| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 | /* _starpu_dla_syrpvgrw.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"doublereal _starpu_dla_syrpvgrw__(char *uplo, integer *n, integer *info, doublereal *	a, integer *lda, doublereal *af, integer *ldaf, integer *ipiv, 	doublereal *work, ftnlen uplo_len){    /* System generated locals */    integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;    doublereal ret_val, d__1, d__2, d__3;    /* Local variables */    integer i__, j, k, kp;    doublereal tmp, amax, umax;    extern logical _starpu_lsame_(char *, char *);    integer ncols;    logical upper;    doublereal rpvgrw;/*     -- LAPACK routine (version 3.2.1)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- April 2009                                                   -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLA_SYRPVGRW computes the reciprocal pivot growth factor *//*  norm(A)/norm(U). The "max absolute element" norm is used. If this is *//*  much less than 1, the stability of the LU factorization of the *//*  (equilibrated) matrix A could be poor. This also means that the *//*  solution X, estimated condition numbers, and error bounds could be *//*  unreliable. *//*  Arguments *//*  ========= *//*     UPLO    (input) CHARACTER*1 *//*       = 'U':  Upper triangle of A is stored; *//*       = 'L':  Lower triangle of A is stored. *//*     N       (input) INTEGER *//*     The number of linear equations, i.e., the order of the *//*     matrix A.  N >= 0. *//*     INFO    (input) INTEGER *//*     The value of INFO returned from DSYTRF, .i.e., the pivot in *//*     column INFO is exactly 0. *//*     NCOLS   (input) INTEGER *//*     The number of columns of the matrix A. NCOLS >= 0. *//*     A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*     On entry, the N-by-N matrix A. *//*     LDA     (input) INTEGER *//*     The leading dimension of the array A.  LDA >= max(1,N). *//*     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N) *//*     The block diagonal matrix D and the multipliers used to *//*     obtain the factor U or L as computed by DSYTRF. *//*     LDAF    (input) INTEGER *//*     The leading dimension of the array AF.  LDAF >= max(1,N). *//*     IPIV    (input) INTEGER array, dimension (N) *//*     Details of the interchanges and the block structure of D *//*     as determined by DSYTRF. *//*     WORK    (input) DOUBLE PRECISION array, dimension (2*N) *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    af_dim1 = *ldaf;    af_offset = 1 + af_dim1;    af -= af_offset;    --ipiv;    --work;    /* Function Body */    upper = _starpu_lsame_("Upper", uplo);    if (*info == 0) {	if (upper) {	    ncols = 1;	} else {	    ncols = *n;	}    } else {	ncols = *info;    }    rpvgrw = 1.;    i__1 = *n << 1;    for (i__ = 1; i__ <= i__1; ++i__) {	work[i__] = 0.;    }/*     Find the max magnitude entry of each column of A.  Compute the max *//*     for all N columns so we can apply the pivot permutation while *//*     looping below.  Assume a full factorization is the common case. */    if (upper) {	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__2 = j;	    for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*			n + i__];		work[*n + i__] = max(d__2,d__3);/* Computing MAX */		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*			n + j];		work[*n + j] = max(d__2,d__3);	    }	}    } else {	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__2 = *n;	    for (i__ = j; i__ <= i__2; ++i__) {/* Computing MAX */		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*			n + i__];		work[*n + i__] = max(d__2,d__3);/* Computing MAX */		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*			n + j];		work[*n + j] = max(d__2,d__3);	    }	}    }/*     Now find the max magnitude entry of each column of U or L.  