| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 | 
							- /* dhsein.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static logical c_false = FALSE_;
 
- static logical c_true = TRUE_;
 
- /* Subroutine */ int _starpu_dhsein_(char *side, char *eigsrc, char *initv, logical *
 
- 	select, integer *n, doublereal *h__, integer *ldh, doublereal *wr, 
 
- 	doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, 
 
- 	integer *ldvr, integer *mm, integer *m, doublereal *work, integer *
 
- 	ifaill, integer *ifailr, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
 
- 	    i__2;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer i__, k, kl, kr, kln, ksi;
 
-     doublereal wki;
 
-     integer ksr;
 
-     doublereal ulp, wkr, eps3;
 
-     logical pair;
 
-     doublereal unfl;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer iinfo;
 
-     logical leftv, bothv;
 
-     doublereal hnorm;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern /* Subroutine */ int _starpu_dlaein_(logical *, logical *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, doublereal *, integer *, doublereal *, doublereal *
 
- , doublereal *, doublereal *, integer *);
 
-     extern doublereal _starpu_dlanhs_(char *, integer *, doublereal *, integer *, 
 
- 	    doublereal *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     logical noinit;
 
-     integer ldwork;
 
-     logical rightv, fromqr;
 
-     doublereal smlnum;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DHSEIN uses inverse iteration to find specified right and/or left */
 
- /*  eigenvectors of a real upper Hessenberg matrix H. */
 
- /*  The right eigenvector x and the left eigenvector y of the matrix H */
 
- /*  corresponding to an eigenvalue w are defined by: */
 
- /*               H * x = w * x,     y**h * H = w * y**h */
 
- /*  where y**h denotes the conjugate transpose of the vector y. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  SIDE    (input) CHARACTER*1 */
 
- /*          = 'R': compute right eigenvectors only; */
 
- /*          = 'L': compute left eigenvectors only; */
 
- /*          = 'B': compute both right and left eigenvectors. */
 
- /*  EIGSRC  (input) CHARACTER*1 */
 
- /*          Specifies the source of eigenvalues supplied in (WR,WI): */
 
- /*          = 'Q': the eigenvalues were found using DHSEQR; thus, if */
 
- /*                 H has zero subdiagonal elements, and so is */
 
- /*                 block-triangular, then the j-th eigenvalue can be */
 
- /*                 assumed to be an eigenvalue of the block containing */
 
- /*                 the j-th row/column.  This property allows DHSEIN to */
 
- /*                 perform inverse iteration on just one diagonal block. */
 
- /*          = 'N': no assumptions are made on the correspondence */
 
- /*                 between eigenvalues and diagonal blocks.  In this */
 
- /*                 case, DHSEIN must always perform inverse iteration */
 
- /*                 using the whole matrix H. */
 
- /*  INITV   (input) CHARACTER*1 */
 
- /*          = 'N': no initial vectors are supplied; */
 
- /*          = 'U': user-supplied initial vectors are stored in the arrays */
 
- /*                 VL and/or VR. */
 
- /*  SELECT  (input/output) LOGICAL array, dimension (N) */
 
- /*          Specifies the eigenvectors to be computed. To select the */
 
- /*          real eigenvector corresponding to a real eigenvalue WR(j), */
 
- /*          SELECT(j) must be set to .TRUE.. To select the complex */
 
- /*          eigenvector corresponding to a complex eigenvalue */
 
- /*          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), */
 
- /*          either SELECT(j) or SELECT(j+1) or both must be set to */
 
- /*          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is */
 
- /*          .FALSE.. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix H.  N >= 0. */
 
- /*  H       (input) DOUBLE PRECISION array, dimension (LDH,N) */
 
- /*          The upper Hessenberg matrix H. */
 
- /*  LDH     (input) INTEGER */
 
- /*          The leading dimension of the array H.  LDH >= max(1,N). */
 
- /*  WR      (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*  WI      (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the real and imaginary parts of the eigenvalues of */
 
