 1)], i__4 = max(i__5,i__6);
 
- 		    iwork[ji] = min(i__3,i__4);
 
- /*                 Update the Queue -- add intervals if both halves */
 
- /*                 contain eigenvalues. */
 
- 		    if (iwork[ji] == nab[ji + (nab_dim1 << 1)]) {
 
- /*                    No eigenvalue in the upper interval: */
 
- /*                    just use the lower interval. */
 
- 			ab[ji + (ab_dim1 << 1)] = c__[ji];
 
- 		    } else if (iwork[ji] == nab[ji + nab_dim1]) {
 
- /*                    No eigenvalue in the lower interval: */
 
- /*                    just use the upper interval. */
 
- 			ab[ji + ab_dim1] = c__[ji];
 
- 		    } else {
 
- 			++klnew;
 
- 			if (klnew <= *mmax) {
 
- /*                       Eigenvalue in both intervals -- add upper to */
 
- /*                       queue. */
 
- 			    ab[klnew + (ab_dim1 << 1)] = ab[ji + (ab_dim1 << 
 
- 				    1)];
 
- 			    nab[klnew + (nab_dim1 << 1)] = nab[ji + (nab_dim1 
 
- 				    << 1)];
 
- 			    ab[klnew + ab_dim1] = c__[ji];
 
- 			    nab[klnew + nab_dim1] = iwork[ji];
 
- 			    ab[ji + (ab_dim1 << 1)] = c__[ji];
 
- 			    nab[ji + (nab_dim1 << 1)] = iwork[ji];
 
- 			} else {
 
- 			    *info = *mmax + 1;
 
- 			}
 
- 		    }
 
- /* L70: */
 
- 		}
 
- 		if (*info != 0) {
 
- 		    return 0;
 
- 		}
 
- 		kl = klnew;
 
- 	    } else {
 
- /*              IJOB=3: Binary search.  Keep only the interval containing */
 
- /*                      w   s.t. N(w) = NVAL */
 
- 		i__2 = kl;
 
- 		for (ji = kf; ji <= i__2; ++ji) {
 
- 		    if (iwork[ji] <= nval[ji]) {
 
- 			ab[ji + ab_dim1] = c__[ji];
 
- 			nab[ji + nab_dim1] = iwork[ji];
 
- 		    }
 
- 		    if (iwork[ji] >= nval[ji]) {
 
- 			ab[ji + (ab_dim1 << 1)] = c__[ji];
 
- 			nab[ji + (nab_dim1 << 1)] = iwork[ji];
 
- 		    }
 
- /* L80: */
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           End of Parallel Version of the loop */
 
- /*           Begin of Serial Version of the loop */
 
- 	    klnew = kl;
 
- 	    i__2 = kl;
 
- 	    for (ji = kf; ji <= i__2; ++ji) {
 
- /*              Compute N(w), the number of eigenvalues less than w */
 
- 		tmp1 = c__[ji];
 
- 		tmp2 = d__[1] - tmp1;
 
- 		itmp1 = 0;
 
- 		if (tmp2 <= *pivmin) {
 
- 		    itmp1 = 1;
 
- /* Computing MIN */
 
- 		    d__1 = tmp2, d__2 = -(*pivmin);
 
- 		    tmp2 = min(d__1,d__2);
 
- 		}
 
- /*              A series of compiler directives to defeat vectorization */
 
- /*              for the next loop */
 
- /* $PL$ CMCHAR=' ' */
 
- /* DIR$          NEXTSCALAR */
 
- /* $DIR          SCALAR */
 
- /* DIR$          NEXT SCALAR */
 
- /* VD$L          NOVECTOR */
 
- /* DEC$          NOVECTOR */
 
- /* VD$           NOVECTOR */
 
- /* VDIR          NOVECTOR */
 
- /* VOCL          LOOP,SCALAR */
 
- /* IBM           PREFER SCALAR */
 
- /* $PL$ CMCHAR='*' */
 
- 		i__3 = *n;
 
- 		for (j = 2; j <= i__3; ++j) {
 
- 		    tmp2 = d__[j] - e2[j - 1] / tmp2 - tmp1;
 
- 		    if (tmp2 <= *pivmin) {
 
- 			++itmp1;
 
- /* Computing MIN */
 
- 			d__1 = tmp2, d__2 = -(*pivmin);
 
- 			tmp2 = min(d__1,d__2);
 
- 		    }
 
- /* L90: */
 
- 		}
 
- 		if (*ijob <= 2) {
 
- /*                 IJOB=2: Choose all intervals containing eigenvalues. */
 
- /*                 Insure that N(w) is monotone */
 
- /* Computing MIN */
 
- /* Computing MAX */
 
- 		    i__5 = nab[ji + nab_dim1];
 
- 		    i__3 = nab[ji + (nab_dim1 << 1)], i__4 = max(i__5,itmp1);
 
- 		    itmp1 = min(i__3,i__4);
 
- /*                 Update the Queue -- add intervals if both halves */
 
- /*                 contain eigenvalues. */
 
- 		    if (itmp1 == nab[ji + (nab_dim1 << 1)]) {
 
- /*                    No eigenvalue in the upper interval: */
 
- /*                    just use the lower interval. */
 
- 			ab[ji + (ab_dim1 << 1)] = tmp1;
 
