basic-api.texi 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Library:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_conf}
  34. This structure is passed to the @code{starpu_init} function in order
  35. to configure StarPU.
  36. When the default value is used, StarPU automatically selects the number of
  37. processing units and takes the default scheduling policy. The environment
  38. variables overwrite the equivalent parameters.
  39. @table @asis
  40. @item @code{const char *sched_policy_name} (default = NULL)
  41. This is the name of the scheduling policy. This can also be specified
  42. with the @code{STARPU_SCHED} environment variable.
  43. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  44. This is the definition of the scheduling policy. This field is ignored
  45. if @code{sched_policy_name} is set.
  46. @item @code{int ncpus} (default = -1)
  47. This is the number of CPU cores that StarPU can use. This can also be
  48. specified with the @code{STARPU_NCPUS} environment variable.
  49. @item @code{int ncuda} (default = -1)
  50. This is the number of CUDA devices that StarPU can use. This can also
  51. be specified with the @code{STARPU_NCUDA} environment variable.
  52. @item @code{int nopencl} (default = -1)
  53. This is the number of OpenCL devices that StarPU can use. This can
  54. also be specified with the @code{STARPU_NOPENCL} environment variable.
  55. @item @code{int nspus} (default = -1)
  56. This is the number of Cell SPUs that StarPU can use. This can also be
  57. specified with the @code{STARPU_NGORDON} environment variable.
  58. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  59. If this flag is set, the @code{workers_bindid} array indicates where the
  60. different workers are bound, otherwise StarPU automatically selects where to
  61. bind the different workers. This can also be specified with the
  62. @code{STARPU_WORKERS_CPUID} environment variable.
  63. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  64. If the @code{use_explicit_workers_bindid} flag is set, this array
  65. indicates where to bind the different workers. The i-th entry of the
  66. @code{workers_bindid} indicates the logical identifier of the
  67. processor which should execute the i-th worker. Note that the logical
  68. ordering of the CPUs is either determined by the OS, or provided by
  69. the @code{hwloc} library in case it is available.
  70. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  71. If this flag is set, the CUDA workers will be attached to the CUDA devices
  72. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  73. CUDA devices in a round-robin fashion. This can also be specified with the
  74. @code{STARPU_WORKERS_CUDAID} environment variable.
  75. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  76. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  77. contains the logical identifiers of the CUDA devices (as used by
  78. @code{cudaGetDevice}).
  79. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  80. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  81. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  82. the OpenCL devices in a round-robin fashion. This can also be specified with
  83. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  84. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  85. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  86. contains the logical identifiers of the OpenCL devices to be used.
  87. @item @code{int calibrate} (default = 0)
  88. If this flag is set, StarPU will calibrate the performance models when
  89. executing tasks. If this value is equal to -1, the default value is used. This
  90. can also be specified with the @code{STARPU_CALIBRATE} environment variable.
  91. @item @code{int single_combined_worker} (default = 0)
  92. By default, StarPU parallel tasks concurrently.
  93. Some parallel libraries (e.g. most OpenMP implementations) however do
  94. not support concurrent calls to parallel code. In such case, setting this flag
  95. makes StarPU only start one parallel task at a time.
  96. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  97. @end table
  98. @end deftp
  99. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  100. This function initializes the @var{conf} structure passed as argument
  101. with the default values. In case some configuration parameters are already
  102. specified through environment variables, @code{starpu_conf_init} initializes
  103. the fields of the structure according to the environment variables. For
  104. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  105. @code{.ncuda} field of the structure passed as argument.
  106. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  107. indicates that the argument was NULL.
  108. @end deftypefun
  109. @deftypefun void starpu_shutdown (void)
  110. This is StarPU termination method. It must be called at the end of the
  111. application: statistics and other post-mortem debugging information are not
  112. guaranteed to be available until this method has been called.
  113. @end deftypefun
  114. @node Workers' Properties
  115. @section Workers' Properties
  116. @deftp {Data Type} {enum starpu_archtype}
  117. The different values are:
  118. @table @asis
  119. @item @code{STARPU_CPU_WORKER}
  120. @item @code{STARPU_CUDA_WORKER}
  121. @item @code{STARPU_OPENCL_WORKER}
  122. @item @code{STARPU_GORDON_WORKER}
  123. @end table
  124. @end deftp
  125. @deftypefun unsigned starpu_worker_get_count (void)
  126. This function returns the number of workers (i.e. processing units executing
  127. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  128. @end deftypefun
  129. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  130. Returns the number of workers of the given type indicated by the argument. A positive
  131. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  132. the type is not valid otherwise.
  133. @end deftypefun
  134. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  135. This function returns the number of CPUs controlled by StarPU. The returned
  136. value should be at most @code{STARPU_MAXCPUS}.
  137. @end deftypefun
  138. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  139. This function returns the number of CUDA devices controlled by StarPU. The returned
  140. value should be at most @code{STARPU_MAXCUDADEVS}.
  141. @end deftypefun
  142. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  143. This function returns the number of OpenCL devices controlled by StarPU. The returned
  144. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  145. @end deftypefun
  146. @deftypefun unsigned starpu_spu_worker_get_count (void)
  147. This function returns the number of Cell SPUs controlled by StarPU.
  148. @end deftypefun
  149. @deftypefun int starpu_worker_get_id (void)
  150. This function returns the identifier of the current worker, i.e the one associated to the calling
  151. thread. The returned value is either -1 if the current context is not a StarPU
  152. worker (i.e. when called from the application outside a task or a callback), or
  153. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  154. @end deftypefun
  155. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  156. This function gets the list of identifiers of workers with the given
  157. type. It fills the workerids array with the identifiers of the workers that have the type
  158. indicated in the first argument. The maxsize argument indicates the size of the
  159. workids array. The returned value gives the number of identifiers that were put
  160. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  161. workers with the appropriate type: in that case, the array is filled with the
  162. maxsize first elements. To avoid such overflows, the value of maxsize can be
  163. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  164. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  165. @end deftypefun
  166. @deftypefun int starpu_worker_get_devid (int @var{id})
  167. This functions returns the device id of the given worker. The worker
  168. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  169. CUDA worker, this device identifier is the logical device identifier exposed by
  170. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  171. identifier of a CPU worker is the logical identifier of the core on which the
  172. worker was bound; this identifier is either provided by the OS or by the
  173. @code{hwloc} library in case it is available.
  174. @end deftypefun
  175. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  176. This function returns the type of processing unit associated to a
  177. worker. The worker identifier is a value returned by the
  178. @code{starpu_worker_get_id} function). The returned value
  179. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  180. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  181. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  182. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  183. identifier is unspecified.
  184. @end deftypefun
  185. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  186. This function allows to get the name of a given worker.
  187. StarPU associates a unique human readable string to each processing unit. This
  188. function copies at most the @var{maxlen} first bytes of the unique string
  189. associated to a worker identified by its identifier @var{id} into the
  190. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  191. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  192. function on an invalid identifier results in an unspecified behaviour.
  193. @end deftypefun
  194. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  195. This function returns the identifier of the memory node associated to the
  196. worker identified by @var{workerid}.
  197. @end deftypefun
  198. @node Data Library
  199. @section Data Library
  200. @menu
  201. * Introduction to Data Library::
  202. * Basic Data Library API::
  203. * Access registered data from the application::
  204. @end menu
  205. This section describes the data management facilities provided by StarPU.
  206. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  207. design their own data interfaces if required.
  208. @node Introduction to Data Library
  209. @subsection Introduction
  210. Data management is done at a high-level in StarPU: rather than accessing a mere
  211. list of contiguous buffers, the tasks may manipulate data that are described by
  212. a high-level construct which we call data interface.
  213. An example of data interface is the "vector" interface which describes a
  214. contiguous data array on a spefic memory node. This interface is a simple
  215. structure containing the number of elements in the array, the size of the
  216. elements, and the address of the array in the appropriate address space (this
  217. address may be invalid if there is no valid copy of the array in the memory
  218. node). More informations on the data interfaces provided by StarPU are
  219. given in @ref{Data Interfaces}.
  220. When a piece of data managed by StarPU is used by a task, the task
  221. implementation is given a pointer to an interface describing a valid copy of
  222. the data that is accessible from the current processing unit.
  223. Every worker is associated to a memory node which is a logical abstraction of
  224. the address space from which the processing unit gets its data. For instance,
  225. the memory node associated to the different CPU workers represents main memory
  226. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  227. Every memory node is identified by a logical index which is accessible from the
  228. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  229. to StarPU, the specified memory node indicates where the piece of data
  230. initially resides (we also call this memory node the home node of a piece of
  231. data).
  232. @node Basic Data Library API
  233. @subsection Basic Data Library API
  234. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  235. This function allocates data of the given size in main memory. It will also try to pin it in
  236. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  237. thus permit data transfer and computation overlapping. The allocated buffer must
  238. be freed thanks to the @code{starpu_free} function.
