| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589 | 
							- /* dgbtrf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__65 = 65;
 
- static doublereal c_b18 = -1.;
 
- static doublereal c_b31 = 1.;
 
- /* Subroutine */ int _starpu_dgbtrf_(integer *m, integer *n, integer *kl, integer *ku, 
 
- 	 doublereal *ab, integer *ldab, integer *ipiv, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j, i2, i3, j2, j3, k2, jb, nb, ii, jj, jm, ip, jp, km, ju, 
 
- 	    kv, nw;
 
-     extern /* Subroutine */ int _starpu_dger_(integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     doublereal temp;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *), _starpu_dgemm_(char *, char *, integer *, integer *, integer *
 
- , doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_dcopy_(
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_dswap_(integer *, doublereal *, integer *, doublereal *, integer *
 
- );
 
-     doublereal work13[4160]	/* was [65][64] */, work31[4160]	/* 
 
- 	    was [65][64] */;
 
-     extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dgbtf2_(
 
- 	    integer *, integer *, integer *, integer *, doublereal *, integer 
 
- 	    *, integer *, integer *);
 
-     extern integer _starpu_idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlaswp_(integer *, doublereal *, integer *, 
 
- 	    integer *, integer *, integer *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGBTRF computes an LU factorization of a real m-by-n band matrix A */
 
- /*  using partial pivoting with row interchanges. */
 
- /*  This is the blocked version of the algorithm, calling Level 3 BLAS. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  KL      (input) INTEGER */
 
- /*          The number of subdiagonals within the band of A.  KL >= 0. */
 
- /*  KU      (input) INTEGER */
 
- /*          The number of superdiagonals within the band of A.  KU >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the matrix A in band storage, in rows KL+1 to */
 
- /*          2*KL+KU+1; rows 1 to KL of the array need not be set. */
 
- /*          The j-th column of A is stored in the j-th column of the */
 
- /*          array AB as follows: */
 
- /*          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */
 
- /*          On exit, details of the factorization: U is stored as an */
 
- /*          upper triangular band matrix with KL+KU superdiagonals in */
 
- /*          rows 1 to KL+KU+1, and the multipliers used during the */
 
- /*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
 
- /*          See below for further details. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */
 
- /*  IPIV    (output) INTEGER array, dimension (min(M,N)) */
 
- /*          The pivot indices; for 1 <= i <= min(M,N), row i of the */
 
- /*          matrix was interchanged with row IPIV(i). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
 
- /*               has been completed, but the factor U is exactly */
 
- /*               singular, and division by zero will occur if it is used */
 
- /*               to solve a system of equations. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The band storage scheme is illustrated by the following example, when */
 
- /*  M = N = 6, KL = 2, KU = 1: */
 
- /*  On entry:                       On exit: */
 
- /*      *    *    *    +    +    +       *    *    *   u14  u25  u36 */
 
- /*      *    *    +    +    +    +       *    *   u13  u24  u35  u46 */
 
- /*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
 
- /*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
 
- /*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * */
 
- /*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * */
 
- /*  Array elements marked * are not used by the routine; elements marked */
 
- /*  + need not be set on entry, but are required by the routine to store */
 
- /*  elements of U because of fill-in resulting from the row interchanges. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     KV is the number of superdiagonals in the factor U, allowing for */
 
- /*     fill-in */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --ipiv;
 
-     /* Function Body */
 
-     kv = *ku + *kl;
 
- /*     Test the input parameters. */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kl < 0) {
 
- 	*info = -3;
 
-     } else if (*ku < 0) {
 
- 	*info = -4;
 
-     } else if (*ldab < *kl + kv + 1) {
 
- 	*info = -6;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGBTRF", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*m == 0 || *n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Determine the block size for this environment */
 
-     nb = _starpu_ilaenv_(&c__1, "DGBTRF", " ", m, n, kl, ku);
 
