| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 | 
							- using Base.LinAlg
 
- include("mult_naive.jl")
 
- #   A of size (y,z)
 
- #   B of size (z,x)
 
- #   C of size (y,x)
 
- #              |---------------|
 
- #            z |       B       |
 
- #              |---------------|
 
- #       z              x
 
- #     |----|   |---------------|
 
- #     |    |   |               |
 
- #     |    |   |               |
 
- #     | A  | y |       C       |
 
- #     |    |   |               |
 
- #     |    |   |               |
 
- #     |----|   |---------------|
 
- #
 
- function multiply_with_starpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy)
 
-     vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)
 
-     horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)
 
-     @starpu_block let
 
-         hA,hB,hC = starpu_data_register(A, B, C)
 
-         starpu_data_partition(hB, vert)
 
-         starpu_data_partition(hA, horiz)
 
-         starpu_data_map_filters(hC, vert, horiz)
 
-         @starpu_sync_tasks for taskx in (1 : nslicesx)
 
-             for tasky in (1 : nslicesy)
 
-                 @starpu_async_cl cl(hA[tasky], hB[taskx], hC[taskx, tasky])
 
-             end
 
-         end
 
-     end
 
-     return nothing
 
- end
 
- function multiply_with_starpu_cpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy)
 
-     vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)
 
-     horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)
 
-     @starpu_block let
 
-         hA,hB,hC = starpu_data_register(A, B, C)
 
-         starpu_data_partition(hB, vert)
 
-         starpu_data_partition(hA, horiz)
 
-         starpu_data_map_filters(hC, vert, horiz)
 
-         @starpu_sync_tasks for taskx in (1 : nslicesx)
 
-             for tasky in (1 : nslicesy)
 
-                 @starpu_async_cl clcpu(hA[tasky], hB[taskx], hC[taskx, tasky])
 
-             end
 
-         end
 
-     end
 
-     return nothing
 
- end
 
- function multiply_with_starpu_gpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy)
 
-     vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)
 
-     horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)
 
-     @starpu_block let
 
-         hA,hB,hC = starpu_data_register(A, B, C)
 
-         starpu_data_partition(hB, vert)
 
-         starpu_data_partition(hA, horiz)
 
-         starpu_data_map_filters(hC, vert, horiz)
 
-         @starpu_sync_tasks for taskx in (1 : nslicesx)
 
-             for tasky in (1 : nslicesy)
 
-                 @starpu_async_cl clgpu(hA[tasky], hB[taskx], hC[taskx, tasky])
 
-             end
 
-         end
 
-     end
 
-     return nothing
 
- end
 
- function approximately_equals(
 
-     A :: Matrix{Cfloat},
 
-     B :: Matrix{Cfloat},
 
-     eps = 1e-2
 
- )
 
-     (height, width) = size(A)
 
-     for j in (1 : width)
 
-         for i in (1 : height)
 
-             if (abs(A[i,j] - B[i,j]) > eps * max(abs(B[i,j]), abs(A[i,j])))
 
-                 println("A[$i,$j] : $(A[i,j]), B[$i,$j] : $(B[i,j])")
 
-                 return false
 
-             end
 
-         end
 
-     end
 
-     return true
 
- end
 
- function median_times(nb_tests, xdim, zdim, ydim, nslicesx, nslicesy)
 
-     exec_times_st ::Vector{Float64} = [0 for i = 1:nb_tests]
 
-     exec_times_cpu ::Vector{Float64} = [0 for i = 1:nb_tests]
 
-     exec_times_gpu ::Vector{Float64} = [0 for i = 1:nb_tests]
 
-     exec_times_jl ::Vector{Float64} = [0 for i = 1:nb_tests]
 
-     A = Array(rand(Cfloat, ydim, zdim))
 
-     B = Array(rand(Cfloat, zdim, xdim))
 
-     C = zeros(Float32, ydim, xdim)
 
-     D  = A * B
 
-     for i in (1 : nb_tests)
 