  239. @end deftypefun
  240. @deftypefun int starpu_free (void *@var{A})
  241. This function frees memory which has previously allocated with
  242. @code{starpu_malloc}.
  243. @end deftypefun
  244. @deftp {Data Type} {enum starpu_access_mode}
  245. This datatype describes a data access mode. The different available modes are:
  246. @table @asis
  247. @item @code{STARPU_R}: read-only mode.
  248. @item @code{STARPU_W}: write-only mode.
  249. @item @code{STARPU_RW}: read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  250. @item @code{STARPU_SCRATCH}: scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs), and no data transfer is ever performed. This is useful for temporary variables to avoid allocating/freeing buffers inside each task. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function. It is being considered for future extensions at least to define the initial value. For now, data to be used in SCRATCH mode should be registered with node -1 and a NULL pointer, since the value of the provided buffer is simply ignored for now.
  251. @item @code{STARPU_REDUX} reduction mode. TODO: add an example in the advanced examples section.
  252. @end table
  253. @end deftp
  254. @deftp {Data Type} {starpu_data_handle_t}
  255. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  256. data. Once a piece of data has been registered to StarPU, it is associated to a
  257. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  258. over the entire machine, so that we can maintain data consistency and locate
  259. data replicates for instance.
  260. @end deftp
  261. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  262. Register a piece of data into the handle located at the @var{handleptr}
  263. address. The @var{data_interface} buffer contains the initial description of the
  264. data in the home node. The @var{ops} argument is a pointer to a structure
  265. describing the different methods used to manipulate this type of interface. See
  266. @ref{struct starpu_data_interface_ops} for more details on this structure.
  267. If @code{home_node} is -1, StarPU will automatically
  268. allocate the memory when it is used for the
  269. first time in write-only mode. Once such data handle has been automatically
  270. allocated, it is possible to access it using any access mode.
  271. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  272. matrix) which can be registered by the means of helper functions (e.g.
  273. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  274. @end deftypefun
  275. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  276. This function unregisters a data handle from StarPU. If the data was
  277. automatically allocated by StarPU because the home node was -1, all
  278. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  279. is put back into the home node in the buffer that was initially registered.
  280. Using a data handle that has been unregistered from StarPU results in an
  281. undefined behaviour.
  282. @end deftypefun
  283. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  284. This is the same as starpu_data_unregister, except that StarPU does not put back
  285. a valid copy into the home node, in the buffer that was initially registered.
  286. @end deftypefun
  287. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  288. Destroy all replicates of the data handle. After data invalidation, the first
  289. access to the handle must be performed in write-only mode. Accessing an
  290. invalidated data in read-mode results in undefined behaviour.
  291. @end deftypefun
  292. @c TODO create a specific sections about user interaction with the DSM ?
  293. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  294. This function sets the write-through mask of a given data, i.e. a bitmask of
  295. nodes where the data should be always replicated after modification.
  296. @end deftypefun
  297. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  298. Issue a prefetch request for a given data to a given node, i.e.
  299. requests that the data be replicated to the given node, so that it is available
  300. there for tasks. If the @var{async} parameter is 0, the call will block until
  301. the transfer is achieved, else the call will return as soon as the request is
  302. scheduled (which may however have to wait for a task completion).
  303. @end deftypefun
  304. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  305. Return the handle associated to ptr @var{ptr}.
  306. @end deftypefun
  307. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  308. Explicitly ask StarPU to allocate room for a piece of data on the specified
  309. memory node.
  310. @end deftypefun
  311. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  312. Query the status of the handle on the specified memory node.
  313. @end deftypefun
  314. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  315. This function allows to specify that a piece of data can be discarded
  316. without impacting the application.
  317. @end deftypefun
  318. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  319. This sets the codelets to be used for the @var{handle} when it is accessed in
  320. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  321. codelet, and reduction between per-worker buffers will be done with the
  322. @var{redux_cl} codelet.
  323. @end deftypefun
  324. @node Access registered data from the application
  325. @subsection Access registered data from the application
  326. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  327. The application must call this function prior to accessing registered data from
  328. main memory outside tasks. StarPU ensures that the application will get an
  329. up-to-date copy of the data in main memory located where the data was
  330. originally registered, and that all concurrent accesses (e.g. from tasks) will
  331. be consistent with the access mode specified in the @var{mode} argument.
  332. @code{starpu_data_release} must be called once the application does not need to
  333. access the piece of data anymore. Note that implicit data
  334. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  335. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  336. the data, unless that they have not been disabled explictly by calling
  337. @code{starpu_data_set_default_sequential_consistency_flag} or
  338. @code{starpu_data_set_sequential_consistency_flag}.
  339. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  340. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  341. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  342. @end deftypefun
  343. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  344. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  345. @code{starpu_data_release}. When the data specified in the first argument is
  346. available in the appropriate access mode, the callback function is executed.
  347. The application may access the requested data during the execution of this
  348. callback. The callback function must call @code{starpu_data_release} once the
  349. application does not need to access the piece of data anymore.
  350. Note that implicit data dependencies are also enforced by
  351. @code{starpu_data_acquire_cb} in case they are enabled.
  352. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  353. be called from task callbacks. Upon successful completion, this function
  354. returns 0.
  355. @end deftypefun
  356. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  357. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  358. except that the code to be executed in a callback is directly provided as a
  359. macro parameter, and the data handle is automatically released after it. This
  360. permits to easily execute code which depends on the value of some registered
  361. data. This is non-blocking too and may be called from task callbacks.
  362. @end defmac
  363. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  364. This function releases the piece of data acquired by the application either by
  365. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  366. @end deftypefun
  367. @node Data Interfaces
  368. @section Data Interfaces
  369. @menu
  370. * Registering Data::
  371. * Accessing Data Interfaces::
  372. @end menu
  373. @node Registering Data
  374. @subsection Registering Data
  375. There are several ways to register a memory region so that it can be managed by
  376. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  377. matrices as well as BCSR and CSR sparse matrices.
  378. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  379. Register a void interface. There is no data really associated to that
  380. interface, but it may be used as a synchronization mechanism. It also
  381. permits to express an abstract piece of data that is managed by the
  382. application internally: this makes it possible to forbid the
  383. concurrent execution of different tasks accessing the same "void" data
  384. in read-write concurrently.
  385. @end deftypefun
  386. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  387. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  388. typically a scalar, and initialize @var{handle} to represent this data
  389. item.
  390. @cartouche
  391. @smallexample
  392. float var;
  393. starpu_data_handle_t var_handle;
  394. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  395. @end smallexample
  396. @end cartouche
  397. @end deftypefun
  398. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  399. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  400. @var{ptr} and initialize @var{handle} to represent it.
  401. @cartouche
  402. @smallexample
  403. float vector[NX];
  404. starpu_data_handle_t vector_handle;
  405. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  406. sizeof(vector[0]));
  407. @end smallexample
  408. @end cartouche
  409. @end deftypefun
  410. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  411. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  412. pointed by @var{ptr} and initialize @var{handle} to represent it.
  413. @var{ld} specifies the number of elements between rows.
  414. a value greater than @var{nx} adds padding, which can be useful for
  415. alignment purposes.
  416. @cartouche
  417. @smallexample
  418. float *matrix;
  419. starpu_data_handle_t matrix_handle;
  420. matrix = (float*)malloc(width * height * sizeof(float));
  421. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  422. width, width, height, sizeof(float));
  423. @end smallexample
  424. @end cartouche
  425. @end deftypefun
  426. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  427. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  428. elements pointed by @var{ptr} and initialize @var{handle} to represent
  429. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  430. between rows and between z planes.
  431. @cartouche
  432. @smallexample
  433. float *block;
  434. starpu_data_handle_t block_handle;
  435. block = (float*)malloc(nx*ny*nz*sizeof(float));
  436. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  437. nx, nx*ny, nx, ny, nz, sizeof(float));
  438. @end smallexample
  439. @end cartouche
  440. @end deftypefun
  441. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  442. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  443. Compressed Sparse Row Representation) sparse matrix interface.
  444. TODO
  445. @end deftypefun
  446. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  447. This variant of @code{starpu_data_register} uses the CSR (Compressed
  448. Sparse Row Representation) sparse matrix interface.
  449. TODO
  450. @end deftypefun
  451. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  452. Return the interface associated with @var{handle} on @var{memory_node}.