- /*     The block size must not exceed the limit set by the size of the */
 
- /*     local arrays WORK13 and WORK31. */
 
-     nb = min(nb,64);
 
-     if (nb <= 1 || nb > *kl) {
 
- /*        Use unblocked code */
 
- 	_starpu_dgbtf2_(m, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
 
-     } else {
 
- /*        Use blocked code */
 
- /*        Zero the superdiagonal elements of the work array WORK13 */
 
- 	i__1 = nb;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = j - 1;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		work13[i__ + j * 65 - 66] = 0.;
 
- /* L10: */
 
- 	    }
 
- /* L20: */
 
- 	}
 
- /*        Zero the subdiagonal elements of the work array WORK31 */
 
- 	i__1 = nb;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = nb;
 
- 	    for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 		work31[i__ + j * 65 - 66] = 0.;
 
- /* L30: */
 
- 	    }
 
- /* L40: */
 
- 	}
 
- /*        Gaussian elimination with partial pivoting */
 
- /*        Set fill-in elements in columns KU+2 to KV to zero */
 
- 	i__1 = min(kv,*n);
 
- 	for (j = *ku + 2; j <= i__1; ++j) {
 
- 	    i__2 = *kl;
 
- 	    for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
 
- 		ab[i__ + j * ab_dim1] = 0.;
 
- /* L50: */
 
- 	    }
 
- /* L60: */
 
- 	}
 
- /*        JU is the index of the last column affected by the current */
 
- /*        stage of the factorization */
 
- 	ju = 1;
 
- 	i__1 = min(*m,*n);
 
- 	i__2 = nb;
 
- 	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 
- /* Computing MIN */
 
- 	    i__3 = nb, i__4 = min(*m,*n) - j + 1;
 
- 	    jb = min(i__3,i__4);
 
- /*           The active part of the matrix is partitioned */
 
- /*              A11   A12   A13 */
 
- /*              A21   A22   A23 */
 
- /*              A31   A32   A33 */
 
- /*           Here A11, A21 and A31 denote the current block of JB columns */
 
- /*           which is about to be factorized. The number of rows in the */
 
- /*           partitioning are JB, I2, I3 respectively, and the numbers */
 
- /*           of columns are JB, J2, J3. The superdiagonal elements of A13 */
 
- /*           and the subdiagonal elements of A31 lie outside the band. */
 
- /* Computing MIN */
 
- 	    i__3 = *kl - jb, i__4 = *m - j - jb + 1;
 
- 	    i2 = min(i__3,i__4);
 
- /* Computing MIN */
 
- 	    i__3 = jb, i__4 = *m - j - *kl + 1;
 
- 	    i3 = min(i__3,i__4);
 
- /*           J2 and J3 are computed after JU has been updated. */
 
- /*           Factorize the current block of JB columns */
 
- 	    i__3 = j + jb - 1;
 
- 	    for (jj = j; jj <= i__3; ++jj) {
 
- /*              Set fill-in elements in column JJ+KV to zero */
 
- 		if (jj + kv <= *n) {
 
- 		    i__4 = *kl;
 
- 		    for (i__ = 1; i__ <= i__4; ++i__) {
 
- 			ab[i__ + (jj + kv) * ab_dim1] = 0.;
 
- /* L70: */
 
- 		    }
 
- 		}
 
- /*              Find pivot and test for singularity. KM is the number of */
 
- /*              subdiagonal elements in the current column. */
 
- /* Computing MIN */
 
- 		i__4 = *kl, i__5 = *m - jj;
 
- 		km = min(i__4,i__5);
 
- 		i__4 = km + 1;
 
- 		jp = _starpu_idamax_(&i__4, &ab[kv + 1 + jj * ab_dim1], &c__1);
 
- 		ipiv[jj] = jp + jj - j;
 
- 		if (ab[kv + jp + jj * ab_dim1] != 0.) {
 
- /* Computing MAX */
 
- /* Computing MIN */
 
- 		    i__6 = jj + *ku + jp - 1;
 