Also *//*     permute the magnitudes of A above so they're in the same order as *//*     the factor. *//*     The iteration orders and permutations were copied from dsytrs. *//*     Calls to SSWAP would be severe overkill. */    if (upper) {	k = *n;	while(k < ncols && k > 0) {	    if (ipiv[k] > 0) {/*              1x1 pivot */		kp = ipiv[k];		if (kp != k) {		    tmp = work[*n + k];		    work[*n + k] = work[*n + kp];		    work[*n + kp] = tmp;		}		i__1 = k;		for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MAX */		    d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 = 			    work[k];		    work[k] = max(d__2,d__3);		}		--k;	    } else {/*              2x2 pivot */		kp = -ipiv[k];		tmp = work[*n + k - 1];		work[*n + k - 1] = work[*n + kp];		work[*n + kp] = tmp;		i__1 = k - 1;		for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MAX */		    d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 = 			    work[k];		    work[k] = max(d__2,d__3);/* Computing MAX */		    d__2 = (d__1 = af[i__ + (k - 1) * af_dim1], abs(d__1)), 			    d__3 = work[k - 1];		    work[k - 1] = max(d__2,d__3);		}/* Computing MAX */		d__2 = (d__1 = af[k + k * af_dim1], abs(d__1)), d__3 = work[k]			;		work[k] = max(d__2,d__3);		k += -2;	    }	}	k = ncols;	while(k <= *n) {	    if (ipiv[k] > 0) {		kp = ipiv[k];		if (kp != k) {		    tmp = work[*n + k];		    work[*n + k] = work[*n + kp];		    work[*n + kp] = tmp;		}		++k;	    } else {		kp = -ipiv[k];		tmp = work[*n + k];		work[*n + k] = work[*n + kp];		work[*n + kp] = tmp;		k += 2;	    }	}    } else {	k = 1;	while(k <= ncols) {	    if (ipiv[k] > 0) {/*              1x1 pivot */		kp = ipiv[k];		if (kp != k) {		    tmp = work[*n + k];		    work[*n + k] = work[*n + kp];		    work[*n + kp] = tmp;		}		i__1 = *n;		for (i__ = k; i__ <= i__1; ++i__) {/* Computing MAX */		    d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 = 			    work[k];		    work[k] = max(d__2,d__3);		}		++k;	    } else {/*              2x2 pivot */		kp = -ipiv[k];		tmp = work[*n + k + 1];		work[*n + k + 1] = work[*n + kp];		work[*n + kp] = tmp;		i__1 = *n;		for (i__ = k + 1; i__ <= i__1; ++i__) {/* Computing MAX */		    d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 = 			    work[k];		    work[k] = max(d__2,d__3);/* Computing MAX */		    d__2 = (d__1 = af[i__ + (k + 1) * af_dim1], abs(d__1)), 			    d__3 = work[k + 1];		    work[k + 1] = max(d__2,d__3);		}/* Computing MAX */		d__2 = (d__1 = af[k + k * af_dim1], abs(d__1)), d__3 = work[k]			;		work[k] = max(d__2,d__3);		k += 2;	    }	}	k = ncols;	while(k >= 1) {	    if (ipiv[k] > 0) {		kp = ipiv[k];		if (kp != k) {		    tmp = work[*n + k];		    work[*n + k] = work[*n + kp];		    work[*n + kp] = tmp;		}		--k;	    } else {		kp = -ipiv[k];		tmp = work[*n + k];		work[*n + k] = work[*n + kp];		work[*n + kp] = tmp;		k += -2;	    }	}    }/*     Compute the *inverse* of the max element growth factor.  Dividing *//*     by zero would imply the largest entry of the factor's column is *//*     zero.  Than can happen when either the column of A is zero or *//*     massive pivots made the factor underflow to zero.  Neither counts *//*     as growth in itself, so simply ignore terms with zero *//*     denominators. */    if (upper) {	i__1 = *n;	for (i__ = ncols; i__ <= i__1; ++i__) {	    umax = work[i__];	    amax = work[*n + i__];	    if (umax != 0.) {/* Computing MIN */		d__1 = amax / umax;		rpvgrw = min(d__1,rpvgrw);	    }	}    } else {	i__1 = ncols;	for (i__ = 1; i__ <= i__1; ++i__) {	    umax = work[i__];	    amax = work[*n + i__];	    if (umax != 0.) {/* Computing MIN */		d__1 = amax / umax;		rpvgrw = min(d__1,rpvgrw);	    }	}    }    ret_val = rpvgrw;    return ret_val;} /* _starpu_dla_syrpvgrw__ */
 |