  453. @end deftypefun
  454. @node Accessing Data Interfaces
  455. @subsection Accessing Data Interfaces
  456. Each data interface is provided with a set of field access functions.
  457. The ones using a @code{void *} parameter aimed to be used in codelet
  458. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  459. @deftp {Data Type} {enum starpu_data_interface_id}
  460. The different values are:
  461. @table @asis
  462. @item @code{STARPU_MATRIX_INTERFACE_ID}
  463. @item @code{STARPU_BLOCK_INTERFACE_ID}
  464. @item @code{STARPU_VECTOR_INTERFACE_ID}
  465. @item @code{STARPU_CSR_INTERFACE_ID}
  466. @item @code{STARPU_BCSR_INTERFACE_ID}
  467. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  468. @item @code{STARPU_VOID_INTERFACE_ID}
  469. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  470. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  471. @end table
  472. @end deftp
  473. @menu
  474. * Accessing Handle::
  475. * Accessing Variable Data Interfaces::
  476. * Accessing Vector Data Interfaces::
  477. * Accessing Matrix Data Interfaces::
  478. * Accessing Block Data Interfaces::
  479. * Accessing BCSR Data Interfaces::
  480. * Accessing CSR Data Interfaces::
  481. @end menu
  482. @node Accessing Handle
  483. @subsubsection Handle
  484. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  485. Return the pointer associated with @var{handle} on node @var{node} or
  486. @code{NULL} if @var{handle}'s interface does not support this
  487. operation or data for this handle is not allocated on that node.
  488. @end deftypefun
  489. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  490. Return the local pointer associated with @var{handle} or @code{NULL}
  491. if @var{handle}'s interface does not have data allocated locally
  492. @end deftypefun
  493. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  494. Return the unique identifier of the interface associated with the given @var{handle}.
  495. @end deftypefun
  496. @node Accessing Variable Data Interfaces
  497. @subsubsection Variable Data Interfaces
  498. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  499. Return the size of the variable designated by @var{handle}.
  500. @end deftypefun
  501. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  502. Return a pointer to the variable designated by @var{handle}.
  503. @end deftypefun
  504. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  505. Return a pointer to the variable designated by @var{interface}.
  506. @end defmac
  507. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  508. Return the size of the variable designated by @var{interface}.
  509. @end defmac
  510. @node Accessing Vector Data Interfaces
  511. @subsubsection Vector Data Interfaces
  512. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  513. Return the number of elements registered into the array designated by @var{handle}.
  514. @end deftypefun
  515. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  516. Return the size of each element of the array designated by @var{handle}.
  517. @end deftypefun
  518. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  519. Return the local pointer associated with @var{handle}.
  520. @end deftypefun
  521. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  522. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  523. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  524. @end defmac
  525. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  526. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  527. documented below has to be used in addition to this.
  528. @end defmac
  529. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  530. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  531. @end defmac
  532. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  533. Return the number of elements registered into the array designated by @var{interface}.
  534. @end defmac
  535. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  536. Return the size of each element of the array designated by @var{interface}.
  537. @end defmac
  538. @node Accessing Matrix Data Interfaces
  539. @subsubsection Matrix Data Interfaces
  540. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  541. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  542. @end deftypefun
  543. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  544. Return the number of elements on the y-axis of the matrix designated by
  545. @var{handle}.
  546. @end deftypefun
  547. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  548. Return the number of elements between each row of the matrix designated by
  549. @var{handle}. Maybe be equal to nx when there is no padding.
  550. @end deftypefun
  551. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  552. Return the local pointer associated with @var{handle}.
  553. @end deftypefun
  554. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  555. Return the size of the elements registered into the matrix designated by
  556. @var{handle}.
  557. @end deftypefun
  558. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  559. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  560. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  561. used instead.
  562. @end defmac
  563. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  564. Return a device handle for the matrix designated by @var{interface}, to be used
  565. on OpenCL. The offset documented below has to be used in addition to this.
  566. @end defmac
  567. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  568. Return the offset in the matrix designated by @var{interface}, to be used with
  569. the device handle.
  570. @end defmac
  571. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  572. Return the number of elements on the x-axis of the matrix designated by
  573. @var{interface}.
  574. @end defmac
  575. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  576. Return the number of elements on the y-axis of the matrix designated by
  577. @var{interface}.
  578. @end defmac
  579. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  580. Return the number of elements between each row of the matrix designated by
  581. @var{interface}. May be equal to nx when there is no padding.
  582. @end defmac
  583. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  584. Return the size of the elements registered into the matrix designated by
  585. @var{interface}.
  586. @end defmac
  587. @node Accessing Block Data Interfaces
  588. @subsubsection Block Data Interfaces
  589. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  590. Return the number of elements on the x-axis of the block designated by @var{handle}.
  591. @end deftypefun
  592. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  593. Return the number of elements on the y-axis of the block designated by @var{handle}.
  594. @end deftypefun
  595. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  596. Return the number of elements on the z-axis of the block designated by @var{handle}.
  597. @end deftypefun
  598. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  599. Return the number of elements between each row of the block designated by
  600. @var{handle}, in the format of the current memory node.
  601. @end deftypefun
  602. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  603. Return the number of elements between each z plane of the block designated by
  604. @var{handle}, in the format of the current memory node.
  605. @end deftypefun
  606. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  607. Return the local pointer associated with @var{handle}.
  608. @end deftypefun
  609. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  610. Return the size of the elements of the block designated by @var{handle}.
  611. @end deftypefun
  612. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  613. Return a pointer to the block designated by @var{interface}.
  614. @end defmac
  615. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  616. Return a device handle for the block designated by @var{interface}, to be used
  617. on OpenCL. The offset document below has to be used in addition to this.
  618. @end defmac
  619. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  620. Return the offset in the block designated by @var{interface}, to be used with
  621. the device handle.
  622. @end defmac
  623. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  624. Return the number of elements on the x-axis of the block designated by @var{handle}.
  625. @end defmac
  626. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  627. Return the number of elements on the y-axis of the block designated by @var{handle}.
  628. @end defmac
  629. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  630. Return the number of elements on the z-axis of the block designated by @var{handle}.
  631. @end defmac
  632. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  633. Return the number of elements between each row of the block designated by
  634. @var{interface}. May be equal to nx when there is no padding.
  635. @end defmac
  636. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  637. Return the number of elements between each z plane of the block designated by
  638. @var{interface}. May be equal to nx*ny when there is no padding.
  639. @end defmac
  640. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  641. Return the size of the elements of the matrix designated by @var{interface}.
  642. @end defmac
  643. @node Accessing BCSR Data Interfaces
  644. @subsubsection BCSR Data Interfaces
  645. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  646. Return the number of non-zero elements in the matrix designated by @var{handle}.
  647. @end deftypefun
  648. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  649. Return the number of rows (in terms of blocks of size r*c) in the matrix
  650. designated by @var{handle}.
  651. @end deftypefun
  652. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  653. Return the index at which all arrays (the column indexes, the row pointers...)
  654. of the matrix desginated by @var{handle} start.
  655. @end deftypefun
  656. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  657. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  658. @end deftypefun
  659. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  660. Return a pointer to the column index, which holds the positions of the non-zero
  661. entries in the matrix designated by @var{handle}.
  662. @end deftypefun
  663. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  664. Return the row pointer array of the matrix designated by @var{handle}.
  665. @end deftypefun
  666. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  667. Return the number of rows in a block.
  668. @end deftypefun
  669. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  670. Return the numberof columns in a block.
  671. @end deftypefun
  672. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  673. Return the size of the elements in the matrix designated by @var{handle}.
  674. @end deftypefun
  675. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  676. Return the number of non-zero values in the matrix designated by @var{interface}.
  677. @end defmac
  678. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  679. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  680. @end defmac
  681. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  682. Return a pointer to the column index of the matrix designated by @var{interface}.
  683. @end defmac
  684. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  685. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  686. @end defmac
  687. @node Accessing CSR Data Interfaces
  688. @subsubsection CSR Data Interfaces
  689. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  690. Return the number of non-zero values in the matrix designated by @var{handle}.
  691. @end deftypefun
  692. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  693. Return the size of the row pointer array of the matrix designated by @var{handle}.
  694. @end deftypefun
  695. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  696. Return the index at which all arrays (the column indexes, the row pointers...)
  697. of the matrix designated by @var{handle} start.
  698. @end deftypefun
  699. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  700. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  701. @end deftypefun
  702. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  703. Return a local pointer to the column index of the matrix designated by @var{handle}.
  704. @end deftypefun
  705. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  706. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  707. @end deftypefun
  708. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  709. Return the size of the elements registered into the matrix designated by @var{handle}.
  710. @end deftypefun
  711. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  712. Return the number of non-zero values in the matrix designated by @var{interface}.
  713. @end defmac
  714. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  715. Return the size of the row pointer array of the matrix designated by @var{interface}.
  716. @end defmac
  717. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  718. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  719. @end defmac
  720. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  721. Return a pointer to the column index of the matrix designated by @var{interface}.
  722. @end defmac
  723. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  724. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  725. @end defmac
  726. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  727. Return the index at which all arrays (the column indexes, the row pointers...)
  728. of the @var{interface} start.
  729. @end defmac
  730. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  731. Return the size of the elements registered into the matrix designated by @var{interface}.