-         
 
-         # tic()
 
-         # multiply_with_starpu(A, B, C, nslicesx, nslicesy)
 
-         # t = toq()
 
-         # if (!approximately_equals(D, C))
 
-         #     error("Invalid st result")
 
-         # end
 
-         # exec_times_st[i] = t
 
-         # tic()
 
-         # multiply_with_starpu_cpu(A, B, C, nslicesx, nslicesy)
 
-         # tcpu = toq()
 
-         # if (!approximately_equals(D, C))
 
-         #     error("Invalid cpu result")
 
-         # end
 
-         # exec_times_cpu[i] = tcpu
 
-         # tic()
 
-         # multiply_with_starpu_gpu(A, B, C, nslicesx, nslicesy)
 
-         # tgpu = toq()
 
-         # if (!approximately_equals(D, C))
 
-         #     error("Invalid gpu result")
 
-         # end
 
-         # exec_times_gpu[i] = tgpu
 
-         al ::Float32 = 1.0
 
-         be ::Float32 = 0.0 
 
-         tic()
 
-         # multjl(A, B, C)
 
-         BLAS.gemm!('N','N', al, A, B, be, C)
 
-         # C = BLAS.gemm!('N', 'N', 1.0, A, B)
 
-         tjl = toq()
 
-         if (!approximately_equals(D, C))
 
-             error("Invalid jl result")
 
-         end
 
-         exec_times_jl[i] = tjl
 
-     end
 
-   
 
-     # sort!(exec_times_st)
 
-     # sort!(exec_times_cpu)
 
-     # sort!(exec_times_gpu)
 
-     sort!(exec_times_jl)
 
-   
 
-     results ::Vector{Float64} = [exec_times_jl[1 + div(nb_tests-1, 2)]]#, exec_times_cpu[1 + div(nb_tests-1, 2)], exec_times_gpu[1 + div(nb_tests-1, 2)], exec_times_jl[1 + div(nb_tests-1, 2)]]
 
-     return results
 
- end
 
- function display_times(start_dim, step_dim, stop_dim, nb_tests, nslicesx, nslicesy)
 
-     # mtc = map( (x->parse(Float64,x)), open("DAT/mult_c.dat") do f
 
-     #              readlines(f)
 
-     #              end)
 
-     # mtext = map( (x->parse(Float64,x)), open("DAT/mult_ext.dat") do f
 
-     #              readlines(f)
 
-     #              end)
 
-     # mtjl = map( (x->parse(Float64,x)), open("DAT/mult_jl.dat") do f
 
-     #             readlines(f)
 
-     #             end)
 
-     
 
-     # open("../DAT/mult_ext.dat", "w") do f    
 
-     # open("../DAT/mult_jl.dat", "w") do f
 
-     open("../DAT/mult_jl_times.dat", "w") do ft
 
-         # open("DAT/mult.dat", "w") do f
 
-             # i = 1
 
-         for dim in (start_dim : step_dim : stop_dim)
 
-             println("Dimension: $dim")
 
-             # println("C: $(mtc[i])")
 
-             res ::Vector{Float64} = median_times(nb_tests, dim, dim, dim, nslicesx, nslicesy)
 
-             println("jl: $(res[1])")
 
-             # println("jlcpu: $(res[2])")
 
-             # println("jlgpu: $(res[3])")
 
-             # println("jl: $(res[4])")
 
-             # write(f, "$(dim) $(res[4]/res[1]) $(res[4]/res[2]) $(res[4]/res[3]) $(res[4]/mtc[i])\n")
 
-             # write(f, "$dim $(mtjl[i]/res[1]) $(mtjl[i]/mtext[i]) $(mtjl[i]/mtc[i])\n")
 
-             # write(ft, "$(res[1]) $(mtc[i]) $(mtext[i]) $(mtjl[i])\n")
 
-             write(ft, "$(res[1])\n")
 
-             # i = i + 1
 
-             # end
 
-         end
 
-     end
 
- end
 
 
  |