- 		    } else if (itmp1 == nab[ji + nab_dim1]) {
 
- /*                    No eigenvalue in the lower interval: */
 
- /*                    just use the upper interval. */
 
- 			ab[ji + ab_dim1] = tmp1;
 
- 		    } else if (klnew < *mmax) {
 
- /*                    Eigenvalue in both intervals -- add upper to queue. */
 
- 			++klnew;
 
- 			ab[klnew + (ab_dim1 << 1)] = ab[ji + (ab_dim1 << 1)];
 
- 			nab[klnew + (nab_dim1 << 1)] = nab[ji + (nab_dim1 << 
 
- 				1)];
 
- 			ab[klnew + ab_dim1] = tmp1;
 
- 			nab[klnew + nab_dim1] = itmp1;
 
- 			ab[ji + (ab_dim1 << 1)] = tmp1;
 
- 			nab[ji + (nab_dim1 << 1)] = itmp1;
 
- 		    } else {
 
- 			*info = *mmax + 1;
 
- 			return 0;
 
- 		    }
 
- 		} else {
 
- /*                 IJOB=3: Binary search.  Keep only the interval */
 
- /*                         containing  w  s.t. N(w) = NVAL */
 
- 		    if (itmp1 <= nval[ji]) {
 
- 			ab[ji + ab_dim1] = tmp1;
 
- 			nab[ji + nab_dim1] = itmp1;
 
- 		    }
 
- 		    if (itmp1 >= nval[ji]) {
 
- 			ab[ji + (ab_dim1 << 1)] = tmp1;
 
- 			nab[ji + (nab_dim1 << 1)] = itmp1;
 
- 		    }
 
- 		}
 
- /* L100: */
 
- 	    }
 
- 	    kl = klnew;
 
- /*           End of Serial Version of the loop */
 
- 	}
 
- /*        Check for convergence */
 
- 	kfnew = kf;
 
- 	i__2 = kl;
 
- 	for (ji = kf; ji <= i__2; ++ji) {
 
- 	    tmp1 = (d__1 = ab[ji + (ab_dim1 << 1)] - ab[ji + ab_dim1], abs(
 
- 		    d__1));
 
- /* Computing MAX */
 
- 	    d__3 = (d__1 = ab[ji + (ab_dim1 << 1)], abs(d__1)), d__4 = (d__2 =
 
- 		     ab[ji + ab_dim1], abs(d__2));
 
- 	    tmp2 = max(d__3,d__4);
 
- /* Computing MAX */
 
- 	    d__1 = max(*abstol,*pivmin), d__2 = *reltol * tmp2;
 
- 	    if (tmp1 < max(d__1,d__2) || nab[ji + nab_dim1] >= nab[ji + (
 
- 		    nab_dim1 << 1)]) {
 
- /*              Converged -- Swap with position KFNEW, */
 
- /*                           then increment KFNEW */
 
- 		if (ji > kfnew) {
 
- 		    tmp1 = ab[ji + ab_dim1];
 
- 		    tmp2 = ab[ji + (ab_dim1 << 1)];
 
- 		    itmp1 = nab[ji + nab_dim1];
 
- 		    itmp2 = nab[ji + (nab_dim1 << 1)];
 
- 		    ab[ji + ab_dim1] = ab[kfnew + ab_dim1];
 
- 		    ab[ji + (ab_dim1 << 1)] = ab[kfnew + (ab_dim1 << 1)];
 
- 		    nab[ji + nab_dim1] = nab[kfnew + nab_dim1];
 
- 		    nab[ji + (nab_dim1 << 1)] = nab[kfnew + (nab_dim1 << 1)];
 
- 		    ab[kfnew + ab_dim1] = tmp1;
 
- 		    ab[kfnew + (ab_dim1 << 1)] = tmp2;
 
- 		    nab[kfnew + nab_dim1] = itmp1;
 
- 		    nab[kfnew + (nab_dim1 << 1)] = itmp2;
 
- 		    if (*ijob == 3) {
 
- 			itmp1 = nval[ji];
 
- 			nval[ji] = nval[kfnew];
 
- 			nval[kfnew] = itmp1;
 
- 		    }
 
- 		}
 
- 		++kfnew;
 
- 	    }
 
- /* L110: */
 
- 	}
 
- 	kf = kfnew;
 
- /*        Choose Midpoints */
 
- 	i__2 = kl;
 
- 	for (ji = kf; ji <= i__2; ++ji) {
 
- 	    c__[ji] = (ab[ji + ab_dim1] + ab[ji + (ab_dim1 << 1)]) * .5;
 
- /* L120: */
 
- 	}
 
- /*        If no more intervals to refine, quit. */
 
- 	if (kf > kl) {
 
- 	    goto L140;
 
- 	}
 
- /* L130: */
 
-     }
 
- /*     Converged */
 
- L140:
 
- /* Computing MAX */
 
-     i__1 = kl + 1 - kf;
 
-     *info = max(i__1,0);
 
-     *mout = kl;
 
-     return 0;
 
- /*     End of DLAEBZ */
 
- } /* _starpu_dlaebz_ */
 
 
  |