  732. @end defmac
  733. @node Data Partition
  734. @section Data Partition
  735. @menu
  736. * Basic API::
  737. * Predefined filter functions::
  738. @end menu
  739. @node Basic API
  740. @subsection Basic API
  741. @deftp {Data Type} {struct starpu_data_filter}
  742. The filter structure describes a data partitioning operation, to be given to the
  743. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  744. for an example. The different fields are:
  745. @table @asis
  746. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  747. This function fills the @code{child_interface} structure with interface
  748. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  749. @item @code{unsigned nchildren}
  750. This is the number of parts to partition the data into.
  751. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  752. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  753. children depends on the actual data (e.g. the number of blocks in a sparse
  754. matrix).
  755. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  756. In case the resulting children use a different data interface, this function
  757. returns which interface is used by child number @code{id}.
  758. @item @code{unsigned filter_arg}
  759. Allow to define an additional parameter for the filter function.
  760. @item @code{void *filter_arg_ptr}
  761. Allow to define an additional pointer parameter for the filter
  762. function, such as the sizes of the different parts.
  763. @end table
  764. @end deftp
  765. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  766. @anchor{starpu_data_partition}
  767. This requests partitioning one StarPU data @var{initial_handle} into several
  768. subdata according to the filter @var{f}, as shown in the following example:
  769. @cartouche
  770. @smallexample
  771. struct starpu_data_filter f = @{
  772. .filter_func = starpu_vertical_block_filter_func,
  773. .nchildren = nslicesx,
  774. .get_nchildren = NULL,
  775. .get_child_ops = NULL
  776. @};
  777. starpu_data_partition(A_handle, &f);
  778. @end smallexample
  779. @end cartouche
  780. @end deftypefun
  781. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  782. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  783. collected back into one big piece in the @var{gathering_node} (usually 0).
  784. @cartouche
  785. @smallexample
  786. starpu_data_unpartition(A_handle, 0);
  787. @end smallexample
  788. @end cartouche
  789. @end deftypefun
  790. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  791. This function returns the number of children.
  792. @end deftypefun
  793. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  794. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  795. @end deftypefun
  796. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  797. After partitioning a StarPU data by applying a filter,
  798. @code{starpu_data_get_sub_data} can be used to get handles for each of
  799. the data portions. @var{root_data} is the parent data that was
  800. partitioned. @var{depth} is the number of filters to traverse (in
  801. case several filters have been applied, to e.g. partition in row
  802. blocks, and then in column blocks), and the subsequent
  803. parameters are the indexes. The function returns a handle to the
  804. subdata.
  805. @cartouche
  806. @smallexample
  807. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  808. @end smallexample
  809. @end cartouche
  810. @end deftypefun
  811. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  812. This function is similar to @code{starpu_data_get_sub_data} but uses a
  813. va_list for the parameter list.
  814. @end deftypefun
  815. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  816. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  817. recursively. @var{nfilters} pointers to variables of the type
  818. starpu_data_filter should be given.
  819. @end deftypefun
  820. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  821. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  822. recursively. It uses a va_list of pointers to variables of the typer
  823. starpu_data_filter.
  824. @end deftypefun
  825. @node Predefined filter functions
  826. @subsection Predefined filter functions
  827. @menu
  828. * Partitioning BCSR Data::
  829. * Partitioning BLAS interface::
  830. * Partitioning Vector Data::
  831. * Partitioning Block Data::
  832. @end menu
  833. This section gives a partial list of the predefined partitioning functions.
  834. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  835. list can be found in @code{starpu_data_filters.h} .
  836. @node Partitioning BCSR Data
  837. @subsubsection Partitioning BCSR Data
  838. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  839. This partitions a block-sparse matrix into dense matrices.
  840. @end deftypefun
  841. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  842. This partitions a block-sparse matrix into vertical block-sparse matrices.
  843. @end deftypefun
  844. @node Partitioning BLAS interface
  845. @subsubsection Partitioning BLAS interface
  846. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  847. This partitions a dense Matrix into horizontal blocks.
  848. @end deftypefun
  849. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  850. This partitions a dense Matrix into vertical blocks.
  851. @end deftypefun
  852. @node Partitioning Vector Data
  853. @subsubsection Partitioning Vector Data
  854. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  855. Return in @code{*@var{child_interface}} the @var{id}th element of the
  856. vector represented by @var{father_interface} once partitioned in
  857. @var{nparts} chunks of equal size.
  858. @end deftypefun
  859. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  860. Return in @code{*@var{child_interface}} the @var{id}th element of the
  861. vector represented by @var{father_interface} once partitioned into
  862. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  863. @code{*@var{f}}.
  864. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  865. @code{uint32_t} elements, each of which specifies the number of elements
  866. in each chunk of the partition.
  867. @end deftypefun
  868. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  869. Return in @code{*@var{child_interface}} the @var{id}th element of the
  870. vector represented by @var{father_interface} once partitioned in two
  871. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  872. @code{0} or @code{1}.
  873. @end deftypefun
  874. @node Partitioning Block Data
  875. @subsubsection Partitioning Block Data
  876. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  877. This partitions a 3D matrix along the X axis.
  878. @end deftypefun
  879. @node Codelets and Tasks
  880. @section Codelets and Tasks
  881. This section describes the interface to manipulate codelets and tasks.
  882. @deftp {Data Type} {enum starpu_codelet_type}
  883. Describes the type of parallel task. The different values are:
  884. @table @asis
  885. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  886. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  887. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  888. @code{starpu_combined_worker_get_rank} to distribute the work
  889. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  890. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  891. determine how many threads should be started.
  892. @end table
  893. See @ref{Parallel Tasks} for details.
  894. @end deftp
  895. @defmac STARPU_CPU
  896. This macro is used when setting the field @code{where} of a @code{struct
  897. starpu_codelet} to specify the codelet may be executed on a CPU
  898. processing unit.
  899. @end defmac
  900. @defmac STARPU_CUDA
  901. This macro is used when setting the field @code{where} of a @code{struct
  902. starpu_codelet} to specify the codelet may be executed on a CUDA
  903. processing unit.
  904. @end defmac
  905. @defmac STARPU_SPU
  906. This macro is used when setting the field @code{where} of a @code{struct
  907. starpu_codelet} to specify the codelet may be executed on a SPU
  908. processing unit.
  909. @end defmac
  910. @defmac STARPU_GORDON
  911. This macro is used when setting the field @code{where} of a @code{struct
  912. starpu_codelet} to specify the codelet may be executed on a Cell
  913. processing unit.
  914. @end defmac
  915. @defmac STARPU_OPENCL
  916. This macro is used when setting the field @code{where} of a @code{struct
  917. starpu_codelet} to specify the codelet may be executed on a OpenCL
  918. processing unit.
  919. @end defmac
  920. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  921. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  922. with this macro indicates the codelet will have several
  923. implementations. The use of this macro is deprecated. One should
  924. always only define the field @code{cpu_funcs}.
  925. @end defmac
  926. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  927. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  928. with this macro indicates the codelet will have several
  929. implementations. The use of this macro is deprecated. One should
  930. always only define the field @code{cuda_funcs}.
  931. @end defmac
  932. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  933. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  934. with this macro indicates the codelet will have several
  935. implementations. The use of this macro is deprecated. One should
  936. always only define the field @code{opencl_funcs}.
  937. @end defmac
  938. @deftp {Data Type} {struct starpu_codelet}
  939. The codelet structure describes a kernel that is possibly implemented on various
  940. targets. For compatibility, make sure to initialize the whole structure to zero.
  941. @table @asis
  942. @item @code{uint32_t where} (optional)
  943. Indicates which types of processing units are able to execute the
  944. codelet. The different values
  945. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  946. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  947. on which types of processing units the codelet can be executed.
  948. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  949. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  950. indicates that it is only available on Cell SPUs. If the field is
  951. unset, its value will be automatically set based on the availability
  952. of the @code{XXX_funcs} fields defined below.
  953. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  954. Defines a function which should return 1 if the worker designated by @var{workerid} can execute the @var{nimpl}th implementation of the given@var{task}, 0 otherwise.
  955. @item @code{enum starpu_codelet_type type} (optional)
  956. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  957. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  958. implementation is also available. See @ref{Parallel Tasks} for details.
  959. @item @code{int max_parallelism} (optional)
  960. If a parallel implementation is available, this denotes the maximum combined
  961. worker size that StarPU will use to execute parallel tasks for this codelet.
  962. @item @code{starpu_cpu_func_t cpu_func} (optional)
  963. This field has been made deprecated. One should use instead the
  964. @code{cpu_funcs} field.
  965. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  966. Is an array of function pointers to the CPU implementations of the codelet.