- 		    i__4 = ju, i__5 = min(i__6,*n);
 
- 		    ju = max(i__4,i__5);
 
- 		    if (jp != 1) {
 
- /*                    Apply interchange to columns J to J+JB-1 */
 
- 			if (jp + jj - 1 < j + *kl) {
 
- 			    i__4 = *ldab - 1;
 
- 			    i__5 = *ldab - 1;
 
- 			    _starpu_dswap_(&jb, &ab[kv + 1 + jj - j + j * ab_dim1], &
 
- 				    i__4, &ab[kv + jp + jj - j + j * ab_dim1], 
 
- 				     &i__5);
 
- 			} else {
 
- /*                       The interchange affects columns J to JJ-1 of A31 */
 
- /*                       which are stored in the work array WORK31 */
 
- 			    i__4 = jj - j;
 
- 			    i__5 = *ldab - 1;
 
- 			    _starpu_dswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], 
 
- 				    &i__5, &work31[jp + jj - j - *kl - 1], &
 
- 				    c__65);
 
- 			    i__4 = j + jb - jj;
 
- 			    i__5 = *ldab - 1;
 
- 			    i__6 = *ldab - 1;
 
- 			    _starpu_dswap_(&i__4, &ab[kv + 1 + jj * ab_dim1], &i__5, &
 
- 				    ab[kv + jp + jj * ab_dim1], &i__6);
 
- 			}
 
- 		    }
 
- /*                 Compute multipliers */
 
- 		    d__1 = 1. / ab[kv + 1 + jj * ab_dim1];
 
- 		    _starpu_dscal_(&km, &d__1, &ab[kv + 2 + jj * ab_dim1], &c__1);
 
- /*                 Update trailing submatrix within the band and within */
 
- /*                 the current block. JM is the index of the last column */
 
- /*                 which needs to be updated. */
 
- /* Computing MIN */
 
- 		    i__4 = ju, i__5 = j + jb - 1;
 
- 		    jm = min(i__4,i__5);
 
- 		    if (jm > jj) {
 
- 			i__4 = jm - jj;
 
- 			i__5 = *ldab - 1;
 
- 			i__6 = *ldab - 1;
 
- 			_starpu_dger_(&km, &i__4, &c_b18, &ab[kv + 2 + jj * ab_dim1], 
 
- 				&c__1, &ab[kv + (jj + 1) * ab_dim1], &i__5, &
 
- 				ab[kv + 1 + (jj + 1) * ab_dim1], &i__6);
 
- 		    }
 
- 		} else {
 
- /*                 If pivot is zero, set INFO to the index of the pivot */
 
- /*                 unless a zero pivot has already been found. */
 
- 		    if (*info == 0) {
 
- 			*info = jj;
 
- 		    }
 
- 		}
 
- /*              Copy current column of A31 into the work array WORK31 */
 
- /* Computing MIN */
 
- 		i__4 = jj - j + 1;
 
- 		nw = min(i__4,i3);
 
- 		if (nw > 0) {
 
- 		    _starpu_dcopy_(&nw, &ab[kv + *kl + 1 - jj + j + jj * ab_dim1], &
 
- 			    c__1, &work31[(jj - j + 1) * 65 - 65], &c__1);
 
- 		}
 
- /* L80: */
 
- 	    }
 
- 	    if (j + jb <= *n) {
 
- /*              Apply the row interchanges to the other blocks. */
 
- /* Computing MIN */
 
- 		i__3 = ju - j + 1;
 
- 		j2 = min(i__3,kv) - jb;
 
- /* Computing MAX */
 
- 		i__3 = 0, i__4 = ju - j - kv + 1;
 
- 		j3 = max(i__3,i__4);
 
- /*              Use DLASWP to apply the row interchanges to A12, A22, and */
 
- /*              A32. */
 
- 		i__3 = *ldab - 1;
 
