| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 | /* dsyr2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dsyr2_(char *uplo, integer *n, doublereal *alpha, 	doublereal *x, integer *incx, doublereal *y, integer *incy, 	doublereal *a, integer *lda){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer i__, j, ix, iy, jx, jy, kx, ky, info;    doublereal temp1, temp2;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYR2  performs the symmetric rank 2 operation *//*     A := alpha*x*y' + alpha*y*x' + A, *//*  where alpha is a scalar, x and y are n element vectors and A is an n *//*  by n symmetric matrix. *//*  Arguments *//*  ========== *//*  UPLO   - CHARACTER*1. *//*           On entry, UPLO specifies whether the upper or lower *//*           triangular part of the array A is to be referenced as *//*           follows: *//*              UPLO = 'U' or 'u'   Only the upper triangular part of A *//*                                  is to be referenced. *//*              UPLO = 'L' or 'l'   Only the lower triangular part of A *//*                                  is to be referenced. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the order of the matrix A. *//*           N must be at least zero. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION. *//*           On entry, ALPHA specifies the scalar alpha. *//*           Unchanged on exit. *//*  X      - DOUBLE PRECISION array of dimension at least *//*           ( 1 + ( n - 1 )*abs( INCX ) ). *//*           Before entry, the incremented array X must contain the n *//*           element vector x. *//*           Unchanged on exit. *//*  INCX   - INTEGER. *//*           On entry, INCX specifies the increment for the elements of *//*           X. INCX must not be zero. *//*           Unchanged on exit. *//*  Y      - DOUBLE PRECISION array of dimension at least *//*           ( 1 + ( n - 1 )*abs( INCY ) ). *//*           Before entry, the incremented array Y must contain the n *//*           element vector y. *//*           Unchanged on exit. *//*  INCY   - INTEGER. *//*           On entry, INCY specifies the increment for the elements of *//*           Y. INCY must not be zero. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). *//*           Before entry with  UPLO = 'U' or 'u', the leading n by n *//*           upper triangular part of the array A must contain the upper *//*           triangular part of the symmetric matrix and the strictly *//*           lower triangular part of A is not referenced. On exit, the *//*           upper triangular part of the array A is overwritten by the *//*           upper triangular part of the updated matrix. *//*           Before entry with UPLO = 'L' or 'l', the leading n by n *//*           lower triangular part of the array A must contain the lower *//*           triangular part of the symmetric matrix and the strictly *//*           upper triangular part of A is not referenced. On exit, the *//*           lower triangular part of the array A is overwritten by the *//*           lower triangular part of the updated matrix. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program. LDA must be at least *//*           max( 1, n ). *//*           Unchanged on exit. *//*  Level 2 Blas routine. *//*  -- Written on 22-October-1986. *//*     Jack Dongarra, Argonne National Lab. *//*     Jeremy Du Croz, Nag Central Office. *//*     Sven Hammarling, Nag Central Office. *//*     Richard Hanson, Sandia National Labs. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     Test the input parameters. */    /* Parameter adjustments */    --x;    --y;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    /* Function Body */    info = 0;    if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, "L")) {	info = 1;    } else if (*n < 0) {	info = 2;    } else if (*incx == 0) {	info = 5;    } else if (*incy == 0) {	info = 7;    } else if (*lda < max(1,*n)) {	info = 9;    }    if (info != 0) {	_starpu_xerbla_("DSYR2 ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0 || *alpha == 0.) {	return 0;    }/*     Set up the start points in X and Y if the increments are not both *//*     unity. */    if (*incx != 1 || *incy != 1) {	if (*incx > 0) {	    kx = 1;	} else {	    kx = 1 - (*n - 1) * *incx;	}	if (*incy > 0) {	    ky = 1;	} else {	    ky = 1 - (*n - 1) * *incy;	}	jx = kx;	jy = ky;    }/*     Start the operations. In this version the elements of A are *//*     accessed sequentially with one pass through the triangular part *//*     of A. */    if (_starpu_lsame_(uplo, "U")) {/*        Form  A  when A is stored in the upper triangle. */	if (*incx == 1 && *incy == 1) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (x[j] != 0. || y[j] != 0.) {		    temp1 = *alpha * y[j];		    temp2 = *alpha * x[j];		    i__2 = j;		    for (i__ = 1; i__ <= i__2; ++i__) {			a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] * 				temp1 + y[i__] * temp2;/* L10: */		    }		}/* L20: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (x[jx] != 0. || y[jy] != 0.) {		    temp1 = *alpha * y[jy];		    temp2 = *alpha * x[jx];		    ix = kx;		    iy = ky;		    i__2 = j;		    for (i__ = 1; i__ <= i__2; ++i__) {			a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] * 				temp1 + y[iy] * temp2;			ix += *incx;			iy += *incy;/* L30: */		    }		}		jx += *incx;		jy += *incy;/* L40: */	    }	}    } else {/*        Form  A  when A is stored in the lower triangle. */	if (*incx == 1 && *incy == 1) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (x[j] != 0. || y[j] != 0.) {		    temp1 = *alpha * y[j];		    temp2 = *alpha * x[j];		    i__2 = *n;		    for (i__ = j; i__ <= i__2; ++i__) {			a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] * 				temp1 + y[i__] * temp2;/* L50: */		    }		}/* L60: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (x[jx] != 0. || y[jy] != 0.) {		    temp1 = *alpha * y[jy];		    temp2 = *alpha * x[jx];		    ix = jx;		    iy = jy;		    i__2 = *n;		    for (i__ = j; i__ <= i__2; ++i__) {			a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] * 				temp1 + y[iy] * temp2;			ix += *incx;			iy += *incy;/* L70: */		    }		}		jx += *incx;		jy += *incy;/* L80: */	    }	}    }    return 0;/*     End of DSYR2 . */} /* _starpu_dsyr2_ */
 |