  967. It must be terminated by a NULL value.
  968. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  969. argument being the array of data managed by the data management library, and
  970. the second argument is a pointer to the argument passed from the @code{cl_arg}
  971. field of the @code{starpu_task} structure.
  972. If the @code{where} field is set, then the @code{cpu_funcs} field is
  973. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  974. field, it must be non-null otherwise.
  975. @item @code{starpu_cuda_func_t cuda_func} (optional)
  976. This field has been made deprecated. One should use instead the
  977. @code{cuda_funcs} field.
  978. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  979. Is an array of function pointers to the CUDA implementations of the codelet.
  980. It must be terminated by a NULL value.
  981. @emph{The functions must be host-functions written in the CUDA runtime
  982. API}. Their prototype must
  983. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  984. If the @code{where} field is set, then the @code{cuda_funcs}
  985. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  986. field, it must be non-null otherwise.
  987. @item @code{starpu_opencl_func_t opencl_func} (optional)
  988. This field has been made deprecated. One should use instead the
  989. @code{opencl_funcs} field.
  990. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  991. Is an array of function pointers to the OpenCL implementations of the codelet.
  992. It must be terminated by a NULL value.
  993. The functions prototype must be:
  994. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  995. If the @code{where} field is set, then the @code{opencl_funcs} field
  996. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  997. field, it must be non-null otherwise.
  998. @item @code{uint8_t gordon_func} (optional)
  999. This field has been made deprecated. One should use instead the
  1000. @code{gordon_funcs} field.
  1001. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1002. Is an array of index of the Cell SPU implementations of the codelet within the
  1003. Gordon library.
  1004. It must be terminated by a NULL value.
  1005. See Gordon documentation for more details on how to register a kernel and
  1006. retrieve its index.
  1007. @item @code{unsigned nbuffers}
  1008. Specifies the number of arguments taken by the codelet. These arguments are
  1009. managed by the DSM and are accessed from the @code{void *buffers[]}
  1010. array. The constant argument passed with the @code{cl_arg} field of the
  1011. @code{starpu_task} structure is not counted in this number. This value should
  1012. not be above @code{STARPU_NMAXBUFS}.
  1013. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1014. Is an array of @code{enum starpu_access_mode}. It describes the
  1015. required access modes to the data neeeded by the codelet (e.g.
  1016. @code{STARPU_RW}). The number of entries in this array must be
  1017. specified in the @code{nbuffers} field (defined above), and should not
  1018. exceed @code{STARPU_NMAXBUFS}.
  1019. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1020. option when configuring StarPU.
  1021. @item @code{struct starpu_perfmodel *model} (optional)
  1022. This is a pointer to the task duration performance model associated to this
  1023. codelet. This optional field is ignored when set to @code{NULL}.
  1024. @item @code{struct starpu_perfmodel *power_model} (optional)
  1025. This is a pointer to the task power consumption performance model associated
  1026. to this codelet. This optional field is ignored when set to @code{NULL}.
  1027. In the case of parallel codelets, this has to account for all processing units
  1028. involved in the parallel execution.
  1029. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1030. Statistics collected at runtime: this is filled by StarPU and should not be
  1031. accessed directly, but for example by calling the
  1032. @code{starpu_display_codelet_stats} function (See
  1033. @ref{starpu_display_codelet_stats} for details).
  1034. @item @code{const char *name} (optional)
  1035. Define the name of the codelet. This can be useful for debugging purposes.
  1036. @end table
  1037. @end deftp
  1038. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1039. Initialize @var{cl} with default values. Codelets should preferably be
  1040. initialized statically as shown in @ref{Defining a Codelet}. However
  1041. such a initialisation is not always possible, e.g. when using C++.
  1042. @end deftypefun
  1043. @deftp {Data Type} {enum starpu_task_status}
  1044. State of a task, can be either of
  1045. @table @asis
  1046. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1047. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1048. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1049. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1050. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1051. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1052. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1053. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1054. @end table
  1055. @end deftp
  1056. @deftp {Data Type} {struct starpu_task}
  1057. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1058. processing units managed by StarPU. It instantiates a codelet. It can either be
  1059. allocated dynamically with the @code{starpu_task_create} method, or declared
  1060. statically. In the latter case, the programmer has to zero the
  1061. @code{starpu_task} structure and to fill the different fields properly. The
  1062. indicated default values correspond to the configuration of a task allocated
  1063. with @code{starpu_task_create}.
  1064. @table @asis
  1065. @item @code{struct starpu_codelet *cl}
  1066. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1067. describes where the kernel should be executed, and supplies the appropriate
  1068. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1069. such empty tasks can be useful for synchronization purposes.
  1070. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1071. This field has been made deprecated. One should use instead the
  1072. @code{handles} field to specify the handles to the data accessed by
  1073. the task. The access modes are now defined in the @code{mode} field of
  1074. the @code{struct starpu_codelet cl} field defined above.
  1075. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1076. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1077. to the different pieces of data accessed by the task. The number
  1078. of entries in this array must be specified in the @code{nbuffers} field of the
  1079. @code{struct starpu_codelet} structure, and should not exceed
  1080. @code{STARPU_NMAXBUFS}.
  1081. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1082. option when configuring StarPU.
  1083. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1084. The actual data pointers to the memory node where execution will happen, managed
  1085. by the DSM.
  1086. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1087. This pointer is passed to the codelet through the second argument
  1088. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1089. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1090. argument.
  1091. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1092. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1093. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1094. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1095. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1096. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1097. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1098. codelets, where the @code{cl_arg} pointer is given as such.
  1099. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1100. This is a function pointer of prototype @code{void (*f)(void *)} which
  1101. specifies a possible callback. If this pointer is non-null, the callback
  1102. function is executed @emph{on the host} after the execution of the task. The
  1103. callback is passed the value contained in the @code{callback_arg} field. No
  1104. callback is executed if the field is set to @code{NULL}.
  1105. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1106. This is the pointer passed to the callback function. This field is ignored if
  1107. the @code{callback_func} is set to @code{NULL}.
  1108. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1109. If set, this flag indicates that the task should be associated with the tag
  1110. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1111. with the task and to express task dependencies easily.
  1112. @item @code{starpu_tag_t tag_id}
  1113. This fields contains the tag associated to the task if the @code{use_tag} field
  1114. was set, it is ignored otherwise.
  1115. @item @code{unsigned synchronous}
  1116. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1117. returns only when the task has been executed (or if no worker is able to
  1118. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1119. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1120. This field indicates a level of priority for the task. This is an integer value
  1121. that must be set between the return values of the
  1122. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1123. and that of the @code{starpu_sched_get_max_priority} for the most important
  1124. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1125. are provided for convenience and respectively returns value of
  1126. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1127. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1128. order to allow static task initialization. Scheduling strategies that take
  1129. priorities into account can use this parameter to take better scheduling
  1130. decisions, but the scheduling policy may also ignore it.
  1131. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1132. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1133. task to the worker specified by the @code{workerid} field.
  1134. @item @code{unsigned workerid} (optional)
  1135. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1136. which is the identifier of the worker that should process this task (as
  1137. returned by @code{starpu_worker_get_id}). This field is ignored if
  1138. @code{execute_on_a_specific_worker} field is set to 0.
  1139. @item @code{starpu_task_bundle_t bundle} (optional)
  1140. The bundle that includes this task. If no bundle is used, this should be NULL.
  1141. @item @code{int detach} (optional) (default: @code{1})
  1142. If this flag is set, it is not possible to synchronize with the task
  1143. by the means of @code{starpu_task_wait} later on. Internal data structures
  1144. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1145. flag is not set.
  1146. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1147. If this flag is set, the task structure will automatically be freed, either
  1148. after the execution of the callback if the task is detached, or during
  1149. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1150. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1151. called explicitly. Setting this flag for a statically allocated task structure
  1152. will result in undefined behaviour. The flag is set to 1 when the task is
  1153. created by calling @code{starpu_task_create()}. Note that
  1154. @code{starpu_task_wait_for_all} will not free any task.
  1155. @item @code{int regenerate} (optional)
  1156. If this flag is set, the task will be re-submitted to StarPU once it has been
  1157. executed. This flag must not be set if the destroy flag is set too.
  1158. @item @code{enum starpu_task_status status} (optional)
  1159. Current state of the task.
  1160. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1161. Profiling information for the task.
  1162. @item @code{double predicted} (output field)
  1163. Predicted duration of the task. This field is only set if the scheduling
  1164. strategy used performance models.
  1165. @item @code{double predicted_transfer} (optional)
  1166. Predicted data transfer duration for the task in microseconds. This field is
  1167. only valid if the scheduling strategy uses performance models.
  1168. @item @code{struct starpu_task *prev}
  1169. A pointer to the previous task. This should only be used by StarPU.
  1170. @item @code{struct starpu_task *next}
  1171. A pointer to the next task. This should only be used by StarPU.
  1172. @item @code{unsigned int mf_skip}
  1173. todo
  1174. @item @code{void *starpu_private}
  1175. This is private to StarPU, do not modify. If the task is allocated by hand
  1176. (without starpu_task_create), this field should be set to NULL.