- 		_starpu_dlaswp_(&j2, &ab[kv + 1 - jb + (j + jb) * ab_dim1], &i__3, &
 
- 			c__1, &jb, &ipiv[j], &c__1);
 
- /*              Adjust the pivot indices. */
 
- 		i__3 = j + jb - 1;
 
- 		for (i__ = j; i__ <= i__3; ++i__) {
 
- 		    ipiv[i__] = ipiv[i__] + j - 1;
 
- /* L90: */
 
- 		}
 
- /*              Apply the row interchanges to A13, A23, and A33 */
 
- /*              columnwise. */
 
- 		k2 = j - 1 + jb + j2;
 
- 		i__3 = j3;
 
- 		for (i__ = 1; i__ <= i__3; ++i__) {
 
- 		    jj = k2 + i__;
 
- 		    i__4 = j + jb - 1;
 
- 		    for (ii = j + i__ - 1; ii <= i__4; ++ii) {
 
- 			ip = ipiv[ii];
 
- 			if (ip != ii) {
 
- 			    temp = ab[kv + 1 + ii - jj + jj * ab_dim1];
 
- 			    ab[kv + 1 + ii - jj + jj * ab_dim1] = ab[kv + 1 + 
 
- 				    ip - jj + jj * ab_dim1];
 
- 			    ab[kv + 1 + ip - jj + jj * ab_dim1] = temp;
 
- 			}
 
- /* L100: */
 
- 		    }
 
- /* L110: */
 
- 		}
 
- /*              Update the relevant part of the trailing submatrix */
 
- 		if (j2 > 0) {
 
- /*                 Update A12 */
 
- 		    i__3 = *ldab - 1;
 
- 		    i__4 = *ldab - 1;
 
- 		    _starpu_dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j2, 
 
- 			    &c_b31, &ab[kv + 1 + j * ab_dim1], &i__3, &ab[kv 
 
- 			    + 1 - jb + (j + jb) * ab_dim1], &i__4);
 
- 		    if (i2 > 0) {
 
- /*                    Update A22 */
 
- 			i__3 = *ldab - 1;
 
- 			i__4 = *ldab - 1;
 
- 			i__5 = *ldab - 1;
 
- 			_starpu_dgemm_("No transpose", "No transpose", &i2, &j2, &jb, 
 
- 				&c_b18, &ab[kv + 1 + jb + j * ab_dim1], &i__3, 
 
- 				 &ab[kv + 1 - jb + (j + jb) * ab_dim1], &i__4, 
 
- 				 &c_b31, &ab[kv + 1 + (j + jb) * ab_dim1], &
 
- 				i__5);
 
- 		    }
 
- 		    if (i3 > 0) {
 
- /*                    Update A32 */
 
- 			i__3 = *ldab - 1;
 
- 			i__4 = *ldab - 1;
 
- 			_starpu_dgemm_("No transpose", "No transpose", &i3, &j2, &jb, 
 
- 				&c_b18, work31, &c__65, &ab[kv + 1 - jb + (j 
 
- 				+ jb) * ab_dim1], &i__3, &c_b31, &ab[kv + *kl 
 
- 				+ 1 - jb + (j + jb) * ab_dim1], &i__4);
 
- 		    }
 
- 		}
 
- 		if (j3 > 0) {
 
- /*                 Copy the lower triangle of A13 into the work array */
 
- /*                 WORK13 */
 
- 		    i__3 = j3;
 
- 		    for (jj = 1; jj <= i__3; ++jj) {
 
- 			i__4 = jb;
 
- 			for (ii = jj; ii <= i__4; ++ii) {
 
- 			    work13[ii + jj * 65 - 66] = ab[ii - jj + 1 + (jj 
 
- 				    + j + kv - 1) * ab_dim1];
 
- /* L120: */
 
- 			}
 
- /* L130: */
 
- 		    }
 
- /*                 Update A13 in the work array */
 
- 		    i__3 = *ldab - 1;
 