- /*          H; a complex conjugate pair of eigenvalues must be stored in */
 
- /*          consecutive elements of WR and WI. */
 
- /*          On exit, WR may have been altered since close eigenvalues */
 
- /*          are perturbed slightly in searching for independent */
 
- /*          eigenvectors. */
 
- /*  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) */
 
- /*          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
 
- /*          contain starting vectors for the inverse iteration for the */
 
- /*          left eigenvectors; the starting vector for each eigenvector */
 
- /*          must be in the same column(s) in which the eigenvector will */
 
- /*          be stored. */
 
- /*          On exit, if SIDE = 'L' or 'B', the left eigenvectors */
 
- /*          specified by SELECT will be stored consecutively in the */
 
- /*          columns of VL, in the same order as their eigenvalues. A */
 
- /*          complex eigenvector corresponding to a complex eigenvalue is */
 
- /*          stored in two consecutive columns, the first holding the real */
 
- /*          part and the second the imaginary part. */
 
- /*          If SIDE = 'R', VL is not referenced. */
 
- /*  LDVL    (input) INTEGER */
 
- /*          The leading dimension of the array VL. */
 
- /*          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
 
- /*  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) */
 
- /*          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
 
- /*          contain starting vectors for the inverse iteration for the */
 
- /*          right eigenvectors; the starting vector for each eigenvector */
 
- /*          must be in the same column(s) in which the eigenvector will */
 
- /*          be stored. */
 
- /*          On exit, if SIDE = 'R' or 'B', the right eigenvectors */
 
- /*          specified by SELECT will be stored consecutively in the */
 
- /*          columns of VR, in the same order as their eigenvalues. A */
 
- /*          complex eigenvector corresponding to a complex eigenvalue is */
 
- /*          stored in two consecutive columns, the first holding the real */
 
- /*          part and the second the imaginary part. */
 
- /*          If SIDE = 'L', VR is not referenced. */
 
- /*  LDVR    (input) INTEGER */
 
- /*          The leading dimension of the array VR. */
 
- /*          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
 
- /*  MM      (input) INTEGER */
 
- /*          The number of columns in the arrays VL and/or VR. MM >= M. */
 
- /*  M       (output) INTEGER */
 
- /*          The number of columns in the arrays VL and/or VR required to */
 
- /*          store the eigenvectors; each selected real eigenvector */
 
- /*          occupies one column and each selected complex eigenvector */
 
- /*          occupies two columns. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension ((N+2)*N) */
 
- /*  IFAILL  (output) INTEGER array, dimension (MM) */
 
- /*          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
 
- /*          eigenvector in the i-th column of VL (corresponding to the */
 
- /*          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
 
- /*          eigenvector converged satisfactorily. If the i-th and (i+1)th */
 
- /*          columns of VL hold a complex eigenvector, then IFAILL(i) and */
 
- /*          IFAILL(i+1) are set to the same value. */
 
- /*          If SIDE = 'R', IFAILL is not referenced. */
 
- /*  IFAILR  (output) INTEGER array, dimension (MM) */
 
- /*          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
 
- /*          eigenvector in the i-th column of VR (corresponding to the */
 
- /*          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
 
- /*          eigenvector converged satisfactorily. If the i-th and (i+1)th */
 
- /*          columns of VR hold a complex eigenvector, then IFAILR(i) and */
 
- /*          IFAILR(i+1) are set to the same value. */
 
- /*          If SIDE = 'L', IFAILR is not referenced. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, i is the number of eigenvectors which */
 
- /*                failed to converge; see IFAILL and IFAILR for further */
 
- /*                details. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Each eigenvector is normalized so that the element of largest */
 
- /*  magnitude has magnitude 1; here the magnitude of a complex number */
 
- /*  (x,y) is taken to be |x|+|y|. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode and test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --select;
 
-     h_dim1 = *ldh;
 
-     h_offset = 1 + h_dim1;
 
-     h__ -= h_offset;
 
-     --wr;
 
-     --wi;
 
-     vl_dim1 = *ldvl;
 
-     vl_offset = 1 + vl_dim1;
 
-     vl -= vl_offset;
 
-     vr_dim1 = *ldvr;
 
-     vr_offset = 1 + vr_dim1;
 
-     vr -= vr_offset;
 
-     --work;
 