  1177. @item @code{int magic}
  1178. This field is set when initializing a task. It prevents a task from being
  1179. submitted if it has not been properly initialized.
  1180. @end table
  1181. @end deftp
  1182. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1183. Initialize @var{task} with default values. This function is implicitly
  1184. called by @code{starpu_task_create}. By default, tasks initialized with
  1185. @code{starpu_task_init} must be deinitialized explicitly with
  1186. @code{starpu_task_deinit}. Tasks can also be initialized statically,
  1187. using @code{STARPU_TASK_INITIALIZER} defined below.
  1188. @end deftypefun
  1189. @defmac STARPU_TASK_INITIALIZER
  1190. It is possible to initialize statically allocated tasks with this
  1191. value. This is equivalent to initializing a starpu_task structure with
  1192. the @code{starpu_task_init} function defined above.
  1193. @end defmac
  1194. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1195. Allocate a task structure and initialize it with default values. Tasks
  1196. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1197. task is terminated. This means that the task pointer can not be used any more
  1198. once the task is submitted, since it can be executed at any time (unless
  1199. dependencies make it wait) and thus freed at any time.
  1200. If the destroy flag is explicitly unset, the resources used
  1201. by the task have to be freed by calling
  1202. @code{starpu_task_destroy}.
  1203. @end deftypefun
  1204. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1205. Release all the structures automatically allocated to execute @var{task}, but
  1206. not the task structure itself. It is thus useful for statically allocated tasks
  1207. for instance. It is called automatically by @code{starpu_task_destroy}. It
  1208. has to be called only after explicitly waiting for the task or after
  1209. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1210. still manipulates the task after calling the callback).
  1211. @end deftypefun
  1212. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1213. Free the resource allocated during @code{starpu_task_create} and
  1214. associated with @var{task}. This function is already called automatically
  1215. after the execution of a task when the @code{destroy} flag of the
  1216. @code{starpu_task} structure is set, which is the default for tasks created by
  1217. @code{starpu_task_create}. Calling this function on a statically allocated task
  1218. results in an undefined behaviour.
  1219. @end deftypefun
  1220. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1221. This function blocks until @var{task} has been executed. It is not possible to
  1222. synchronize with a task more than once. It is not possible to wait for
  1223. synchronous or detached tasks.
  1224. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1225. indicates that the specified task was either synchronous or detached.
  1226. @end deftypefun
  1227. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1228. This function submits @var{task} to StarPU. Calling this function does
  1229. not mean that the task will be executed immediately as there can be data or task
  1230. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1231. scheduling this task with respect to such dependencies.
  1232. This function returns immediately if the @code{synchronous} field of the
  1233. @code{starpu_task} structure was set to 0, and block until the termination of
  1234. the task otherwise. It is also possible to synchronize the application with
  1235. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1236. function for instance.
  1237. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1238. means that there is no worker able to process this task (e.g. there is no GPU
  1239. available and this task is only implemented for CUDA devices).
  1240. @end deftypefun
  1241. @deftypefun int starpu_task_wait_for_all (void)
  1242. This function blocks until all the tasks that were submitted are terminated. It
  1243. does not destroy these tasks.
  1244. @end deftypefun
  1245. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1246. This function returns the task currently executed by the worker, or
  1247. NULL if it is called either from a thread that is not a task or simply
  1248. because there is no task being executed at the moment.
  1249. @end deftypefun
  1250. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1251. @anchor{starpu_display_codelet_stats}
  1252. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1253. @end deftypefun
  1254. @deftypefun int starpu_task_wait_for_no_ready (void)
  1255. This function waits until there is no more ready task.
  1256. @end deftypefun
  1257. @c Callbacks: what can we put in callbacks ?
  1258. @node Explicit Dependencies
  1259. @section Explicit Dependencies
  1260. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1261. Declare task dependencies between a @var{task} and an array of tasks of length
  1262. @var{ndeps}. This function must be called prior to the submission of the task,
  1263. but it may called after the submission or the execution of the tasks in the
  1264. array, provided the tasks are still valid (ie. they were not automatically
  1265. destroyed). Calling this function on a task that was already submitted or with
  1266. an entry of @var{task_array} that is not a valid task anymore results in an
  1267. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1268. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1269. same task, in this case, the dependencies are added. It is possible to have
  1270. redundancy in the task dependencies.
  1271. @end deftypefun
  1272. @deftp {Data Type} {starpu_tag_t}
  1273. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1274. dependencies between tasks by the means of those tags. To do so, fill the
  1275. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1276. be arbitrary) and set the @code{use_tag} field to 1.
  1277. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1278. not be started until the tasks which holds the declared dependency tags are
  1279. completed.
  1280. @end deftp
  1281. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1282. Specify the dependencies of the task identified by tag @var{id}. The first
  1283. argument specifies the tag which is configured, the second argument gives the
  1284. number of tag(s) on which @var{id} depends. The following arguments are the
  1285. tags which have to be terminated to unlock the task.
  1286. This function must be called before the associated task is submitted to StarPU
  1287. with @code{starpu_task_submit}.
  1288. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1289. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1290. typically need to be explicitly casted. Using the
  1291. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1292. @cartouche
  1293. @smallexample
  1294. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1295. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1296. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1297. @end smallexample
  1298. @end cartouche
  1299. @end deftypefun
  1300. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1301. This function is similar to @code{starpu_tag_declare_deps}, except
  1302. that its does not take a variable number of arguments but an array of
  1303. tags of size @var{ndeps}.
  1304. @cartouche
  1305. @smallexample
  1306. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1307. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1308. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1309. @end smallexample
  1310. @end cartouche
  1311. @end deftypefun
  1312. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1313. This function blocks until the task associated to tag @var{id} has been
  1314. executed. This is a blocking call which must therefore not be called within
  1315. tasks or callbacks, but only from the application directly. It is possible to
  1316. synchronize with the same tag multiple times, as long as the
  1317. @code{starpu_tag_remove} function is not called. Note that it is still
  1318. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1319. data structure was freed (e.g. if the @code{destroy} flag of the
  1320. @code{starpu_task} was enabled).
  1321. @end deftypefun
  1322. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1323. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1324. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1325. terminated.
  1326. @end deftypefun
  1327. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1328. This function releases the resources associated to tag @var{id}. It can be
  1329. called once the corresponding task has been executed and when there is
  1330. no other tag that depend on this tag anymore.
  1331. @end deftypefun
  1332. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1333. This function explicitly unlocks tag @var{id}. It may be useful in the
  1334. case of applications which execute part of their computation outside StarPU
  1335. tasks (e.g. third-party libraries). It is also provided as a
  1336. convenient tool for the programmer, for instance to entirely construct the task
  1337. DAG before actually giving StarPU the opportunity to execute the tasks.
  1338. @end deftypefun
  1339. @node Implicit Data Dependencies
  1340. @section Implicit Data Dependencies
  1341. In this section, we describe how StarPU makes it possible to insert implicit
  1342. task dependencies in order to enforce sequential data consistency. When this
  1343. data consistency is enabled on a specific data handle, any data access will
  1344. appear as sequentially consistent from the application. For instance, if the
  1345. application submits two tasks that access the same piece of data in read-only
  1346. mode, and then a third task that access it in write mode, dependencies will be
  1347. added between the two first tasks and the third one. Implicit data dependencies
  1348. are also inserted in the case of data accesses from the application.
  1349. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1350. Set the default sequential consistency flag. If a non-zero value is passed, a
  1351. sequential data consistency will be enforced for all handles registered after
  1352. this function call, otherwise it is disabled. By default, StarPU enables
  1353. sequential data consistency. It is also possible to select the data consistency
  1354. mode of a specific data handle with the
  1355. @code{starpu_data_set_sequential_consistency_flag} function.
  1356. @end deftypefun
  1357. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1358. Return the default sequential consistency flag
  1359. @end deftypefun
  1360. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1361. Sets the data consistency mode associated to a data handle. The consistency
  1362. mode set using this function has the priority over the default mode which can
  1363. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1364. @end deftypefun
  1365. @node Performance Model API
  1366. @section Performance Model API
  1367. @deftp {Data Type} {enum starpu_perf_archtype}
  1368. Enumerates the various types of architectures.
  1369. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1370. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1371. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1372. @table @asis
  1373. @item @code{STARPU_CPU_DEFAULT}
  1374. @item @code{STARPU_CUDA_DEFAULT}
  1375. @item @code{STARPU_OPENCL_DEFAULT}
  1376. @item @code{STARPU_GORDON_DEFAULT}
  1377. @end table
  1378. @end deftp
  1379. @deftp {Data Type} {enum starpu_perfmodel_type}
  1380. The possible values are:
  1381. @table @asis
  1382. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1383. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1384. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1385. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1386. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1387. @end table
  1388. @end deftp
  1389. @deftp {Data Type} {struct starpu_perfmodel}
  1390. @anchor{struct starpu_perfmodel}
  1391. contains all information about a performance model. At least the
  1392. @code{type} and @code{symbol} fields have to be filled when defining a
  1393. performance model for a codelet. If not provided, other fields have to be zero.