- 		    _starpu_dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j3, 
 
- 			    &c_b31, &ab[kv + 1 + j * ab_dim1], &i__3, work13, 
 
- 			    &c__65);
 
- 		    if (i2 > 0) {
 
- /*                    Update A23 */
 
- 			i__3 = *ldab - 1;
 
- 			i__4 = *ldab - 1;
 
- 			_starpu_dgemm_("No transpose", "No transpose", &i2, &j3, &jb, 
 
- 				&c_b18, &ab[kv + 1 + jb + j * ab_dim1], &i__3, 
 
- 				 work13, &c__65, &c_b31, &ab[jb + 1 + (j + kv)
 
- 				 * ab_dim1], &i__4);
 
- 		    }
 
- 		    if (i3 > 0) {
 
- /*                    Update A33 */
 
- 			i__3 = *ldab - 1;
 
- 			_starpu_dgemm_("No transpose", "No transpose", &i3, &j3, &jb, 
 
- 				&c_b18, work31, &c__65, work13, &c__65, &
 
- 				c_b31, &ab[*kl + 1 + (j + kv) * ab_dim1], &
 
- 				i__3);
 
- 		    }
 
- /*                 Copy the lower triangle of A13 back into place */
 
- 		    i__3 = j3;
 
- 		    for (jj = 1; jj <= i__3; ++jj) {
 
- 			i__4 = jb;
 
- 			for (ii = jj; ii <= i__4; ++ii) {
 
- 			    ab[ii - jj + 1 + (jj + j + kv - 1) * ab_dim1] = 
 
- 				    work13[ii + jj * 65 - 66];
 
- /* L140: */
 
- 			}
 
- /* L150: */
 
- 		    }
 
- 		}
 
- 	    } else {
 
- /*              Adjust the pivot indices. */
 
- 		i__3 = j + jb - 1;
 
- 		for (i__ = j; i__ <= i__3; ++i__) {
 
- 		    ipiv[i__] = ipiv[i__] + j - 1;
 
- /* L160: */
 
- 		}
 
- 	    }
 
- /*           Partially undo the interchanges in the current block to */
 
- /*           restore the upper triangular form of A31 and copy the upper */
 
- /*           triangle of A31 back into place */
 
- 	    i__3 = j;
 
- 	    for (jj = j + jb - 1; jj >= i__3; --jj) {
 
- 		jp = ipiv[jj] - jj + 1;
 
- 		if (jp != 1) {
 
- /*                 Apply interchange to columns J to JJ-1 */
 
- 		    if (jp + jj - 1 < j + *kl) {
 
- /*                    The interchange does not affect A31 */
 
- 			i__4 = jj - j;
 
- 			i__5 = *ldab - 1;
 
- 			i__6 = *ldab - 1;
 
- 			_starpu_dswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], &
 
- 				i__5, &ab[kv + jp + jj - j + j * ab_dim1], &
 
- 				i__6);
 
- 		    } else {
 
- /*                    The interchange does affect A31 */
 
- 			i__4 = jj - j;
 
- 			i__5 = *ldab - 1;
 
- 			_starpu_dswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], &
 
- 				i__5, &work31[jp + jj - j - *kl - 1], &c__65);
 
- 		    }
 
- 		}
 
- /*              Copy the current column of A31 back into place */
 
- /* Computing MIN */
 
- 		i__4 = i3, i__5 = jj - j + 1;
 
- 		nw = min(i__4,i__5);
 
- 		if (nw > 0) {
 
- 		    _starpu_dcopy_(&nw, &work31[(jj - j + 1) * 65 - 65], &c__1, &ab[
 
- 			    kv + *kl + 1 - jj + j + jj * ab_dim1], &c__1);
 
- 		}
 
- /* L170: */
 
- 	    }
 
- /* L180: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DGBTRF */
 
- } /* _starpu_dgbtrf_ */
 
 
  |