-     --ifaill;
 
-     --ifailr;
 
-     /* Function Body */
 
-     bothv = _starpu_lsame_(side, "B");
 
-     rightv = _starpu_lsame_(side, "R") || bothv;
 
-     leftv = _starpu_lsame_(side, "L") || bothv;
 
-     fromqr = _starpu_lsame_(eigsrc, "Q");
 
-     noinit = _starpu_lsame_(initv, "N");
 
- /*     Set M to the number of columns required to store the selected */
 
- /*     eigenvectors, and standardize the array SELECT. */
 
-     *m = 0;
 
-     pair = FALSE_;
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	if (pair) {
 
- 	    pair = FALSE_;
 
- 	    select[k] = FALSE_;
 
- 	} else {
 
- 	    if (wi[k] == 0.) {
 
- 		if (select[k]) {
 
- 		    ++(*m);
 
- 		}
 
- 	    } else {
 
- 		pair = TRUE_;
 
- 		if (select[k] || select[k + 1]) {
 
- 		    select[k] = TRUE_;
 
- 		    *m += 2;
 
- 		}
 
- 	    }
 
- 	}
 
- /* L10: */
 
-     }
 
-     *info = 0;
 
-     if (! rightv && ! leftv) {
 
- 	*info = -1;
 
-     } else if (! fromqr && ! _starpu_lsame_(eigsrc, "N")) {
 
- 	*info = -2;
 
-     } else if (! noinit && ! _starpu_lsame_(initv, "U")) {
 
- 	*info = -3;
 
-     } else if (*n < 0) {
 
- 	*info = -5;
 
-     } else if (*ldh < max(1,*n)) {
 
- 	*info = -7;
 
-     } else if (*ldvl < 1 || leftv && *ldvl < *n) {
 
- 	*info = -11;
 
-     } else if (*ldvr < 1 || rightv && *ldvr < *n) {
 
- 	*info = -13;
 
-     } else if (*mm < *m) {
 
- 	*info = -14;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DHSEIN", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Set machine-dependent constants. */
 
-     unfl = _starpu_dlamch_("Safe minimum");
 
-     ulp = _starpu_dlamch_("Precision");
 
-     smlnum = unfl * (*n / ulp);
 
-     bignum = (1. - ulp) / smlnum;
 
-     ldwork = *n + 1;
 
-     kl = 1;
 
-     kln = 0;
 
-     if (fromqr) {
 
- 	kr = 0;
 
-     } else {
 
- 	kr = *n;
 
-     }
 
-     ksr = 1;
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	if (select[k]) {
 
- /*           Compute eigenvector(s) corresponding to W(K). */
 
- 	    if (fromqr) {
 
- /*              If affiliation of eigenvalues is known, check whether */
 
- /*              the matrix splits. */
 
- /*              Determine KL and KR such that 1 <= KL <= K <= KR <= N */
 
- /*              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
 
- /*              KR = N). */
 
- /*              Then inverse iteration can be performed with the */
 
- /*              submatrix H(KL:N,KL:N) for a left eigenvector, and with */
 
- /*              the submatrix H(1:KR,1:KR) for a right eigenvector. */
 
- 		i__2 = kl + 1;
 
- 		for (i__ = k; i__ >= i__2; --i__) {
 
- 		    if (h__[i__ + (i__ - 1) * h_dim1] == 0.) {
 
- 			goto L30;
 
- 		    }
 
- /* L20: */
 
- 		}
 
- L30:
 
- 		kl = i__;
 
- 		if (k > kr) {
 
- 		    i__2 = *n - 1;
 
- 		    for (i__ = k; i__ <= i__2; ++i__) {
 
- 			if (h__[i__ + 1 + i__ * h_dim1] == 0.) {
 
- 			    goto L50;
 
- 			}
 
- /* L40: */
 
- 		    }
 
- L50:
 
- 		    kr = i__;
 
- 		}
 
- 	    }
 
- 	    if (kl != kln) {
 
- 		kln = kl;
 
- /*              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
 
- /*              has not ben computed before. */
 
- 		i__2 = kr - kl + 1;
 