  1394. @table @asis
  1395. @item @code{type}
  1396. is the type of performance model @code{enum starpu_perfmodel_type}:
  1397. @code{STARPU_HISTORY_BASED},
  1398. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1399. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1400. @code{per_arch} has to be filled with functions which return the cost in
  1401. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1402. a function that returns the cost in micro-seconds on a CPU, timing on other
  1403. archs will be determined by multiplying by an arch-specific factor.
  1404. @item @code{const char *symbol}
  1405. is the symbol name for the performance model, which will be used as
  1406. file name to store the model.
  1407. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1408. This field is deprecated. Use instead the @code{cost_function} field.
  1409. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1410. Used by @code{STARPU_COMMON}: takes a task and
  1411. implementation number, and must return a task duration estimation in micro-seconds.
  1412. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1413. Used by @code{STARPU_HISTORY_BASED} and
  1414. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1415. implementation number, and returns the size to be used as index for
  1416. history and regression.
  1417. @item @code{struct starpu_per_arch_perfmodel per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1418. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1419. starpu_per_arch_perfmodel} structures.
  1420. @item @code{unsigned is_loaded}
  1421. Whether the performance model is already loaded from the disk.
  1422. @item @code{unsigned benchmarking}
  1423. Whether the performance model is still being calibrated.
  1424. @item @code{pthread_rwlock_t model_rwlock}
  1425. Lock to protect concurrency between loading from disk (W), updating the values
  1426. (W), and making a performance estimation (R).
  1427. @end table
  1428. @end deftp
  1429. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1430. contains information about the performance model of a given arch.
  1431. @table @asis
  1432. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1433. This field is deprecated. Use instead the @code{cost_function} field.
  1434. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1435. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1436. target arch and implementation number (as mere conveniency, since the array
  1437. is already indexed by these), and must return a task duration estimation in
  1438. micro-seconds.
  1439. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1440. starpu_perf_archtype arch, unsigned nimpl)}
  1441. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1442. case it depends on the architecture-specific implementation.
  1443. @item @code{struct starpu_htbl32_node *history}
  1444. The history of performance measurements.
  1445. @item @code{struct starpu_history_list *list}
  1446. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1447. records all execution history measures.
  1448. @item @code{struct starpu_regression_model regression}
  1449. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1450. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1451. regression.
  1452. @end table
  1453. @end deftp
  1454. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1455. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1456. @end deftypefun
  1457. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1458. returns the path to the debugging information for the performance model.
  1459. @end deftypefun
  1460. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1461. returns the architecture name for @var{arch}.
  1462. @end deftypefun
  1463. @deftypefun void starpu_force_bus_sampling (void)
  1464. forces sampling the bus performance model again.
  1465. @end deftypefun
  1466. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1467. returns the architecture type of a given worker.
  1468. @end deftypefun
  1469. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1470. prints a list of all performance models on @var{output}.
  1471. @end deftypefun
  1472. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1473. prints a matrix of bus bandwidths on @var{f}.
  1474. @end deftypefun
  1475. @node Profiling API
  1476. @section Profiling API
  1477. @deftypefun int starpu_profiling_status_set (int @var{status})
  1478. Thie function sets the profiling status. Profiling is activated by passing
  1479. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1480. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1481. resets all profiling measurements. When profiling is enabled, the
  1482. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1483. to a valid @code{struct starpu_task_profiling_info} structure containing
  1484. information about the execution of the task.
  1485. Negative return values indicate an error, otherwise the previous status is
  1486. returned.
  1487. @end deftypefun
  1488. @deftypefun int starpu_profiling_status_get (void)
  1489. Return the current profiling status or a negative value in case there was an error.
  1490. @end deftypefun
  1491. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1492. This function sets the ID used for profiling trace filename
  1493. @end deftypefun
  1494. @deftp {Data Type} {struct starpu_task_profiling_info}
  1495. This structure contains information about the execution of a task. It is
  1496. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1497. structure if profiling was enabled. The different fields are:
  1498. @table @asis
  1499. @item @code{struct timespec submit_time}
  1500. Date of task submission (relative to the initialization of StarPU).
  1501. @item @code{struct timespec push_start_time}
  1502. Time when the task was submitted to the scheduler.
  1503. @item @code{struct timespec push_end_time}
  1504. Time when the scheduler finished with the task submission.
  1505. @item @code{struct timespec pop_start_time}
  1506. Time when the scheduler started to be requested for a task, and eventually gave
  1507. that task.
  1508. @item @code{struct timespec pop_end_time}
  1509. Time when the scheduler finished providing the task for execution.
  1510. @item @code{struct timespec acquire_data_start_time}
  1511. Time when the worker started fetching input data.
  1512. @item @code{struct timespec acquire_data_end_time}
  1513. Time when the worker finished fetching input data.
  1514. @item @code{struct timespec start_time}
  1515. Date of task execution beginning (relative to the initialization of StarPU).
  1516. @item @code{struct timespec end_time}
  1517. Date of task execution termination (relative to the initialization of StarPU).
  1518. @item @code{struct timespec release_data_start_time}
  1519. Time when the worker started releasing data.
  1520. @item @code{struct timespec release_data_end_time}
  1521. Time when the worker finished releasing data.
  1522. @item @code{struct timespec callback_start_time}
  1523. Time when the worker started the application callback for the task.
  1524. @item @code{struct timespec callback_end_time}
  1525. Time when the worker finished the application callback for the task.
  1526. @item @code{workerid}
  1527. Identifier of the worker which has executed the task.
  1528. @item @code{uint64_t used_cycles}
  1529. Number of cycles used by the task, only available in the MoviSim
  1530. @item @code{uint64_t stall_cycles}
  1531. Number of cycles stalled within the task, only available in the MoviSim
  1532. @item @code{double power_consumed}
  1533. Power consumed by the task, only available in the MoviSim
  1534. @end table
  1535. @end deftp
  1536. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1537. This structure contains the profiling information associated to a
  1538. worker. The different fields are:
  1539. @table @asis
  1540. @item @code{struct timespec start_time}
  1541. Starting date for the reported profiling measurements.
  1542. @item @code{struct timespec total_time}
  1543. Duration of the profiling measurement interval.
  1544. @item @code{struct timespec executing_time}
  1545. Time spent by the worker to execute tasks during the profiling measurement interval.
  1546. @item @code{struct timespec sleeping_time}
  1547. Time spent idling by the worker during the profiling measurement interval.
  1548. @item @code{int executed_tasks}
  1549. Number of tasks executed by the worker during the profiling measurement interval.
  1550. @item @code{uint64_t used_cycles}
  1551. Number of cycles used by the worker, only available in the MoviSim
  1552. @item @code{uint64_t stall_cycles}
  1553. Number of cycles stalled within the worker, only available in the MoviSim
  1554. @item @code{double power_consumed}
  1555. Power consumed by the worker, only available in the MoviSim
  1556. @end table
  1557. @end deftp
  1558. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1559. Get the profiling info associated to the worker identified by @var{workerid},
  1560. and reset the profiling measurements. If the @var{worker_info} argument is
  1561. NULL, only reset the counters associated to worker @var{workerid}.
  1562. Upon successful completion, this function returns 0. Otherwise, a negative
  1563. value is returned.
  1564. @end deftypefun
  1565. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1566. The different fields are:
  1567. @table @asis
  1568. @item @code{struct timespec start_time}
  1569. Time of bus profiling startup.
  1570. @item @code{struct timespec total_time}
  1571. Total time of bus profiling.
  1572. @item @code{int long long transferred_bytes}
  1573. Number of bytes transferred during profiling.
  1574. @item @code{int transfer_count}
  1575. Number of transfers during profiling.
  1576. @end table
  1577. @end deftp
  1578. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1579. Get the profiling info associated to the worker designated by @var{workerid},
  1580. and reset the profiling measurements. If worker_info is NULL, only reset the
  1581. counters.
  1582. @end deftypefun
  1583. @deftypefun int starpu_bus_get_count (void)
  1584. Return the number of buses in the machine.
  1585. @end deftypefun
  1586. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1587. Return the identifier of the bus between @var{src} and @var{dst}
  1588. @end deftypefun
  1589. @deftypefun int starpu_bus_get_src (int @var{busid})
  1590. Return the source point of bus @var{busid}
  1591. @end deftypefun
  1592. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1593. Return the destination point of bus @var{busid}
  1594. @end deftypefun
  1595. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1596. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1597. @end deftypefun
  1598. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1599. Converts the given timespec @var{ts} into microseconds.