- 		hnorm = _starpu_dlanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
 
- 			work[1]);
 
- 		if (hnorm > 0.) {
 
- 		    eps3 = hnorm * ulp;
 
- 		} else {
 
- 		    eps3 = smlnum;
 
- 		}
 
- 	    }
 
- /*           Perturb eigenvalue if it is close to any previous */
 
- /*           selected eigenvalues affiliated to the submatrix */
 
- /*           H(KL:KR,KL:KR). Close roots are modified by EPS3. */
 
- 	    wkr = wr[k];
 
- 	    wki = wi[k];
 
- L60:
 
- 	    i__2 = kl;
 
- 	    for (i__ = k - 1; i__ >= i__2; --i__) {
 
- 		if (select[i__] && (d__1 = wr[i__] - wkr, abs(d__1)) + (d__2 =
 
- 			 wi[i__] - wki, abs(d__2)) < eps3) {
 
- 		    wkr += eps3;
 
- 		    goto L60;
 
- 		}
 
- /* L70: */
 
- 	    }
 
- 	    wr[k] = wkr;
 
- 	    pair = wki != 0.;
 
- 	    if (pair) {
 
- 		ksi = ksr + 1;
 
- 	    } else {
 
- 		ksi = ksr;
 
- 	    }
 
- 	    if (leftv) {
 
- /*              Compute left eigenvector. */
 
- 		i__2 = *n - kl + 1;
 
- 		_starpu_dlaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh, 
 
- 			 &wkr, &wki, &vl[kl + ksr * vl_dim1], &vl[kl + ksi * 
 
- 			vl_dim1], &work[1], &ldwork, &work[*n * *n + *n + 1], 
 
- 			&eps3, &smlnum, &bignum, &iinfo);
 
- 		if (iinfo > 0) {
 
- 		    if (pair) {
 
- 			*info += 2;
 
- 		    } else {
 
- 			++(*info);
 
- 		    }
 
- 		    ifaill[ksr] = k;
 
- 		    ifaill[ksi] = k;
 
- 		} else {
 
- 		    ifaill[ksr] = 0;
 
- 		    ifaill[ksi] = 0;
 
- 		}
 
- 		i__2 = kl - 1;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    vl[i__ + ksr * vl_dim1] = 0.;
 
- /* L80: */
 
- 		}
 
- 		if (pair) {
 
- 		    i__2 = kl - 1;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			vl[i__ + ksi * vl_dim1] = 0.;
 
- /* L90: */
 
- 		    }
 
- 		}
 
- 	    }
 
- 	    if (rightv) {
 
- /*              Compute right eigenvector. */
 
- 		_starpu_dlaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wkr, &
 
- 			wki, &vr[ksr * vr_dim1 + 1], &vr[ksi * vr_dim1 + 1], &
 
- 			work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, &
 
- 			smlnum, &bignum, &iinfo);
 
- 		if (iinfo > 0) {
 
- 		    if (pair) {
 
- 			*info += 2;
 
- 		    } else {
 
- 			++(*info);
 
- 		    }
 
- 		    ifailr[ksr] = k;
 
- 		    ifailr[ksi] = k;
 
- 		} else {
 
- 		    ifailr[ksr] = 0;
 
- 		    ifailr[ksi] = 0;
 
- 		}
 
- 		i__2 = *n;
 
- 		for (i__ = kr + 1; i__ <= i__2; ++i__) {
 
- 		    vr[i__ + ksr * vr_dim1] = 0.;
 
- /* L100: */
 
- 		}
 
- 		if (pair) {
 
- 		    i__2 = *n;
 
- 		    for (i__ = kr + 1; i__ <= i__2; ++i__) {
 
- 			vr[i__ + ksi * vr_dim1] = 0.;
 
- /* L110: */
 
- 		    }
 
- 		}
 
- 	    }
 
- 	    if (pair) {
 
- 		ksr += 2;
 
- 	    } else {
 
- 		++ksr;
 
- 	    }
 
- 	}
 
- /* L120: */
 
-     }
 
-     return 0;
 
- /*     End of DHSEIN */
 
- } /* _starpu_dhsein_ */
 
 
  |