  1600. @end deftypefun
  1601. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1602. Displays statistics about the bus on stderr.
  1603. @end deftypefun
  1604. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1605. Displays statistics about the workers on stderr.
  1606. @end deftypefun
  1607. @node CUDA extensions
  1608. @section CUDA extensions
  1609. @defmac STARPU_USE_CUDA
  1610. This macro is defined when StarPU has been installed with CUDA
  1611. support. It should be used in your code to detect the availability of
  1612. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1613. @end defmac
  1614. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1615. This function gets the current worker's CUDA stream.
  1616. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1617. function is only provided for convenience so that programmers can easily use
  1618. asynchronous operations within codelets without having to create a stream by
  1619. hand. Note that the application is not forced to use the stream provided by
  1620. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1621. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1622. the likelihood of having all transfers overlapped.
  1623. @end deftypefun
  1624. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1625. This function returns a pointer to device properties for worker @var{workerid}
  1626. (assumed to be a CUDA worker).
  1627. @end deftypefun
  1628. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1629. Return the size of the global memory of CUDA device @var{devid}.
  1630. @end deftypefun
  1631. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1632. Report a CUDA error.
  1633. @end deftypefun
  1634. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1635. Calls starpu_cuda_report_error, passing the current function, file and line
  1636. position.
  1637. @end defmac
  1638. @deftypefun void starpu_helper_cublas_init (void)
  1639. This function initializes CUBLAS on every CUDA device.
  1640. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1641. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1642. controlled by StarPU. This call blocks until CUBLAS has been properly
  1643. initialized on every device.
  1644. @end deftypefun
  1645. @deftypefun void starpu_helper_cublas_shutdown (void)
  1646. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1647. @end deftypefun
  1648. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1649. Report a cublas error.
  1650. @end deftypefun
  1651. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1652. Calls starpu_cublas_report_error, passing the current function, file and line
  1653. position.
  1654. @end defmac
  1655. @node OpenCL extensions
  1656. @section OpenCL extensions
  1657. @menu
  1658. * Writing OpenCL kernels:: Writing OpenCL kernels
  1659. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1660. * Loading OpenCL kernels:: Loading OpenCL kernels
  1661. * OpenCL statistics:: Collecting statistics from OpenCL
  1662. * OpenCL utilities:: Utilities for OpenCL
  1663. @end menu
  1664. @defmac STARPU_USE_OPENCL
  1665. This macro is defined when StarPU has been installed with OpenCL
  1666. support. It should be used in your code to detect the availability of
  1667. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1668. @end defmac
  1669. @node Writing OpenCL kernels
  1670. @subsection Writing OpenCL kernels
  1671. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1672. Return the size of global device memory in bytes.
  1673. @end deftypefun
  1674. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1675. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1676. @end deftypefun
  1677. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1678. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1679. @end deftypefun
  1680. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1681. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1682. @end deftypefun
  1683. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1684. Return the context of the current worker.
  1685. @end deftypefun
  1686. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1687. Return the computation kernel command queue of the current worker.
  1688. @end deftypefun
  1689. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1690. Sets the arguments of a given kernel. The list of arguments must be given as
  1691. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1692. The last argument must be 0. Returns the number of arguments that were
  1693. successfully set. In case of failure, @var{err} is set to the error returned by
  1694. OpenCL.
  1695. @end deftypefun
  1696. @node Compiling OpenCL kernels
  1697. @subsection Compiling OpenCL kernels
  1698. Source codes for OpenCL kernels can be stored in a file or in a
  1699. string. StarPU provides functions to build the program executable for
  1700. each available OpenCL device as a @code{cl_program} object. This
  1701. program executable can then be loaded within a specific queue as
  1702. explained in the next section. These are only helpers, Applications
  1703. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1704. use (e.g. different programs on the different OpenCL devices, for
  1705. relocation purpose for instance).
  1706. @deftp {Data Type} {struct starpu_opencl_program}
  1707. Stores the OpenCL programs as compiled for the different OpenCL devices.
  1708. @table @asis
  1709. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  1710. Stores each program for each OpenCL device.
  1711. @end table
  1712. @end deftp
  1713. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1714. @anchor{starpu_opencl_load_opencl_from_file}
  1715. This function compiles an OpenCL source code stored in a file.
  1716. @end deftypefun
  1717. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1718. This function compiles an OpenCL source code stored in a string.
  1719. @end deftypefun
  1720. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1721. This function unloads an OpenCL compiled code.
  1722. @end deftypefun
  1723. @node Loading OpenCL kernels
  1724. @subsection Loading OpenCL kernels
  1725. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  1726. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  1727. queue returned in @var{queue}, using program @var{opencl_programs} and name
  1728. @var{kernel_name}
  1729. @end deftypefun
  1730. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1731. Release the given @var{kernel}, to be called after kernel execution.
  1732. @end deftypefun
  1733. @node OpenCL statistics
  1734. @subsection OpenCL statistics
  1735. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1736. This function allows to collect statistics on a kernel execution.
  1737. After termination of the kernels, the OpenCL codelet should call this function
  1738. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1739. collect statistics about the kernel execution (used cycles, consumed power).
  1740. @end deftypefun
  1741. @node OpenCL utilities
  1742. @subsection OpenCL utilities
  1743. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1744. Given a valid error @var{status}, prints the corresponding error message on
  1745. stdout, along with the given function name @var{func}, the given filename
  1746. @var{file}, the given line number @var{line} and the given message @var{msg}.
  1747. @end deftypefun
  1748. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  1749. Call the function @code{starpu_opencl_display_error} with the given
  1750. error @var{status}, the current function name, current file and line
  1751. number, and a empty message.
  1752. @end defmac
  1753. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1754. Call the function @code{starpu_opencl_display_error} and abort.
  1755. @end deftypefun
  1756. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  1757. Call the function @code{starpu_opencl_report_error} with the given
  1758. error @var{status}, with the current function name, current file and
  1759. line number, and a empty message.
  1760. @end defmac
  1761. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  1762. Call the function @code{starpu_opencl_report_error} with the given
  1763. message and the given error @var{status}, with the current function
  1764. name, current file and line number.
  1765. @end defmac
  1766. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  1767. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  1768. valid combination of cl_mem_flags values.
  1769. @end deftypefun
  1770. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl_async_sync ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1771. Copy @var{size} bytes asynchronously from the given @var{ptr} on
  1772. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  1773. @var{offset} is the offset, in bytes, in @var{buffer}.
  1774. @var{event} can be used to wait for this particular copy to complete. It can be
  1775. NULL.
  1776. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1777. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1778. was successful, or to 0 if event was NULL.
  1779. @end deftypefun
  1780. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1781. Copy @var{size} bytes from the given @var{ptr} on @var{src_node} to the
  1782. given @var{buffer} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1783. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1784. complete. It can be NULL.
  1785. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1786. otherwise.
  1787. @end deftypefun
  1788. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram_async_sync (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1789. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  1790. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  1791. @var{offset} is the offset, in bytes, in @var{buffer}.
  1792. @var{event} can be used to wait for this particular copy to complete. It can be
  1793. NULL.
  1794. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1795. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1796. was successful, or to 0 if event was NULL.
  1797. @end deftypefun
  1798. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1799. Copy @var{size} bytes from the given @var{buffer} on @var{src_node} to the
  1800. given @var{ptr} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1801. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1802. complete. It can be NULL.
  1803. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1804. otherwise.
  1805. @end deftypefun
  1806. @node Cell extensions
  1807. @section Cell extensions
  1808. nothing yet.
  1809. @node Miscellaneous helpers
  1810. @section Miscellaneous helpers
  1811. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1812. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1813. The @var{asynchronous} parameter indicates whether the function should
  1814. block or not. In the case of an asynchronous call, it is possible to
  1815. synchronize with the termination of this operation either by the means of
  1816. implicit dependencies (if enabled) or by calling
  1817. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1818. this callback function is executed after the handle has been copied, and it is
  1819. given the @var{callback_arg} pointer as argument.
  1820. @end deftypefun
  1821. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1822. This function executes the given function on a subset of workers.
  1823. When calling this method, the offloaded function specified by the first argument is
  1824. executed by every StarPU worker that may execute the function.
  1825. The second argument is passed to the offloaded function.
  1826. The last argument specifies on which types of processing units the function
  1827. should be executed. Similarly to the @var{where} field of the
  1828. @code{struct starpu_codelet} structure, it is possible to specify that the function
  1829. should be executed on every CUDA device and every CPU by passing
  1830. @code{STARPU_CPU|STARPU_CUDA}.
  1831. This function blocks until the function has been executed on every appropriate
  1832. processing units, so that it may not be called from a callback function for
  1833. instance.
  1834. @end deftypefun